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The quark color magnetic moment is examined in the framework of the interaction of a quark with a
constant external color magnetic field. Quark and gluon propagators in the external field are evaluated and

shown to lead to a field-dependent anomalous magnetic moment p, = (gfi/2mc) (3n, /4m) ln(gB/rn'),
where B is the external field strength. Comparison is made with the behavior of the electron anomalous

magnetic moment in strong fields. Possible phenomenological consequences for hadron mass splittings are

discussed.

I. INTRODUCTION

The magnetic moments of the electron and muon
have been experimentally determined and theoreti-
cally predicted to great precision, and the agree-
ment of theory and experiment remains one of the
most impressive successes of quantum electrody-
namics (QED). An important feature of this situa-
tion is our ability to produce magnetic fields of
known intensity and uniformity. If such magnetic
fields were not available, one could still get in-.

formation about magnetic moments from bound-
state spectroscopy since magnetic fields exist
inside atoms and the interaction of spin-& con-
stituents with these fields leads to spin splittings.
Indeed, investigation of atomic spectroscopy led
to the introduction of the electron magnetic mo-
ment and provided the first evidence of the anom-
alous magnetic moment. ' However, as the fields
are no longer externally controlled, , but are de-
termined by the interaction of the bound state,
some understanding of the bound-state problem is
needed before the effect of magnetic moments can
be taken into account. Thus, if one did not have
the option of studying free electrons in external
uniform magnetic fields, the concept of magnetic
moments would be of less practical importance,
having meaning only in the context of the solution
of the bound-state problem. It is preci, sely this
situation that is encountered in a non-Abelian gauge
theory of the strong interactions, quantum chro-
modynamics (QCD). This theory, which describes
a color triplet of quarks interacting with an octet
of vector mesons is supposed to have the property
of confinement, so that free quarks and long-range
color fields are not observed in nature. The in-
teraction of quarks with the vector field is based
on a generalization of QED, so that in particular
one can introduce the concept of the quark color
magnetic moment. Owing to confinement this
magnetic moment cannot be directly measured with
a controlled external color magnetic field, so to

see its effect one must rely on the color magnetic
field inside hadrons, which should produce mass
differences between hadrons with differing quark
spin orientations. In fact, several groups have
found qualitative evidence for this effect in the
X- ~, ~ —p, and other mass differences. In ad-
dition, Schnitzer has investigated the phenomeno-
logical consequences of a color anomalous mag-
netic moment. However, unlike the case in QED,
where the bound-state problem is well understood, '
a fundamental understanding of the bound-state
problem for hadrons does not yet exist, so that
the role of the quark color magnetic moment in
hadron spin splittings has still to be quantitatively
understood. In this paper we address a related
problem, the behavior of a quark in a constant
external color magnetic fieM. We will show that
the greater simplicity of this problem allows an
exact solution to one loop. Of particular interest
is the fact that the graph of Fig. 1(b) gives rise
to an infrared-singular anomalous magnetic mo-'
ment. As other infrared singularities in the
perturbative treatment of free quarks and gluons
have been shown to cancel in appropriately defined
cross sections, an infinity in a static quantity
would be surprising. Our main result is that the
interaction energy of the quark with the external
field evaluated with the mass operator method
is

(a)

FIG. 1. (a) Diagram leading to a finite contribution to
the quark color anomalous magnetic moment. (b) Dia-
gram leading to an infrared singularity in the quark color
anomalous magnetic moment.
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gB 3&, gBDF=- ' ln
2m 4~ m'

where g is the strong-interaction coupling con-
stant renormalized at some scale p, , B is the ex-
ternal field intensity, and m is the quark mass.
The relevant graph is given in Fig. 3, where the
quark and gluon propagators are evaluated to all
orders in the external field, as indicated in Figs.
2(a) and 2(b). This should be compared with the
QED case, where the mass operator gives for the
interaction energy of an electron with a magnetic
field

eB a. 8 (eB 2eBEE=- —1+ —
2 ln g +0 B

2m 2& 3~m m
(1.2)

(a) o

tb) ~ = avir + + ~ ~ ~

(c)

PEG. 2. (a) Graphical expansion of the quark propaga-
tor in the external field. (b) Graphical expansion of the
gluon propagator in the external field. (c) Example of a
graph not contributing due to color orientation of the ex-
ternal field.

