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Working within a limited Fock-space approximation (LFSA), we argue that if the running coupling
constant of quantum chromodynamics (QCD) exceeds a critical value of order 1 the vacuum becomes a
condensate of quark-antiquark pairs. To evaluate the critical coupling constant we use a Mellin-transform
technique which is first illustrated with a Schrodinger equation problem. We then apply it to scalar and

spinor QED, as well as to QCD, using the LFSA.

I. INTRODUCTION

During the past few years, quantum chromody-
namics (QCD) has emerged as the favored candi-
date for a theory of the strong interactions.! It is
an asymptotically free field theory,? in which the
interactions between quarks are logarithmically
weaker than Coulomb interactions at short dis-
tances. This is compatible with the approximate
scaling observed in deep-inelastic electron scat-
tering.* QCD incorporates color, which “solved”
the quark statistics problem: By making quarks
triplets under color, and demanding that all phy-
sical states be color singlets, the lowest-lying
baryons were able to have totally symmetrical
spatial wave functions.

To be accepted as the dynamical theory of had-
rons, QCD must solve the confinement problem.
It must provide an explanation for the fact that all
physical states are color singlets in which the
number of quarks minus the number of antiquarks
is a multiple of three. That QCD has this proper-
ty is anything but obvious, since the most naive
calculation of the force between quarks, single-
gluon exchange, simply gives a Coulomb potential.
If that were the whole situation, it would be hard
to understand why free quarks would not be ionized
out of hadrons at some finite excitation energy.

Of course, the true forces between quarks are
not Coulombic. Perturbative corrections to
single~-gluon exchange indicate that at long dis-
tances the interaction between quarks is stronger
than a Coulomb interaction.* This is the converse
of asymptotic freedom: Forces get less weak at
greater distances. Furthermore, there are per-
turbative contributions to the static potential be-
tween quarks that cannot be simply absorbed into
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the running coupling constant.

The conventional approach to the confinement
problem relates this presumed aspect of QCD to
nonperturbative properties of the gluon ‘sector.’
Thus it is generally argued that if pure QCD (i.e.,
gluon sector only) obeys the Wilson criterion,® the
introduction of quarks will result in the formation
of hadrons. In this paper we discuss an alterna-
tive to that picture.” We argue that confinement
may occur even if Wilson’s criterion is not obeyed.
Confinement is then blamed on nonperturbative
effects associated with quarks. We will argue that
if the coupling constant in QCD, at long distances,
exceeds a finite critical value of order 1, then the
vacuum will contain a finite density of quark-
antiquark pairs. If we picture this ground state in
terms of excitations (quanta) on the naive vacuum,
then we would describe the true ground state as
being a plasma of ¢g pairs.

The forces between quarks, and the structure of
quarks, would be strongly mofified by a gq conden-
sate ground state. As is well known, such a con-
densate must violate chiral symmetry.8 Further-
more, the condensate may have additional physi--
cal effects, and it is important to try to elucidate
them, because they will surely affect the physical
content of QCD. In this article, our calculations
will be limited to arguing that the true ground
state is in fact a qq pair condensate. We will dis-
cuss the physical effects of the condensate only
qualitatively.

We should point out though, that if the analogy
between the gq condensate and a plasma of char-
ged objects is a valid one, then it suggests an ex-
planation for the absence of colored states which
is radically different from the conventional ex-
planation based on a growing effective potential.
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In a plasma, a charged particle such as an elec-.
tron is screened by a cloud of charged particles
in the plasma, Debye screening.® That is, the
presence of an additional charged particle distorts
the wave functions of the others in the plasma in
such a way that, outside of a small finite region,
the effective charge associated with the extra elec-
tron is seen to be zero. With an analogy between
color and electrical forces, the plasma picture
suggests that a process like Debye screening would
lead to the neutralization of color. If the screen-
ing results in a color-singlet excitation of the
vacuum involving effectively only a finite number
of quarks and antiquarks, then this screened sys-
tem will have integral electric charge and baryon
number, because of the built-in correlation be-
tween fractional color and fractional flavor quan-
tum numbers. Thus trying to explain the nonob-
servation of free quarks by asking how a growing
effective potential could arise in QCD may be
asking the wrong question. If the true vacuum is
a colored plasma, then no colored object, quark
or gluon, could be stable, because the condensate
vacuum would respond to the presence of a color-
ed object by neutralizing any local color imbal-
ance,

To amplify this analogy, one should first show
that the color analog of Debye shielding actually
occurs in a gq condensate, and further, that if
color shielding occurs, it is accompanied by the
elimination of fractional flavor quantum numbers.
Despite the fact that any system composed of a
finite number of quarks, antiquarks, and gluons,
which has zero total color will have only integral
flavor quantum numbers (such as electric charge),
it is possible for a system composed of an infin-
ite number of quanta to have zero total color while
at the same time having nonintegral electric
charge.'® We have no reason to expect that this
preverse situation will actually occur. If the vac-
uum is a plasma of quark-antiquark pairs, then
since Debye shielding occurs over a finite range,
it is most natural to expect that there will be ef-
fectively only a finite number of quarks and anti-
quarks involved in shielding, and this presumably
would lead to excitations with only integral flavor
quantum numbers. The simplest way to analyze
what actually happens is to examine the screening
of an external (heavy) quark. This is the analog
of Debye shielding of an external charge in a
plasma. Such investigations are in progress. A
more ambitious and physically relevant test would
be to find the stable excitations of the condensate
and examine whether they have fractional or inte-
gral charge.

A criterion for the ground state of QCD to con-
tain a condensate of quark-antiquark pairs is that
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the coupling constant become large enough so that
some qq state becomes degenerate with the no-
particle state. Here we examine this criterion in
the approximation of replacing the dressed vac-
uum and dressed gq states by bare states. How-
ever, having taken this lowest perturbative ap-
proximation to each state, we diagonalize the QCD
Hamiltonian exactly on the space of bare gq
states, and compare the lowest eigenvalue to its
expected value in the bare vacuum. Since this
approximation amounts to diagonalizing the Hamil-
tonian on a limited part of Fock space, we will call
it the limited Fock-space approximation (LFSA).

We take the Hamiltonian to be normal ordered,
so that its vacuum expected value remains zero.
We diagonalize the Hamiltonian on the space of
bare ¢q states by the variational principle, thus
working to all orders in the coupling in this sector
of Fock space. Within our LFSA « is a free
parameter. When o exceeds a critical value
a,., we find that the lowest bound states in the
particle-antiparticle sector develop negative ener-
gies. This then signals a phase transition causing
the true vacuum to become a condensate of such
pairs, in the same way as a Cooper pair with non-
zero binding energy signals that a metal below a
critical temperature is superconducting.

We argue that negative total energy ¢q states
occur in QCD by the variational principle. Working
in the radiation gauge,'! we construct a physical
quark-antiquark state by applying creation opera-
tors formed from the quark fields at a fixed time:

o) = f A% Y(R)TH (R)g (= R)| 0) .

(The notation is as follows: ¢‘* and g‘*) are the
creation parts of the quark and antiquark fields,
and ¥ is the relative momentum wave function.) We
then calculate the normalized expectation value of
the QCD Hamiltonian in the state |¢), and mini-
mize it with respect to the wave function. This
gives an effective wave equation for ¥(k), and we

"~ solve it for its eigenvalues. We take the Hamil -

tonian to be normal ordered, so that the expected
value of the energy in the no-particle state is zero,
and then we are concerned with whether or not one
of the eigenvalues of the wave equation for ¢ is
negative.

The wave equation for y(k) is a singular integral
equation in momentum space. We solve it by a
technique based on the Mellin transform.'? Be-
cause the equation is scale invariant, we are able
to obtain an analytic solution. The equation for the
Mellin transform of the momentum-space wave
function is a first difference equation. The coef-
ficients in the equation are rational functions of
the Mellin transform variable, and so a solution
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for the Mellin transform is a product of I' func-
tions. The resulting solution has singularities at
locations in the Mellin-transform plane that are
incompatible with the solution’s being the Mellin
transform of a normalizable wave function. We
remove these unphysical singularities by multiply-
ing by a periodic function which compensates for
them. The result is a closed-form expression

for the Mellin transform of the momentum-space
wave function.

Within the framework of our technique for solv-
ing the wave equation, the question of whether or
not negative-energy eigenvalues are allowed comes
down to the question of whether or not a periodic
function which eliminates all the unphysical singu-
larities of the solution to the difference equation,
including those at infinity, can be found. The lo-
cations of the singularities shift as a function of
the coupling constant. For negative eigenvalues,
an appropriate periodic function can only be found
when the coupling constant exceeds a finite critical
value,

The wave equations fori that emerge in the
LFSA are exactly the same in QCD, in spinor
electrodynamics, and in scalar electrodynamics.
The only difference is that there is a numerical
factor of 4 due to SU(3) multiplying the coupling
constant in the QCD equation, which is absent in
either of the electrodynamics equations. The crit-
ical values of the coupling above which there are
negative-energy bound states are a,=% in QED and
a, =% in QCD.