Thus in QED the mass operator can be expanded
to first order in the external field, which corre-
sponds to using the diagram in Fig. 1(a). How-
ever, the QCD mass operator clearly cannot be
expanded due to the presence of a logarithm in Eq.
(1.1). Using the Feynman diagram of Fig. 1(b)
and encountering an infrared divergence is the
consequence of making an improper expansion of
the mass operator, so the associated infinity is a
mathematical artifact rather than a physical effect.
This same problem arises in QED when the mass
operator is expanded to higher order in eB, as
first noted by Newton, but due to the weakness of
attainable magnetic fields compared to the critical
field of 10" gauss such effects are negligible in
practice.

In Sec. II the mass-operator formalism is set up
and expressions for the quark and gluon propaga-
tors derived. In Sec. III the mass operator is
evaluated for a particular quark state and Eq. (1)

FIG. 3. The @CD mass operator.

proved. Section IV contains discussion of the
results and some comments about possible phe-
nomenological consequences.

II. MASS-OPERATOR FORMALISM

The problem we wish to deal with is an external-
field problem. We assume that by some external
agency a constant color magnetic field has been
set up, and treat this field as classical. Fluctua-
tions of the field about this classical value are
treated with perturbation theory. We form the
field from a particular choice for the vector po-
tentials

0, p, =0, 1, 3
A =B~&s+

Xy, P =2. (2.1)

This leads to a constant magnetic field in the 3
direction in ordinary space and the 8 direction in
SU(3) space. It is also possible to form such a
magnetic field from constant vector potentials
with different SU(3) orientations for different
space-time indices as discussed by Brown and

eisberger. The two cases are distinguished
by the former being produced by sources at infi-
nity (a solenoid), while the latter is produced by
a nonvanishing finite current. We consider here
only the first choice of potentials. By allowing
only the 8 direction of the field to be present,
many of the non-Abelian features of the problem
drop out. Firstly, due to fss; =0, graphs of the
form of Fig. 2(c) vanish, so that the external field
does not couple to itself. In addition, a quark of
definite color i (i = 1, 2, 3) remains that color in
this magnetic field, while a nondiagonal orienta-
tion of, the field in SU(3) space would lead to the
quark color constantly changing. Similarly,
gluons keep their color unchanged. This leads to
a situation like that encountered in the evaluation
of the electron magnetic moment when other
charged particles are present, such as in the W-
boson contribution to the electron anomaly. ' In-
deed, that contribution is also afflicted with the
same infrared divergence in the limit M~ 0 that
afflicts the quark color magnetic moment. The
only complication is that there are several charge
arrangements possible. There exists a well-de-
veloped procedure to 'handle this situation in the
mass-operator formalism. ' Associated with the
graph of Fig. 3 we have
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dd= id! f-dx f dx ii, (x')X '(T ")„d.„"(x x)',

x y'(T, )»y, (x)D'„' (x', x) . (2 2}

In this expression s~~(x', x) is the amplitude for a
- quark color k at position x to propagate in the
presence of the external- field to position x' with
color j, D,"„(x',x) is the analogous amplitude for
a gluon, and the P's are wave functions appro-
priate to a quark in a constant magnetic field.
Owing to our choice of the external color field, the
quark and gluon propagators are diagonal in color
space. The quark propagator is determined by
the equation

e.=g(T,).„ (2.4)

we can write the equation for the propagator of a
quark color a as

(yf. —m)S. = i. (2.5)

Before the equation the gluon propagators satisfy
can be determined, the question of gauge must be
settled. Because there is an external magnetic
field present, it is most convenient to use a back-
ground field gauge, working with quantum fields
Q„=&„—&'„" . The calculation is by far the sim-

= r„f'(x'- x) . (2.3)

Because A", T, is diagonal, this matrix equation
breaks into three separate equations, with the
only distinction between them being the coefficient
of A„ for the particular quark color i, g(T, )q(.
Thus, introducing a covariant derivative

plest in the generalized Feynman gauge, charac-
terized by a gauge-fixing term

z„=--,'(a„Q'„+gf, a„' Q„)'.
In that gauge the gluon propagator satisfies

[II, g„„+2ie,F„„]D„;=1g„

(2.6)

(2.7)

where we have again used the fact that T, is dia-
gonal to write separat;e equations for each color
gluon. Knowing that tt) is determined through

(
a1X„—x x( —xf) II! = 0,a a (2.8)

(11.' m')D(x—', x) = f'(x' —x) (2.9)

is formally solved by

D(x', x)=-a f dx(x (x'*"' '"'(x)
0

2=-i ds e ""U(S, 8) .
0

(2.10)

To evaluate explicitly the last term we introduce
a complete set of states that are labeled by Po,
p 3 P2 and n, whe re n = 0, 1, 2, . . . , satisfying

PoP P2n PoP3P2

where

(2.11)

then determines all components of the mass opera-
tor. In order to obtain useful forms for the pro-
pagators along with relations useful in explicitly
evaluating the mass operator, we begin by con-
sidering the propagator of a spin-0 field of charge
e in a constant magnetic field described by a vec-
tor potential as in Eq. (2.1). We find that

&popsp~nlx) = . B.(&)e ' "e "0'e"3"se"2"2(eB/m)

$ =v'eB P2
eI3

(2.12}

Introducing the notation

rr„=rr, —n, , rr. =n& +n, ,
2 2 2 2 2 (2. iS)

w e are now in a position to evaluate the generalized expression

&(&q, &2) =&x'
~

exp(-isqll) ) exp(-is211d. ') x)

dPo cfp3 dp2 ~„Z &x'lpop. p2n&& p, p.p,nlx& exp[ —i s~(p, —po )]exp[-ieBs, (2n+1)]. (2.14)
~ 2 2

Inserting the matrix elements from Eq. (2.12} into Eq. (2.14) and performing the sum over n with the use
of Mehler's formula,

2xys —e'(x' +y')
zxtrz exp ~ g

(2.i5)
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one is left with three Gaussian integrals. Their evaluation is straightforward and yields
~ 2 ~-ieB ix)) ixj. eI3

Ii(sf Sp)= 16, . (- B )
exp

4
exp 4t ( B } 4, (x'sx)s

x)l (xp xp) . (xp xp) ) xJ. —(Xq —xq) + (xp —xp)

ieB(xq +x', )(x2 —xp)"
C, (x', x =exp

(2. IV)

Later on we will want to use this equation in the other direction, that is start with a product. of the expo-
nentials and end with a matrix element of an operator, so we rewrite the above as

$62 '

exp
"'

[exp
'

Ic', (x's x) = ' &x'I exp(-iwili)) ) exp( iP»') )x),
4wpi 4wp/

6=1+(eBwp), P= . tan 8Bw&.
1

eB

%e now must determine the quark and gluon propagators in terms of the spin-0 propagator. This is par-
ticularly simple for the gluon propagator, as the formal solution of Eq. (2.7} is

D„„(x',x) = i -ds(e "'~)„„&x'~e""~x),
0

where in the last step we have used the fact that the color field is constant,

(2.16)

(2.19)

Thus outside of an x-independent factor, the gluon propagator is proportional to the scalar propagator.
The quark case is more complicated owing to the Dirac structure. To solve Eq. (2.5} we rewrite it form-
ally as

-asmSe(x', x)=(x' pem) ., x =—i Sse" (x'l()(sm)e" "Ix).
p

(2.20)

Using

This becomes

(2.21)

s„(x', x)=-if sse ""(x')(){+m)e"" Ix)e"".
0

Introducing the explicit form for II allows us to write, after some manipulations,

1 "ds eBs „p I' 1 eBs
Si{(x X)=—

1 p
"m) . B 8

2
p'x + .— B 8 Y'x

16K p s sin(eBs 2s sin(eBs}
~ 2 ~ 2zx }I z eI3xg

&&exp exp
( -} 4, (x', x)e

which in the inverse form becomes

z xi) exp (exp C, (x', x) = 2wq&x' ~w IIII exp(-we'll)) ) exp(-iPII~ ) ~x),
Ex)) ix)'. , 16& iwgwp

4w~i 4wp

r . Xpe4x'exp
4
—IC'e(x's x) = ~ &x'

I r ' » exp(-iwiII{) ) exp( iP» ) IX)-
ix)) ix). ) 16' 'Ewiwp 2wp8 2 ' 2

4w~ 4wp&
' ' va va

(2.22)

(2.23)

III. EVALUATION

Kith these expressions we are now ready to evaluate the mass operator. Defining the charges to be eq
for the initial quark, e2 for the intermediate quark, and e3 for the gluon, we have, introducing an integra-
tion for each propagator,
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OO OO

&&e""y„q(x)C, (x', x)C, (x', x)(e "~'~)„„, z = e,as. (s.1}

The exact gluon propagator has been kept, but the quark propagator has been approximated by a form in
which only the C, and the ext(itM) terms are kept as modifications to the free propagator, which is valid
to first order in the external field. Then, using Eq. (2.17) and Eg. (2.24) we can write this, defining g(x)
=&nlx), as