There is, in addition, a simple physical explana-
tion for the existence of a critical coupling con-
stant. The physical system under consideration
consists of two massless particles which interact
by a Coulomb 1/7 potential. Since both the rela-
tive kinetic and potential energies scale like 1/7,
if we consider a state whose characteristic size is
R, then the kinetic energy of the system is roughly
1/R, while the potential energy is roughly — a/R.
Thus, when a exceeds a value of order 1, the po-
tential energy can exceed the kinetic and there
will be bound states with total negative energy.

Our analysis using the LFSA is an approximation
to a procedure which is well defined but very dif-
ficult to carry out. In an exact treatment the true
vacuum and the two-particle sector of Fock space
are mixtures of all the noninteracting sectors.
The mixing could be evaluated in perturbation
theory, though the calculation necessitates the in-
troduction of a cutoff or a renormalization pro-
cedure. The LFSA is the lowest approximation to
this procedure.

In QCD, the effective coupling varies with the
distance scale and the range of its values is an
intrinsic property of the theory. Therefore there

is no free a parameter. Whether or not the in-
teraction between quarks is large enough for the
ground state to become a ¢g condensate is also an
intrinsic property of the theory. In the LFSA that
interaction is given by only a Coulomb term with

o being an external parameter. We can try to
take some features of the exact theory into account
by letting o become a distance-dependent function
as expected from renormalization-group analysis,
This leads to the physical model discussed in Ref.
7. -

Let us describe briefly the physical picture of
quark condensation and confinement within the
model based on the assumptions specified above.
As a qualitative background for this description
we compare in Fig. 1 a critical — a,7~' Coulomb
potential with three curves all of which are log-
arithmically weaker at the origin, as expected of
a QCD potential from asymptotic freedom.

Curve A corresponds to the common lore of an
asymptotically rising potential leading to quark
confinement. Curve B designates a situation
where quark confinement does not exist, Curve
C describes a situation where the phenomenon
that we propose will take place: The vacuum will
become a condensate of light ¢gg pairs whose char-
acteristic correlation length is of the order of the
value of the point =R, at which the curve Ccross-
es —a,/v. Within this new vacuum, quarks may

FIG. 1. The dashed curve is a — a, /7 potential, which
is compared with three possibilities for the g7 effective
potential. Curve A is an asymptotically rising potential;
curve B is weaker than — «, /v, and would not be ex-
pected to give confinement; curve C is stronger than
—a, /v at large distances, and would be expected to lead
to pair condensation.
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propagate freely for short distances, but the con-
densate will inhibit their long-distance propagation
as free, stable particles.

Possible excitations of this condensate are col-
lections of quarks and gluons which, together with
all their associated fields, are confined to a region
smaller than R,. The primary example would be
a compact gq system in a color-singlet state. Such
a system would not set up a long-range color
field, and so would not affect, nor in turn be af-
fected by, the condensate. The ¢g state could be
pictured as residing in the interstices of the con-
densate. It would have a finite, positive energy:
finite, because it is a state of two massless quan-
ta, confined to a finite-size region, attracting each
other with a force weaker than a Coulomb interac-
tion; positive, because at distances less than R,
the negative potential energy from the attractive
color interaction is less than the positive kinetic
energy associated with their confinement to a re-
gion smaller than characteristic pair separation
in the condensate. We would associate these ex-
citations with physical mesons. Other small (rel-
ative to R,) color-singlet systems, for example,
q499, 94qq, or gq+ gluons, would also be finite-
energy excitations, corresponding to baryons or
exotic mesons, respectively.

Finally, before turning to the technical problems
to which this paper is devoted, let us address our-
selves to the interesting question of whether a
mechanism of the kind that we propose could also
occur in QED and, if so, why it is not observed.
The important difference between QED and Q CD,
as far as our mechanism is concerned, is that
their effective couplings become large at opposite
distance scales. Thus, whereas the weak potential
regime of QCD is at short distances, the Coulomb
force is the well-known manifestation of QED at
large distances. Conventional expectations are
that QED is part of a larger gauge theory'® and
therefore its running coupling constant will never
increase too strongly. But even if this is not the
case and its running coupling constant exceeds
unity, this will happen at very short distances, of
order ¢~'/%/m,. Inthat case the vacuum would
change its character only at distances which are
much smaller than those which can be experiment-
ally tested. In fact, gravitational effects should
be expected to dominate even at a much larger
distance scale.

The organization of this paper is as follows: In
Sec. II we solve a simple model which illustrates
both the dynamical ideas and the techniques of the
QCD bound-state problem. Themodelisamassless
particle moving ina 1/7 potential. The Schrédinger
equation for its bound states exhibits the same dimen-
sionally homogeneous competition between the kin-
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etic and potential energies as the QCD bound-state
problem. In momentum space, it is an integral
equation which we solve by our Mellin-transform
technique. We solve the difference equation for
the Mellin transform of the momentum-space wave
function, and describe the locations of the singular-
ities and zeros of the solution as a function of the
coupling constant. We show explicitly how this
leads to the possibility of negative eigenvalues only
above a critical value of the coupling, and find the
periodic function which eliminates unphysical sing-
ularities. ’

In Sec. III we derive the integral equations for
the momentum-space bound-state wave functions
of a particle-antiparticle pair in scalar and spinor
QED and in QCD. Scalar electrodyhamics is sim-
plest because it lacks the complications due to
spin, and so we discuss that case in the greatest
detail. [Scalar QED, however, has a complication
due to the (¢* ¢)? counterterm which is not present
in the spinor bound-state equations.] Except for
the numerical factor due to SU(3) in the QCD case,
the integral equations are identical in all three
theories. Because both massless QED and mass-
less QCD are chirally invariant theories, the
wave equations for pseudoscalar bound states in
those theories are the same as the equations for
the scalar bound states.

In Sec. IV we solve the bound-state equations
using the Mellin-transform technique outlined
above. The solutions are examined in great detail,
and the value of the critical coupling above which
there are negative-energy bound states is explicit-
ly computed,

Il. A SCHRODINGER EQUATION INSTABILITY MODEL

We will illustrate the formation of negative-total
energy bound states in an external potential model:
a massless scalar particle moving in a Coulomb
potential set up by an external charge of —Z units.
We will show that if ¢Z < 3, there are no bound
states, while if aZ >4, there are bound states.
Since the mass of the scalar field is zero, bound
states have negative total energy, and so repre-
sent configurations in which it is energetically
favorable for a scalar electron to be produced and
occupy a bound-state energy level.

We will describe this physical situation by
means of a Schrddinger equation with Hamiltonian
H=H,+H, Thekinetic energy H, is |P| and the
potential energy H, is —aZ /7. The equation we
will solve is the Schrddinger equation

> QaZ
(15~ Y=o 2.1

We can deduce this same equation by applying a



variational approximation to massless scalar quan-
tum electrodynamics. In the presence of an ex-
ternal charge, the Lagrangian is
L=-3F,, F,H{9,+ieA,)p*(0, —ieA,)d
+eZ 5%(X)A,(0,1) . (2.2)

In the radiation gauge V-A= 0, the Hamiltonian
of this system takes the form

W=T*1 + (V—ieR)p*+ (V+ieR)o
+%§2+%§2 (2.3)
and the longitudinal part of E is constrained by
V- -E=—ie(¢p*N ~N*¢) + eZ °(X) . (2.4)

The canonical momenta are defined by

0L
* =2
m=3s
88
n=3g

so that starred fields have the opposite charge
from unstarred fields. In the radiation gauge, the
fields create only physical states and A, is a de-
pendent field which can be expressed in terms of
¢ and II. If we restrict this Hamiltonian to the
subspace of states of one electron, we recover.
exactly the previous Schrddinger equation. To
obtain this equation, consider the normalized ex-
pected value of the scalar electrodynamic Hamil-
tonian in the state of one electron:

<¢2 !ldaxﬁclw (2.5)
) ’ )

where
9= [ am@al10= [ a*ky@ 0%~ i1)I0) .
(2.6)

The requirement that this normalized expected
value of H should be stationary with respect to
variations of the wave function gy,

0 Wl f%axly) _
oy Wy 0, 2.1

recovers the previous Schrddinger equation.

This physical situation has been previously an-
alyzed in terms of a Klein-Gordon equation. The
Klein-Gordon equation for a scalar particle in an
external Coulomb potential arises in two ways.
One is in considering the problem of the classical
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stability of the Coulomb potential of a point charge
to small fluctuations in a charged scalar field.
That problem is solved by considering the nonlin-
ear equations of classical scalar electrodynamics
and expanding the solutionto those equations inanas-
sumed small fluctuation about the Coulomb solution.
The linearized cquation for the fluctuation of the scal-
ar field is exactly the Klein-Gordon equation for a
massless scalar particle in the presence of a vec-
torially coupled Coulomb potential. This equation
shows that the Coulomb potential is classically
stable to small fluctuations so long as aZ < 3 but
is unstable to infinitesimal fluctuations in the scal-
ar field if aZ > 3.

This Klein-Gordon equation also is the relativ-
istic wave equation for a scalar particle moving in
a Coulomb potential.

It should be pointed out that in the case of a pure
Coulomb potential arising from a point source, the
mass of the electron cannot affect the critical value
of aZ at which a transition from stability to insta-
bility occurs. The reason is that the electron mass
is the only dimensional parameter in the problem
of a scalar electron moving in a Coulomb potential.
Since the critical coupling is a pure number, it can-
not depend on any dimensional quantity. So, inpar-
ticular, the critical coupling is the same for both
massless and massive scalar electrodynamics. On
the other hand, if instead of a pure Coulomb poten-
tial, one were to consider a Coulomb potential
cut off at a radius 7, then m, 7, is a pure number
and could affect the critical coupling consistent. In
fact, it is known from considerations of nuclei
with large charge that the effect of a finite nuclear
size is to increase the value of the critical cou-
pling constant.

We will analyze the Schrddinger equation by a
technique which generalizes to the other calcula-
tions that we will consider in this paper. We be-
gin with the Schrddinger equation in momentum
space:

7. 3
214D - G [ oy V@=BVE) . (2.9)

We take the wave function to be spherically sym-
metrical, giving

aZ (°
M(P)—;;fo gln

Ly q)ag=E4(p) (> 0).

(2.9)
This equation may be solved by Mellin transform-

ing it to a soluble finite difference equation. If we
define the Mellin transform of y(p) by

o) = fm PE=1y(p) dp (2.10)
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and transform the Schrédinger equation, then after
interchanging orders of integration, we find the
finite difference equation

D)ot +1)=Ep(2) , (2.11)
where
D@)=1+ oot £ (2.12)

The factor cotim¢/(¢ —1) is shown in Fig. 2. This
is almost a simple eguation, because except for
the contangent, the relation between ¢(¢) and
¢(£ +1) is a rational function. If we iterate the
equation once, to relate ¢(¢) to ¢(£ +2),
D(E)D( + 1)l +2) =E*¢(c) , (2.13)
then in this iterated equation the cotangents are
effectively constants. They have thie same numeri-
cal value at each of the points related by the equa-
tion, since the cotangent has period 7. It is very
simple to write down one solution of a first-order
difference equation with rational coefficients. If
we are given the equation

(c=-a) - -a,)
(E=b)---(t=-0,).

X(+j)=c’ X(¢), (2.14)

then one solution to that equation is

T (z(c =T )
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FIG. 2. The function F(¢)=[1/(£ - 1)lcot3T¢ which
occurs in D(¢). Each zero of ¢$(¢) corresponds to a
root of F(¢(+n)=—-1/(@Z), n=0,1,2, ..., Normalizable
(bound-state) wave functions exist when the root of F(¢)
=1— 1/(aZ) between 0 and 1 (£ ¢) occurs to the right of ¢

=3.

x(0)= LT =a)/§) -+ Tk =a,)/§)
T((¢ =6,)/4) - T((t -b,)/7)

(2.15)

Therefore we can write one solution to the Mellin-
- transform first-order difference equation:

d(c)=E*

Note that this satisfies the uniterated as well as
the iterated ‘equation. Note also that although it is
a solution of the uniterated equation, it is hardly
the most general solution since if P(¢) is any period-
ic function with unit period, then

o) =P(£) ()

is also a solution to the difference equation.

There is only one physical choice of P(¢). It is
determined by the requirement that ¢(z) be the
Mellin transform of a well-behaved wave function
Y(p). If ¥(p) is nonsingular at the origin in mo-
mentum space and normalizable, so that y(p)
falls off faster than p~3/2 for large p, then its
Mellin transform ¢(¢) must be analytic in a strip
in the complex plane where 0< Re¢ < 3. In fact,
the analyticity strip may be wider than this, and
we shall see that in general it extends to the right
of 3, but it cannot be narrower. In addition, since
¢(¢) is a Mellin transform, it must be bounded by
a polynomial as |¢| goes to infinity in either direc-
tion inside the analyticity strip.

(2.17)

(G ~-1+aZcotzmg)) T G[r + aZ cotzn(g +1)])

(2.16)

I

In fact, ¢(¢) is not analytic inside the required
- analyticity strip, for it has an essential singular-
ity at ¢ =1. The second I' function in the denomi-
nator behaves for ¢ near 1 like

T (3[c+acotzn(+1)])~T <ﬂ—(c§-Z—_T) +.;-> ,

(2.18)

which shows that { =1 is an accumulation point of
zeros of ¢(¢); the zeros accumulate to the left of

1 on the real axis. Except for its singularities at
integers, $(§) is a smooth function of £ whose mag-
nitude goes to a constant as || -« because
cot(xiw)=Fi, If the energy E is less than 0, then
$(¢) is not so well behaved, since the factor E°®
diverges exponentially as Im¢ goes to infinity in
either the upper or the lower half plane.

In order to have a solution which represents the
Mellin transform of a well-behaved wave function,
P(g) must be chosen so that it removes the unphys-
ical essential singularity of ¢(¢) at 1. Further-
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more, in order to obtain a bound-state solution
with E <0, P(¢) must compensate for the unphys-
ical exponential growth as | Img| -,

We will construct the periodic function P as a
product of three periodic functions,

P(5)=P,(¢)B,(5)P4(¢) . (2.19)

The function P,(¢) will be chosen to have the same
essential singularity as the I" function in the de-
nominator, except for the fact that the locations of
its poles will not be exactly the same as the loca-
tions of the zeros of the reciprocal I'" function.
However, as ¢ approaches 1 from any direction
except the real axis below =1, P,(¢) will com-
pensate for the essential singularity of the I func-
tion. The periodic function P,(¢) will be construct-
ed as an infinite product which will have zeros at
each of the poles of P,(¢) and poles at each of the
poles of the denominator function. It will be free
of other singularities, and will be chosen so that
as ¢ goes to 1 from any direction except the real
axis below 1, it will approach a .finite constant.
Thus the product P, (¢)P,(¢) will completely com-
pensate for the essential singuarities of $(¢).
Finally, when we are interested in constructing
bound -state wave function, P,(¢) will be chosen
so as to overcompensate for the exponentially
divergent growth of (¢) as |Im¢g| -,

The function P,(¢) is easy to construct. A per-
iodic function with exactly the same singularity as
the argument of the denominator I' function near
¢t=11is

aZ cotnf +3 , (2.20)
and so the choice

P,(¢)=T(aZ cotmf +3) (2.21)
is a function which compensates for the essential

singularity in ¢(¢) in the sense that

i P (&) _
;lin} (Tilg+azcotrz(c+1)]) L (2.22)

so long as the limit is not taken along the real
axis from below 1. Furthermore, as |[{| -« in
the analyticity strip in either the lower or the up-
per half plane, P,(¢)approachesafinite constant.
However, the poles of P,(£) do not coincide withthe
zeros of ¢(¢). Poles of P,(¢) occur at

aZ cotmt=—-n -3, (2.23)

while the zeros of ¢(¢) occur at values ™ which
are the solutions of

™ yaZcotzm(c™+1)==2n . (2.24)

The locations of these poyles and zeros are shown

ooy
r @ Cm.'.','rl

FIG. 3. The ¢ plane for Py(£)¢ (L), for aZ slightly
greater than % The dots are at the zeros of ¢(¢) and
the crosses are at the poles of Py({). The locations of
these poles and zeros are functions of the coupling aZ.
As oZ increases, ¢, moves toward the right while all
the other zeros and poles shown move toward the left.
At az=2/7, ¢oand ¢ O meet at ¢=1, and for larger
aZ they become a pair of conjugate zeros on the line
Re¢=1.

in Fig. 3. We can construct by force a periodic
function with exactly compensating poles and
zeros as the infinite product

P(c)= H [ 1+ (aZ cotng)/(n+3) ] ) (2.25)

aeo L 1=—cotmg/cotng ™

The solution ¢(¢)=¢P,P, is the Mellin transform
of a positive-energy wave function.

This Mellin transform is actually analytic in a
somewhat larger analyticity strip than merely 0
< Re¢ < . In fact, the right boundary of the an-
alyticity strip occurs one unit above the zero ¢,
of D(¢) that lies between 1 and 2. This zero in-
dicates that if ¢(¢,) is finite then ¢(¢) will have a
simple pole at £, +1. This pole is on the boundary
of the analyticity strip and determines the asymp-
totic behavior (as p — =) of the wave function §(p)
of which ¢(¢) is the Mellin transform. Note that
this construction of the Mellin-transformed scat-
tering wave function is unique. The reason is that
any other solution would have to be obtained from
¢(£) by multiplying by an analytic periodic function
which is bounded by a polynomial in . Such a
function must be an analytic function of €™ and
e‘*’"“, which is to say, the sum of an analytic
function of each. The requirement of polynomial
boundedness in ¢, by Liouville’s theorem, forces
the function to be a constant.