Q~ ds dt
d d I gg ~2 8 gggg2

x &n
l

x'&&x'
I r„[m —(su/t)r . IIa —(so2/t~a)e ' s "(y rl)~]

x e-™r„exp(-twii') exp(-ipIL') lx&&x ln&(e "' ).,
1 1 1 1 1 g+ ———+-—

re S t '
M)2 t stam' (3.2)

But now completeness allows us to perform the x and x' integrations trivially, and we are left with the

expression

ds dt ~&
2 8 gggg2gg 4' 0 S 0 t sinz

x&n
I r„[m —(alt)(r rl) i —(~/tea)e ""(y' ll)'1

x e'™y„exp(-iulimni') exp(-tPIL') ln&(e "~' ),„. (3.3)

It is important to not;e that the II in this expres-
sion refers to a charge e~ particle, so that it can
be applied onto the states n. This follows from
the 4's in Eq. (3.1) combining into C„due to e~

=e2+ e,. The ma, ss operator is particularly
simple when evaluated in the ground state of the
system, where n =0 and the spin is parallel to the
magnetic field, for then

11„'ln&= m'ln&,

IL2 n& =~ln& =e,aln&, (s 4)
y D„ln&= min&,

'r ' IL
l n& = 0 .

In that case we end up with the expression, after
transforming s --is,

ds dt ~2 (t-m) @ 228~82v o s 0 t sinhz Wg

aug 1 + -2g38:s

(s.5)

where we have dropped a term corresponding to
Fig. 1(a). For B= 0, this gives the usual ultra-
violet-divergent self- energy cor rection. A

straightforward expansion in J3, using the fact

that

= 1+O(B2),
sinhz

~ =1+o(a'),

P =go+0(a },
then yields the expression

(3.6}

ds udu

. s
s+t '

(1-I)'
x exp -m s (1 n),

Q

(s.s)
p

However, owing to the divergence encountered
above, although the term z/sinh(z) is formally of
O(B ), we must leave it in. Then Eq. (3.7) is
replaced by

Performing the s integration exposes a logarithmic
divergence at u = 1, which is the same divergence
as encountered in the Feynman-diagram evalua-
tion. In the region u-1, we are able to set
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3-e Bum " z
ds

2m 0 sinhz

&& uduexp -m s (I —u) ~
(1 —u)'

0 Q

At high s, I/ sinh(z) behaves as exp(-eBs), and
has the effect of softening the u-1 behavior of
the integrand. Explicit integration gives, up to
constants irrelevant to our discussion,

-e3Bn gB"- 2. (3.10)

IV. DISCUSSION

The result (3.10) has a counterpart in the very-
high-fieM correction to the electron mass

(4.1)

This illustrates the fact that the strong-field li-
mit of QED, which requires eB»m, is always
obtained in QCD, due to the relevant limit being
gB» ~, which is always satisfied for gluons of
mass ~=0. Similar behavior is encountered in
the effective Lagrangians of the two theories in
intense constant fields"

Summing over all charge configurations and pulling
out the matrix element of Ts then leads to the re-
sult in (1.1).

vable. In QCD, on the other hand, this behavior
is seen in the lowest order of perturbation theory
and for any field strength. The ideal place to see
this effect is in the spin splittings of hadrons.
However, it must be recognized that, outside of
the fact that the color magnetic field inside had-
rons is certainly not constant, there is also anoth-
er scale in the problem that is set by confinement,
namely the radius of the hadron. This finite
radius will act by itself to cut off the infinity in
color magnetic moment, so two cutoff effects
exist in hadrons. The confinement scale is of the
order of an inverse Fermi, 200 MeV. As spin
splittings, which characterize the magnetic field
present, are also of this order, both effects will
in general have to be taken into account. However,
the cutoff coming from the magnetic field has the
unusual feature of field dependence. If one re-
places the constant field in (2.1) with a dipole field,
we see that the anomaly depends on the separation
of the quarks, a feature that has been discussed
by Schnitzer. The ideal testing ground for these
ideas is the behavior of very massive quark-anti-
quark systems, where one may argue that a Cou-
lomb potential determines the properties of at
least the lowest states. Then a calculation of
radiative corrections to hyperfine splittings could
be carried out using standard QED techniques,
with the effect of the moment being position de-
pendent giving rise to deviations from a positro-
niumlike spectrum. This question is presently
under investigation.

(eB)' eB
/@ED ——2B +

24m m
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