For negative energies, the construction given
so far fails to satisfy the boundary condition at
|Img|—=e. If for negative energies we conven-'
tionally choose the phase of E to be e'", then E*
= | E|%" will diverge exponentially as Im¢ — — o,
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However, if we choose the third periodic function
to be
1
P,

3 T gEmit _ gonily o

(2.26)

then ¢(¢) ='¢ P, P, P, will be exponentially conver-
gent as [{ |-« in either direction in the analyticity
strip. However, we must choose ¢, to be the loca-
tion of a zero of fﬁo(g) which has not been removed
by a pole of P,(£). There is in fact always ex-
actly one such zero. It occurs at the zero of D(¢)
between 0 and 1. However, it is not a periodic
zero and so introducing the factor of P,(c), while
it will not introduce a pole in ¢(;) between 0 and 1,
will introduce a pole one unit higher, between 1
‘and 2. Since ¢(¢) must be analytic in a strip ex-
tending at least to Reg =%, in order that the bound-
state wave functions be normalizable, {, must lie
between 3 and 1. As one can see from Fig. 1, this
will be true if k ‘
D(3)< 0. (2.217)

Since D(3)=1 ~2aZ, aZ =% is the critical value
of the coupling constant above which one can con-
struct normalizable bound-state wave functions and
below which one cannot construct normalizable
negative-energy bound-state wave functions. Note
that at aZ =2/7, the zeros to both the left and right
of £ =1 coalesce and then move into the complex
¢ plane. Both zeros then have unit real parts and
equal and opposite imaginary parts. However, the
number of zeros of D(£) does not change when these
two zeros go into the complex plane, and further-
more, they remain to the right of £ =%, so that the
construction of the bound-state wave functions for
aZ > 2/ proceeds exactly the same as when 3
<az<2/m '

There is no further freedom in the determination
of ¢(¢), again as a donsequence of Liouville’s
theorem. Any other solution would have to be ob-
tainable from ¢(¢) by multiplication by an analytic
periodic function of ¢. Such a solution must be the
sum of an analytic function of ¢2"*¢ and one of
e~?"%  Thus, since it must be less singular than
e2" ¢! a5 |Img| =, it must be a constant.

The construction just given is valid not only for
‘negative E, but for any phase of E. Thus, above
the critical coupling, there are normalizable wave
functions with all phases for their eigenvalues.
These are, of course, not all orthogonal. The
reason is simply that the integral operator in mo-
mentum space acting on bound-state wave func-
tions is not uniformly convergent, and so is not a
self-adjoint operator on the space of these func-
tions.

The explicit construction of the wave function

that we have given involves the factor P,(¢), which
is a periodic function constructed as an infinite
product, and is not any simple or well-known an-
alytic function. However, the infinite product is
rapidly convergent. For large =,

aZ cotng™~ ~(n +§)+O<717> , (2.28)
so the infinite product converges like 2 ,1/#3. For
the purpose of computing P,(¢) to high accuracy,
it should be quite sufficient to merely take a few
terms of the infinite product. In addition, for
bound-state wave functions, the solution ¢(¢) in-
volving the factor of P,(¢) falls exponentially as
|Img| ~e. This means that if one wishes to re-
construct the momentum-space wave function ¥

by taking the inverse Mellin transform of ¢(¢), the
inverse Mellin transform should be very rapidly
convergent and so amenable to nonsingular nu-
merical evaluation. '

The eigenvalue E enters ¢(¢) only through the
factor ES. This means that when () is recon-
structed by computing the inverse transform,
|E| will set the scale for p but will not otherwise

appear in ¥(p).

III. THE BOUND-STATE EQUATIONS

In this section we will derive wave equations in
the LSFA for the bound states of one electron and
one positron in massless scalar electrodynamics
(Sec. M A), in massless spinor QED (Sec. M B),
and in QCD with massless quarks (Sec. IIIC).
Except for a numerical factor of % in QCD, which
is essentially an SU(3) crossing-matrix element, the
identical equation emerges in all three theories.
Furthermore, the three derivations are very sim-
ilar, so in the spinor cases we will make frequent
reference to the details of the scalar derivation.
The equation will be an integral equation for the
relative momentum wave function of a bound state
with zero total momentum. After having arrived
at this integral equation we will convert it into a
finite difference equation by means of a Mellin
transform (Sec. MID). In Sec. IV we will analytic-
ally solve the resulting finite difference equation. -

A. The LFSA scalar QED equation

Formally, the problem of deriving a wave equa-
tion for an electron-positron bound state may be
thought of as the problem of diagonalizing the Ham-
iltonian for massless scalar electrodyanmics on a
restricted subspace of states: those states that
contain one physical electron, one physical pos-
itron, and no additional radiation. If the resulting
equation is to be physically sensible, we must take
care to include only physical states in the subspace
on which we diagonalize the Hamiltonian. For
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example, were we to carry out this calculation in
the temporal gauge A,=0, we would have to insure
that Gauss’s law V -E =p was satisfied on each of
the states we included in the subspace. In order
to obviate the necessity for such a discussion, or
equivalently, to insure that our two-particle states
are actually gauge invariant and hence physical,
we will carry out the calculation in the radiation
gauge V -A=0. In the radiation gauge, the trans-
verse components of the electromagnetic potential
and the electric field create and annihilate phys-
ical photons, and the scalar field and its conjugate
momentum create and annihilate the physical par-
ticle degrees of freedom along with their associ-
ated longitudinal electric fields.

We will make the perturbative identification of

single-particle annihilation and creation operators.

At a fixed time, we will associate the Fourier
components of the scalar field and its conjugate
momentum with creation and annihilation operators
for scalar quanta. The normal-ordered Hamilton-
ian has zero expectation value in the state of no
quanta and its expectation in the state of one phys-
ical electron or one physical positron is the ab-
solute value of the momentum of the electron or
positron, which shows that our identification of
annihilation and creation operators for single-
particle states is proper. Two-particle states,
with one electron and one positron, will be taken
to be those states obtained from the no-particle
state by applying one electron and one positron
creation operator.

The Lagrangian for massless scalar electrody-
namics ‘is

£=(9, +ieA,)p*(0, —ieA )0 -4 F, F,,. (3.1)

This Lagrangian must be supplemented by a gauge
condition, for which we take the radiation gauge,

v.A=0, (3.2)

and by counterterms. In addition to counterterms
with the same kinematic form as the terms of the
Lagrangian, there is a mass counterterm for the
scalar field and a counterterm proportional to
(p*o)?, which, as is well known, is needed to
make electron-electron and electron-positron
scattering finite. The necessity for this last coun-
terterm arises because diagrams inwhich two or
more photons are exchanged between a pair of
electrons or between an electron and a positron
are logarithmically divergent in the ultraviolet.
The counterterm, of course,; preserves the gauge
invariance of the Lagrangian. In order that the
charge carried by starred fields and momenta be
the same, and opposite to that of unstarred fields,
we will denote the momentum operator conjugate
to ¢ by IT* and momentum conjugate to ¢* by II.

The canonical momenta are
9L
H=T =(8,— ieA,)P
9 * 0 (1] ’
) (3.3)
9L .
m*= ?J)- =(80+16A0)¢* .

It is convenient to decompose the electric field
into a transverse and a longitudinal part

E=ET-9y, 3.4)
where
V.ET=0. (3.5)

The momentum conjugate to the transverse elec-
tromagnetic potential is the transverse electric
field

9L

8AT
The canonical commutation relations of the fields
and momenta are

[*(%,0), $(7,0)]=[11(%, 0), o*(7,0)]
=-it%%-7),
[ET(%,0),A7(F,0)]=i8T,65%% - F) .

=-F§;==ET . (3.8)

(3.7

Varying the Lagrangian with respect to the can-
onical fields, AT, ¢, and ¢* give the dynamical
field equations for scalar electrodynamics;

(8, —ieA Yo =0,
(8, +ieA Po*=0, (3.8)
8, F,, +ie[o*5,¢ —2(eA, p*¢)]=0.

Varying the Lagrangian with respect to 4, gives
the equation of constraint,

V -E +ie(o*T ~TI*¢) =0. (3.9)

The longitudinal part of the electric field, which
alone enters the constraint equation, is equal to
-VA, (i.e., Ay=x). From the constraint equation
we identify the charge density carried by the
scalar field as

p=—i(p*I = II*¢) .
The total charge @ is the space integral of p(x):

Q=fd3xp(x).’

From the canonical commutation relations it fol-
lows that ¢ and IT annihilate one unit of charge
while ¢* and IT* create one unit of charge:

[Q,¢l=-0,
[Q, o*]=+¢*,
[Q,m]=-m,
[@, m*]=4+11%.

(3.10)

(3.11)

(3.12)
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Gauss’s law, Eq. (3.9), the constraint equation
of scalar electrodynamics, can be imposed as an
operator constraint in the radiation gauge and,
in fact, we will use the constraint as an operator
equation to simplify the canonical Hamiltonian.
All appearances of the longitudinal electric field
or the scalar potential will be understood to be
shorthand notations for appropriate expressions
involving the scalar field and its conjugate momen-
tum. The Hamiltonian scalar electrodynamics can
be constructed by the canonical prescription

jo=T*p +T*x— BT -AT— £ . (3.13)

By use of the constraint equation and the expres-
sions for I and IT* in terms of the fields and their
time derivatives the Hamiltonian can be put into
the form <

5e=TI*1 + (¥ — jeA)o* + (V +iek) ¢

+ 3 [ET?2+BP+(Vx ), (3.14)

where

V2 =—je(ll*p - TI*) . (3.15)

The Hamiltonian should be understood as a normal-
ordered product, and the counterterms, which are
not displayed, are also to be understood as nor-
mal-ordered products. Normal ordering will be
defined with respect to the Fourier components of
the fields at time £=0.

Let us Fourier decompose the scalar field and
conjugate momentum at £=0:

a1 43k o-iEip?
(%) = @np’? CIDEE (e b3),
v 1 dsp
*(F) = _ikeR ik
0D =y | Gy (@ e ey,

(3.16)

(%)= "‘(211)372 f 7T VTEI(e%a 5 "e_zk k2! )
n*(X)= —Fﬁf—m(e"‘ fal - ei®%py) |

The Fourier components are expressed in terms
of the annihilation and creation operators a, af,
b, b', and standard kinematic factors. Particle
annihilation and creation operators have their
usual commutation relations

[a,at]=[bs,bi]= (K~ K") (3.17)

and these reproduce the canonical commutation
relations of the fields. The a operators annihilate
and create particles with charge +1 and the b op-
erators annihilate and create their antiparticles,
with charge -1.

We are interested in diagonalizing this Hamilton-

ian on the space of states consisting of one elec-
tron and one positron. The problem of diagonal-
izing the Hamiltonian on this space is equivalent
to the problem of finding the local minima of the
normalized expected value of the Hamiltonian in
arbitrary states consisting of one positron and one
electron. Since the states with which we are con-
cerned contain no physical photons, we can neglect
the transverse electromagnetic potential and the
transverse electric field in computing the expect-
ed value of the Hamiltonian. For the computation
of the expected value of the Hamiltonian in states
without physical radiation, the Hamiltonian may
be replaced by

$Cqpp = TT*TL 4+ Vo o+ (Vy)?, (3.18)

where y is given by Eq. (3.15). The Hamiltonian
thus consists of the quadratic kinematical part and
the quartic nonlinear interaction. The interaction
is simply the instantaneous Coulomb interaction
between charged particles. Since the Hamiltonian

'is normal ordered, the trivial Coulomb self-ener-

gy of the single particle has been removed. Since
the interaction is explicitly quartic, it does not
effect the expected value of the Hamiltonian in
states of zero or one particle.

The kinematic part of the Hamiltonian can be
simply expressed in terms of the annihilation and
creation operators a and b:

H0=fd3x3(’0=fd%]ﬁl(a%aﬁb,{bi).

The single-particle expected value of the Hamil-
tonian is given by the kinematic term alone, and
so the expected value of the Hamiltonian in a sing-
le-particle state is the absolute value of its mo-
mentum. A two-particle state with zero total mo-
mentum is constructed from the ground state by
applying a’ and b*:

[, -B)=aib’;]0).

The matrix element of the kinematic part of the
Hamiltonian between two such states is

—q|H, [, -B) =25 |6°(0)8°*(B - 7).

Since these states have total momentum zero they
are normalized to the total volume of space:

@, -4[D,-0)=08%0)8*(5 - d) .

<

(a) (b)

FIG. 4. (a) The coulomb photon exchange and (b) the
Coulomb photon annihilation contributions to the elec-
tron-positron effective interaction Hamiltonian.

(3.19)

(3.20)

(3.21)

(3.22)
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The nonlocal interaction part of the scalar field can be expressed as a multiple momentum integral

2
H1=fd3x3C1=+ Te;ﬂs_ f d3kd3k’ d3k" klz-

IkK+k’|

IE/I 1/2 i
‘{[(|E+k‘| > +( 14

{E/‘ 1/2 |E+E/|
*[(m E'I) '( K

1/2
+
) ](a_i' i =i b))

1/2
) ](a.’;' i — i bi')}

+
&r 1/2 E_ E” 1/2
x{[( Tﬁ_H(TE%> +< [—*—-l> ](afﬁuaz-iu - bl O3)

k" 1/2 IE—E"I 1/2
+[(|—EI—ELT) —(_IE'T (% bl g0 = Ao b 02

(3.23)

Since we are interested in computing expecation values of the interaction between states consisting of one
electron and one positron, the only terms of the interaction Hamiltonian of interest are those that contain
one annihilation and one creation operator for a particle and an antiparticle. These terms are

H

o2 f 1 {[( 1K’ )1/2 ( 1K +% )1/2][( K" )1/2 (|E_E"|)l/2]
=t d3kd3k'd3R" — —_— +H — —_ +\| ——
fett™" g(2n)? N R+k7) 1K’ Ik-k”| Ik |

. t
X(=1)a%b% i aip beo +a's. bE L ag iz b))

[( Ik’
+ “..'—"—..—'"
R+k7|

X (—-1)(als

The matrix elements of this part of the interac-
tion between momentum eigenstates consisting of
one electron and one positron are

(a’ "a'Hl |§: "ﬁ)

&6%0)<I§r/ml+l§hﬂﬁl+2 ﬁ-ﬁ)
ey ®-97 XA
{3.25)
Note that in computing the last term the integration
variable % is kinematically constrained to be zero.
The limit 2 ~0 is singular, however, and we re-
gularize the singularity by treating the -0 as a
spherically symmetrical limit, so that under the
k integral k&, is replaced by 4% ,,.

The physical meaning of the terms in Eq. (3.25)
is quite straightforward. The first terms, with
denominator proportional to (p - §)?, come from
single Coulomb photon exchange between the elec-
tron and the positron, and the last term comes
from electron-positron annihilation into a Coulomb
photon (see Fig. 4.). We are interested in diag-
onalizing the Hamiltonian on the full space of zero-
total-momentum electron-positron states. A gen-
eral state in that space is

0= [ a* uB)ajel, |0). (3.26)

We diagonalize A by the variational principle.

t. pt.
bt Ggpo by + 0% bl 5 Az p Do)}

)1/2 <IE+E’| )1/2][( IEHI )1/2 ( IR—E”I )1/2]
Ik’ lk-k”| K|

(3.24)

—

Varying the normalized expected value of the Ham-
iltonian in such a state and demanding that the
variation be zero,

WIHID)
oy 0

gives a wave equation for the electron-positron
states

(3.27)

<¢ |t [9)=E = <M¢>, (3.28)
with the eigenvalue E given by
_WIH1Y
E= o (3.29)

The expected value of the Hamiltonian is given by

<w|H|w>=[2fd3p 1) 2B

_ 4(2 S K LRI U
[qI/151+1p1/141+2  p-§ 3
( G-a° -3 )]”0’

(3.30)

and the normailization of states is

wln= [ 4% [uB) |20, (3.31)
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so that the resulting wave equation is

(2[5 E)p) = +—4§—;;)T

s [ 1EI/1D1+151/1§) +2
x fax( G-ar

5.4
—W>¢(ﬁ).

Note that the final term in the integral operator,
corresponding to the annihilation diagram [Fig.
3(b)], contributes only to p-wave bound states or
scattering states. We will look for s-wave solu-
tions to the wave equation, and so this term will
not contribute.

Note also that we have not explicitly mentioned
the counterterms in the Hamiltonian. The mass
counterterm would contribute to the energy of the
single-particle states, and so in the approximation
that we are discussing, namely, truncating the
Hamiltonian to the spaces of zero, one, and two
particles, such a counterterm is absent. How-
ever, the (¢*¢)? counterterm, which makes no
contribution to the energy of a single-particle
state, can in fact be present. Such a counterterm
would contribute only to s-wave states. As we
shall show, such a counterterm is needed to regu-
late the high-momentum behavior of the wave equa-
tion.

To find the one-dimensional radial equation for
s-wave bound or scattering states, we look for
wave functions which depend only on the magnitude
of the momentum . For such wave functions we
can evaluate the angular integrals in the wave
equation, and there exists an effective radial wave
equation in momentum space

(zp—E>w<p>=z(§,%QFfo”dq(p+q>2

p+q ‘
In | =—= .
X }p—q lw(q)

(3.32)

(3.33)

This wave equation is singular in the ultraviolet.
There is, in fact, no consistent high-momentum
behavior for the wave function (p). To see this,
note that for very large momentum p, we can drop
the eigenvalue of E from the left-hand side of the
equation. The resulting equation will be dimen-
sionally homogeneous, and so solutions to that
equation would be yccp”, where v is some fixed
power. However, with ¢ proportional to any fixed
power of p, the the integral in the wave equation
diverges. If v is less than -2, the integral diver-
ges at the lower end, and if v is greater than -2,
it diverges at the upper end. If v=-2, the integral
diverges at both ends.

The source of these high-momentum difficulties
is easy to locate. Since in s-wave states the wave
equation represents only Coulomb-photon exchange,
the formal solution to the equation is the multi-
Coulomb-photon exchange diagram shown in Fig.
5(a). This diagram contains, as internal parts,
diagrams with two or more exchanged Coulomb
photons, for example the diagram in Fig. 5(b).
These diagrams are just those that lead to the
necessity of a (¢p*®)? counterterm in scalar elec-
trodynamics, in order to make electron-electron
and electron-positron scattering finite.

To cure the high-energy behavior of the wave
equation, we will include, in the effective Hamil-
tonian, a counterterm

H,=c f [o*(x)b(x) Pdx . (3.34)
The constant ¢ will be determined to regularize
the high-energy behavior of the wave equation.
Since this counterterm is a point interaction, it
contributes only to the s-wave electron-positron
interaction.

We may analyze the effects of the counterterm
Hamiltonian in a manner exactly parallel to the
treatment of the instantaneous Coulomb interac-
tion. The matrix elements of the Hamiltonian be-
tween states |¢) are given by

S 3 g LD
W H|9)= gy 690) [ atparg Ll

(3.35)
This additional contribution to the expectation val-

ue of the Hamiltonian adds an additional term to
the three-dimensional form of the wave equation:

c 1 14l
- = | 43 . .36
@77 TP f 73] (3.36)
If » is spherically symmetrical, then there results

. e
-5 fo dq q¥lq) (3.37)

| S ———

(a) (b)

FIG. 5. (a) The formal diagrammatic solution to Egs.
(3.32) and (3.33). Each dashed line represents a
Coulomb-photon exchange. An infinite number are ex-
changed, and there are no crossed exchanges. (b) An
internal part of the diagram (a). It is logarithmically
divergent and requires a (¢>*<¢>)2 counterterm.



as an additional contribution to the wave equation
(33). The value of c¢ that eliminates the most
singular term in the wave equation as g goes to
infinity is

c=%e?, (3.38)

Note that ¢ is positive, so that Hamiltonian, in-
cluding the counterterm, is positive definite.

The counterterm is also necessary to bound the
Hamiltonian from below for small values of «.
Without the counterterm, the expectation value of
H in the state '

|¢N)=fd3p t_l B“e“’“’"'a%bt;,[O), (3.39)
for B>67/0, satisfies the inequality
3aN a
(lPNlHllPN>< T o s— (N?-N). (3.40)

For sufficiently large N, (4, |¥,) is negative.
Scale invariance then implies that H is unbounded
from below. The counterterm adds to (b, |H |$,)
a term proportional to N2, For ¢ > § e? this changes
the sign of the coefficient of N2 in the inequality,
vitiating the argument. A careful analysis of the
domain of H shows that without the counterterm
H is not self-adjoint on the two-particle zero-mo-
mentum subspace, and only the value ¢ =1e? makes
H self-adjoint for small «.

The nonsingular wave equation for s-wave bound
states with the counterterm is

(2p - E)¥(p)
_ e (= ((p+qf | prq | 2q)
o) d"( 7 p=q ‘”T)l”(q_)'

(3.41)

This integral equation has simple dimensional
scale properties and so its Mellin transform is a
relatively simple finite difference equation. Both
the term 2p and the integral operator have scale
dimension m!, while the eigenvalue has scale di-
mension m°. That is, under a rescaling p — ap,
the 2p term and the integral operator are multi-
plied by @ while the eigenvalue stays unchanged.

B. The LFSA spinor QED equation

In this subsection we will derive the integral
equation for electron-positron bound-state wave
functions. The procedure will follow the deriv-
ation of the scalar QED bound-state wave equation,
more precisely that part of Sec. III A between Eqs.
(3.1) and (3.33).

The Lagrangian for spinor QED is

L=Y1§ - eA)¥ - F, F,, (3.42)

We will work in the radiation gauge so that the
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treatment of the electromagnetic field is exactly
the same as that in Sec. I A. In particular, A is
purely transverse, and A and the transverse part
of E create and annihilate physical photons. The
only difference between this and the scalar case
is the spin of the charged field. The canonical
momentum to the field ¥ is
Hw=£ =¥'=Ty,. (3.43)
v
The fields ¥ and ¥' satisfy, at equal times, canon-
ical anticommutation relations

{¥,(%,0),¥(7,0)}=06,,53X-F) .

The field ¥ can be decomposed into annihilation and
creation operators

(2,03/22 f (lef)llz eip.xus.s
+d§’se";'7‘v;,'s).

(3.45)

(3.44)

Y%, 0)=

The b operators create and annihilate electrons
and the d operators create and annihilate positrons.
They have the usual anticommutation relations,
which reproduce the canonical anticommutation
relations of ¥ and ¥':

{bis, blx;',s’}={df',s’ de)’,s'}z 633,63(5 - .ﬁl) .

The longitudinal part of the electric field is not
a dynamical degree of freedom. It is constrained
by Gauss’s law

(3.46)

V.E=ep, (3.47)
where the charge density p is given by
p=Ty . (3.48)

With these preliminaries, we may write the
Hamiltonian of QED in the radiation gauge as

3=Ty « (=iV — eA)+ 3 [(ET)?+ B2+ (Vy)?]. ‘
(3.49)

The dependent field y, whose negative gradient is
the longitudinal part of the electric field, is given
by :

—sz =p =\F‘yo‘lf (3 .50)

We have taken advantage of the fact that in the
radiation gauge the constraint of Gauss’s law may
be imposed as an operator condition to simplify
the Hamiltonian.

Since the operators b and d create physical
electrons and positrons, along with the longitudinal
electric fields required by Gauss’s law, we can
write the most general zero-momentum scalar
electron-positron state as
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D=3 [ grrr NP3 50 0050 0),
(3.51)

The wave function ¥ is a function of |{3| only. In

(¢|Hl¢>=[16ﬂj;w1>3d3pW(P)Iz— % fowdﬁj;wdqw*(P)i(q)<(P+ q)*1n

and the state |¢) is normalized to the total volume
of space
@l =8n [ pap |Wp) [*6°0). (3.53)
0
Demanding that the normalized expected value
of the Hamiltonian be stationary,

o @I _
55 @0 (3.54)

gives an effective wave equation for :
2 _ eZ eod 1 q 2
(P-E)IP(P)—TG?L Q[< +Z>

P+q q
= '—zz]zp(q).
(3.55)

This is exactly the same equation as that derived
in Sec. II A for scalar electron-positron bound
states.

Note that although spinor QED has no counter-
term which is a counterpart of the (¢p*®)? counter-
term in scalar QED, the resulting wave equation
is exactly the same as that obtained in scalar QED
with the inclusion of this counterterm. Note also
that massless QED is a chirally invariant theory,
and so we would expect that the equation for
pseudoscalar bound states would be the same as the
scalar bound-state equation. In fact, if we were
to take as a class of variational trial states
the pseudoscalar states

a3 _
‘lPPS)'—'Z; f ETEI- z.bps(p)ui,s'}%v-;,s’ b}:,sd:rﬁs' |0>.’

(3.56)

where again ¢,, is a function only of |p|, then if
we follow the same procedure as we did in deriv-
ing the scalar bound-state equation, we arrive

at exactly the same wave equation for the pseudo-
scalar wave function as we did for the scalar wave
function.

Xln

C. The LFSA QCD bound-state equation

In this subsection we will derive a wave equa-
tion for color-singlet bound states of a quark and
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calculating the expectation value of the Hamilton-
ian, only those terms in the interaction with one
annihilation operator and one creation operator
for an electron and for a positron contribute. The
expected value of the Hamiltonian in the state |¢)
is given by

;’_;Z l - 2pq>]63(0) (3.52)

I

an antiquark in QCD. The procedure identically

parallels that of the previous two electrodynamic

examples. '
The QCD Lagrangian is

£=a(za/+g2w“)q—azfzym.

The gauge fields are expressed in terms of po-
tentials by

Fu,=8,45 -8, A5 +gf""ALAS,.

(3.57)

(3.58)

The quark field ¢ and its canonically conjugate
momentum gy, can be decomposed into annihilation
and creation operators for quarks and antiquarks
(triplets @ and Q):

_ 1 a’p TR
q%,0)= @n)y? ; f @[pD7? (@,,e P P.s

_t -
+@5e” P U, .
(3.59)

In order to parallel our treatment of electro-
dynamics, we will work in the radiation gauge

v-A*=0. (3.60)

While it is known that under certain circum-
stances there are ambiguities in defining the

gauge potentials in the radiation gauge, we will
here be concerned only with states in which the
expected value of the transverse electric field

and transverse gauge potential are zero, so that
these ambiguities are absent. As in electrody-
namics, the Yang-Mills electric field is canonical-
ly conjugate to the Yang-Mills gauge potential:

[A}(,0), E(F, 0)] = - i6];6° (X - §)5°° . (3.61)
Using Gauss’s law,
V- E* - gf R = - gp°, (3.62)
we may write the Hamiltonian of QCD as
s=77- (— iV+g Za: é)\“;f’)g
o3 DUETP+ BV -3 Lo get,  (3.69)
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where the charge density receives contributions
both from the quarks and from the Yang-Mills
field itself:

P° =y sntq —f AN B (3.64)

In the radiation gauge, the quark field and its
conjugate create and annihilate physical quarks
and antiquarks, along with the gauge fields re-
quired by Gauss’s law.

We will derive a wave equation for the bound
states of one quark and one antiquark by calculat-
ing the expected value of the QCD Hamiltonian in
a general quark-antiquark state, and then requir-
ing that the normalized expected value of the
Hamiltonian be stationary with respect to varia-
tions of the wave function of that state. We will
concern ourselves exclusively with spatial-scalar
color-singlet states. The effective potential be-
tween a quark and an antiquark in a color-octet
state is repulsive, and will give rise to no bound
states. The general color-singlet, scalar, zero-
momentum state of one quark and one antiquark
is given by

3 _ T
=3 [ girv .0 5.0@05.65.00,  6.69)

where the wave function y depends only on the
magnitude of the relative momentum of the quark
and antiquark.

Except for the quark multiplicity due to color
and the appearance of A matrices (through) p* in
the Hamiltonian, the computation of the expected
value of the QCD Hamiltonian is exactly the same
as the computation the expected QED Hamiltonian
performed in Sec. III B. The effect of there being
three quarks is to introduce a factor of

Trl=3 (3.66)

into the kinetic energy term in the expected value
of the Hamiltonian, and also into the normalization
of the state |¢). The effect of the color multiplicity
of the quarks in the instantaneous interaction term
is to introduce a factor of

Z TrEa%)?=4. (3.67)

In computing the normalized expected value of the
QCD Hamiltonian, the color effects on the kinetic
energy and normalizations cancel out, and the
only effect is to multiply the interaction term by
the quotient of these factors 4. Thus the norma-
lized expected value of the Hamiltonian, and the
wave equation for scalar bound states, is exactly
the same as in spinor QED, but for the inclusion
of the factor of 4 by multiplying the coupling con-
stant squared. The resulting wave equation is
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, 48
(2[' "E)‘P(P)" 3 16112

2
= q p+q q:l

' =) Injm—=%] -2% .

xj; dq[<1+p> np—q| 2) ¥(q)

‘ (3.68)

If the color group were SU(N) instead of SU(3),
the factor of 4+ would be replaced by (N* - 1)/2N.

As in spinor QED, we obtain the same wave
equation for pseudoscalar quark-antiquark bound
states as we do for scalar quark-antiquark bound
states.

D. Conversion to a difference equation

We define the Mellin transform ¢ (£) of the mo-

mentum-space radial wave function y(p) by
0@= [ (p)ap. (3.69)
0

The eigenvalue term of the integral equation gives,
upon Mellin transformation, a result proportional
to ¢(¢). Since the other terms in the equation
have dimension m?!, they will each give, upon
Mellin transformation, terms shifted by one unit
in {. That is, they will give terms proportional
to ¢ (¢ +1). )

If we define

A= 2 (3.70)
23 4 3167

» QCD

then the Mellin transform of the s-wave equation
is

E¢E)=[2-2B@)]oE +1), (3.71)
where B(Z) is given by
B(c)=%fwdxx<?1[<1+xi) In i—ill‘-%] (3.72)

Writing the Mellin transform of the integral part
of the momentum-space wave equation in this form
requires an interchange of integrals which is
valid for ¢e(0, 2). For this derivation to be valid,
there must be some part of that interval for which
both ¢(¢) and ¢ (¢ + 1) exist, as defined by the in-
tegral expression Eq. (3.69). As we shall see
from the solution, this condition is met.

Some care is necessary in evaluating B(Z) be-
cause the separate terms in the integral that
defines it do not have Mellin transforms that exist
on a common domain. Nonetheless, because the
integral as a whole converges for ReZe(0, 2), the
Mellin transform is well defined and can be evalu-
ated. The result is
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FIG. 6. The function B(¢). Each zero of ¢ (¢) [Eq.
(4.7)] corresponds to a root of B(¢+n)=2/A, n=0,1,2,
Normalizable (bound-state) wave functions exist
when the root of B(¢)=2/A between 0 and 1 occurs to
the right of ¢ =3.

B(g)=<—§l+ 1) i 2@

) tan? -iC1 cot—2—~ . (3.73)
Figure 6 shows a graph of B(Z).

It should be stressed that the difference equa-
tion for ¢(¢) is an analytic difference equation.
Subject to the convergence of the integrals, ¢ is
an arbitrary complex variable. The difference
equation is an analytic expression in the complex
variable £, and so, although the equation has been
derived only in a restricted domain of £, it has a
unique analytic continuation to the entire { plane.
Thus we should think of the difference equation
(3.71) as an analytic relation, valid in the entire
¢ plane, except perhaps for isolated singularities.

In addition to satisfying the difference equation,
¢ (c) must obey several constraints because it is
the Mellin transform of a wave function. It must
be analytic inside a strip in the complex ¢ plane
parallel to the imaginary axis. The boundaries
of the strip are determined by the asymptotic
behavior as p— 0 and p - of y(p). If

Y(@)~p~" (p==) ~ (3.74)
then ¢(¢) will be singular at ¢ =v. This will mark
the right boundary of the analyticity strip. Also
if

Y(p)~p7" (p-0) (8.15)

then ¢ () will be singular at £ = i, and this will
mark the left boundary of the analyticity strip.

In addition, as |{|~«, in either direction within
the analyticity strip, ¢(¢) must be polynominally
bounded. The actual boundaries of the analyticity
strip will be found by analyzing the difference
equation.

We have expressed the problem of diagonalizing
the electrodynamic and QCD Hamiltonians on the
space of particle-antiparticle states as a dif-
ference equation whose solution must satisfy cer-
tain analytic constraints. The next section of
this paper will be devoted to solving that equation,
and in particular, to determining for what values
of the coupling constant it is possible to find so-
lutions with negative E. -

IV. SOLUTION OF THE DIFFERENCE EQUATION

In the previous section, we reduced the relative
momentum wave equation to the finite difference
equation

2-2B@)¢E+1)=Eo (), (4.1)
where

Y 2 T 1 g
B(§)—€tan2 —g-lcOtz +§_2tan 5 (4.2)

In this section, we shall solve this difference
equation by the same technique used on the dif-
ference equation obtained for a massless scalar
particle in a Coulomb potential. We iterate Eq.
(4.1) once to obtain

2-BE+1][2-2BE)oE€ +2)=E*E). (4.3)

If we denote tanin¢ by T, the factor 2 —AB(Z) can

be written as the quotient of two cubics in £, with

the coefficients being functions of 7. In factored

form .

2[¢ = (M) [& =7o(T)][e —74(T)]

c -1 -2) ’

(4.4)

where 7;(T) are the roots of the cubic polynomial

HE-DE-22-BC)].
Restoring the ¢ dependence of T in Eq. (4.4) gives
2[¢ —£,@N[e =2, [E —£56)]

@ -1k -2)

where £;(¢)=7;(tangng). With this form for 2
—AB(L), the iterated difference equation (4.3) is
effectively an equation with rational coefficients,
since the {; expressions have the same value at
points related by the equation:

2-AB()=

2-2B(¢)=

, (4.5)

(2[; -2, =£,©)][e —ga(c)]) (2[§ +1-2,( +1)]»([§ +i)?§)?(§ —1;)] [£+1-¢g,(c+1)]
c+ 1)) -

te -1 -2)

Joe =00, @9
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As indicated in Sec. II, this equation has a par-
ticular solution

3
1 I'GE+1-)IrGE +2-1:)
¥E)=GEY q r‘(—é[zz—ci(g)ﬁr(%[zil -gic+)

4.7)

Equation (4.7) also gives a particular solution of
Eq. (4.1), so that the general solution of Eq. (4.1)
-is

$E)=PEE), (4.8)
where P(¢) is a periodic function of { with unit
period.

¢(¢) is the Mellin transform of a wave function,
s0 it must be analytic inside some strip Rete(a, b)
in the complex ¢ plane containing £ =2. In ad-
dition, the analyticity strip must be at least one
unit wide. There are two reasons for this. One
is that since the wave operator is dimensionally
homogeneous with dimension m!, the interchange
of orders of integration needed to show self-ad-
jointness fails unless the analyticity strip is more
than a unit wide. A related reason for demanding
that the strip be wider than one unit is that other-
wise the interchange of integration used to derive
the difference equation would be invalid for all ¢.

The function ¥(Z) has singularities that come
from the poles and essential singularities of the
CGle-¢:©)]) and TG -9)) factors. The T
function I'(x) has poles at x=0, -1,-2,..., and an
essential singularity at x =. Thus ¥(¢) can have
poles at £ =2,1,0, -1, -2,..., which come from
the I' functions in the numerator, and essential
singularities at the integers which come from the
I' functions in the denominator, since some
[ =£;(€)] == as ¢ ~integer.

Near even integers, { =2N+¢€, so that T
=tanjme, and the three roots become

£,(2N+€)=2+0(?), (4.9a)
£,(2N+€)=0+0(e?), (4.9b)
53(2N+e)=—12r—2+1+0(e). (4.9¢)

Near odd integers, T = - cotsme, so

£,(2N+1+€)=1+0(), (4.10a)
£,(2N+1+€)=1+0(€), (4.10D)
§3(2N+1+6)=—i—:+1+0(e). (4.10¢)

The function ¥ (¢) has essential singularities at
the integers since £,(¢) diverges there. As Img
~+, |9(E)| < |¢[3/2. To see this, note that in these
limits, tanjm{ —+14, so that ¢; values have finite
limits. Stirling’s formula for the I' function then

gives
(O~ GEg /2=t (4.11)

The sum of the £; roots can be read off from the
polynomial;

3
26, =3% 20\ (Img <) (4.12)
i=1
SO
PE) o 1ie0 = GE)E3/2F2N (4.13)

So long as E is real, y behaves asymptotically
like a power in either directionalong the analyticity
strip.

For ¢(¢) to be an acceptable solution, it must
be analytic in a strip more than one unit wide and
parallel to the imaginary axis and containing ¢ =3,
and be polynomially bounded as |Img| . This
requires that P({) must be polynomially bounded
and must cancel either the singularities of ¥(¢)
atZ=1or at{=2. Since 2 -AB(1) is finite, the
singularity of () at { =1 is identical to its singu-
larity at £ =2, so it is sufficient to choose P(¢)
to eliminate the singularity at ¢ = 1.

The essential singularity of ¥(¢) at £ =1 is due
to two terms, '

1/TGle -£,6€)]) (4.14a)
and

1/TGle+1-&(+D)]). (4.14b)
Ast -1,

TG -2, @)]) r(fﬁ L0 - 1)) (4.152)
and ’

TGE +1-6,6 + D)~ 1 (g +5+ 0 - D),

(4.15Db)

which shows that £ =1 is an accumulation point of
zeros. The strategy for removing the singularity
of Y(¢) at £ =1 is to choose P to be the product

of several periodic functions, each with unit
period:

P) = P,0)P,0)PL0)PLOP). (4.16)

P,(£)P,(¢) eliminates the singularity of Eq.

(4.14a), P,(¢)P,(c) eliminates the singularity of
Eq. (4.14b), and P,() represents the remaining
freedom in the choice of P(¢). The function P,(¢)
will be chosen to have same essential singularity
as the I'" function in the denominator of Eq. (4.14a),
except that its poles will not be in exactly the
same locations as those of the I' function. How-
ever, as £ — 1 from any direction except the real
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axis below £ =1, P(¢) will compensate for the es-
sential singularity of Eq. (4.14a). P,(¢) will be
constructed as a periodic infinite product that will
have zeros at the poles of P,(¢) and poles at the
zeros of Eq. (4.14a). P,(¢) will be free of other
singularities and will approach a constant as £~ 1
from any direction except the real axis from be-
low. Thus P,()P,(¢) will completely compensate
for the singularity of Eq. (4.14a) as £ ~ 1. P,(¢)
and P,(¢) will be the same as P,(¢) and P,(£), ex-
cept that they will be constructed to cancel the
singularity of Eq. (4.14b).

To construct P,(¢), note that for { near 1

TGk -5 =1(Z-+06) @.17)

where € =¢ — 1. Note also that

A
F(Acotw§)=1“<1;+0(e)). (4.18)
Thus, using Stirling’s formula,

lim I'(Acotng)
e Y CIEEF R (9]))

We choose

P()=T(cotrg). (4.20)

=1, l|argt -1l<7. (4.19)

The poles of P,(¢) occur at

Acotnt=-N, N=0,1,2,.... (4.21)
The zeros of Eq. (4.14a) occur when

1 -¢,0))=-N, N=0,1,2,.... (4.22)

Denote the solutions of Eq. (4.22) by ¢%". To find
™ note that £4(c +2N)=£4(), so™ also satis-
fies

t+2N - £, +2N) = 0. (4.23)

Since §§N)+2N—£3(€§N)+2N) is a factor of 2
-BE®+2nN), ¢ satisfies

2 -BEP+2N)=0. (4.24)

The graph of B(¢) for real { (Fig. 6) shows
zeros of 2 ~AB( +2N) near ;=1 for N=1,2,...,
one for each value of N. The asymptotic formula
for ¢ is

(W=1- %m(%g), N=1,2,3,.... (4.25)
For X sufficiently small, the graph of B(¢) (Fig.
6) reveals an N=0 zero of 2 -AB( +2N), £9. As
¢ increases, this zero migrates to £ =1 and then
into the complex plane, on the line Ref =1. As
A—-0, £99-0, soits behavior for small A is quali-
tatively different from the behavior of the §f,”)’s
which go to one as A goes to zero.

There appear to be no other roots of Eq. (4.24).
Such roots were sought by tracing the argument
of 2 - B (¢) around loops in the rectangle bounded
by Ret =0, Re =5, Im¢ = - 10, Im¢ =10 for A be-
tween 1 and 2. This search revealed no other
zeros and presumably beyond this region the
asymptotic analysis is complete.

We construct P, as the product

©

~ {(x/1+N)cotn¢
Pa)= ;_Il 1 - cotng/cotrg® (4.26)

Since cotrz®™= - N/x +O(1/N), for any finite ¢
other than a pole or zero of P,(¢), the product
converges like J][1+0(1/N%)], that is, like

201/N3. For small £, P,(t) converges like

1 1
Ntanmg +A X()(”N—"’) ’ (4.27)
which is a uniformly convergent sum away from
its poles. Therefore P,({) approaches a constant
as { -1 from any direction except on the real axis
below 1.

Thus

N=1

N S
I'Gl -£5@)])

is analytic in a punctured disk around ¢ =1, and
has a finite limit as { - 1. The possibility of an
isolated essential singularity may be eliminated
by expanding Eq. (4.28) in a Laurent series about
1, and noting that since the expression has a uni-
form ¢ — 1 finite limit (except perhaps from one
isolated direction), all the coefficients of the
singular terms must vanish. Thus Eq. (4.28) de-
fines a function which is analytic at £ =1.

Note that P,(¢) fails to cancel the poles of P,(;)
which occur at cotr; =0, or the zero of Eq. (4.14a)
that occurs at £,

A parallel analysis eliminates the essential
singularity of Eq. (4.14b). We take P,(£) and
P,(¢) to be

P,()=T'(rcotni +3) (4.29)

P (£)P,(5) (4.28)

and

_ T L[/ )|cosnt
Pi(g)_g 1-cotng/cotng™  ’ (4.30)

where ¢ satisfies

i[t+1-¢,€+1)]=-N, N=0,1,2,...; ¢ near 1.
(4.31)

For large N,

A 1
(N ~q = cee s
gy ~1 N0 +O<(N+§)3)’ N=0,1,2,3,

(4.32)
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The product

P,(g)P,(k) TCT 1 (4.33)

€ +1_§3(€ +1)])
is analytic at 1. Note that P,(¢) cancels all the
poles of P,(g).

Thus

P (E)P,(£)P5(E)P () (€)

satisfies Eq. (4.1) and is analytic at £ =1 (and

¢ =2). However, it has simple poles at { =3 and
¢£=2%. These can be eliminated by multiplying by
cotng, which introduces poles at £ =1 and § =2;
however, Eq. (4.34) has zeros at { =1 (and £ =2)
S0

(4.34)

¢ (&) = cotnt P (£)P,(5)P,(&) P, (k) (4.35)

is analytic for Re; € (0, 2) and polynomially bounded
for E>0. It is a valid solution for positive E and
any A. For E<0, however, it diverges exponen-
tially as Im¢ - in either the upper or the lower
half plane. If for negative E we take the phase

of E to be e*!™, the Im¢ dependence is controlled
by e!™. In this case we may consider a solution

¢(§) = cOtﬂ§P1(§)P2(§)Pg(E)P4(§)P5(§)lP@) ) (4'36)

where P,(¢) is chosen to cancel the exponential '
growth. P(Z) must then have a periodic pole with
period 1. Unless this pole is canceled by a zero
of ¥(¢), the analyticity strip of ¢(£) will not be
more than one unit wide. The only remaining zero
of p(¢) is 9. For small A, this zero is near

¢ =0, and as X increases it migrates to¢ =1,
where it joins ¢®. At still higher A, the two be=
come complex-conjugate zeros at locations whose
real parts are 1. Since the analyticity strip of

¢ (¢) must be more than one unit wide and must
contain { =%, there is no acceptable P4(¢) until
¢9>L, Then

1
e2mil o gzwigaﬁ)y

Pc)= (4.37)

allows E <0. Thus the critical value of A at which
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negative energy pairs first appear is at

2-)B(3)=0. '(4.38)
This occurs at A=2, which corresponds to
_é’ _’ _3
a—g—-‘p\—g 5 QED
(4.39)
2
a=7ﬁ—=%4h=—§, QCD

Therefore the equation has negative-energy so-
lutions for

i, QED

a>a,= (4.40)

%, QCD.

The bound-state wave functions we have con-
structed are also valid for complex E, which
shows that for a > @, the Hamiltonian not only
acquires negative eigenvalues, but in fact ceases
to be self-adjoint on the space of normalizable
pair states. While we omit all details here, we
note that by appropriately modifying the domain
of definition of the Hamiltonian, self-adjointness
can be restored, and negative eigenvalues persist.

The critical value of @ marks a transition to a
regime in which the ground state should not be
thought of as being dominantly free of quanta,
with admixtures of pairs to be accounted for per-
turbatively. Above this value, the ground state
will be filled with particle-antiparticle pairs.
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