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Remarks on the static potential in quantum chromodynamics
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We derive the Wilson loop formula for the static quark-antiquark potential using standard field-theory

techniques. We also discuss the limitations of a static potential as a description of higher-order effects.

The success of nonrelativistic potential models
in explaining the level structure of the charmoni-
um states associated with the J/P particle has
prompted several investigations' ' into the nature
of the static potential between a heavy quark and
antiquark which interact by colored gluon ex-
change. The Wilson loop formula' has often been
introduced on an intuitive basis as a useful tool
for calculating this potential which, in conjunction
with the Schrodinger equation, should approxima-
tely describe the observed level structure. In this
article we derive the Wilson loop expression with
standard field-theory methods and discuss the li-
mits of validity in using it or related techniques to
define a static potential. In particular, we show
that nonlocal effects, which invalidate a static-po-
tential model, arise in an inescapable way when
one attempts to go beyond the level of accuracy of
the standard Breit Hamiltonian.

This difficulty is well known in the analogous
atomic physics calculations. The possibility that
the same problems may arise in quarkonium
models has been noted by authors cited above,
especially in Refs. 1 and 5. Our derivation of the
Wilson loop formula and its corrections from a
standard formalism enables us to discuss the sta-
tic-potential limit as well as its recoil and spin-
dependent corrections and the breakdown of the
static-potential picture within a unified frame-
work. In addition, we point out that the virial
theorem casts doubt on the validity of resumma-
tion schemes which have been proposed in hope
of defining a static potential nonperturbatively.

To illustrate our points, it suffices to consider
a single quark flavor described by a spin- —,

'
Fermi field P(x) in the defining representation of
the SU(3) color group. The Lagrange function for
this Fermi field, including its interaction with the
colored gluon vector potential A„,(x), is given by

1
&2= —g y" 8„-gA +—.M p.

z

Here the gauge potential is written in a matrix
form,

with X, the defining matrices of the SU(3) color
group which obey the group law

[X,Xb]=if b X, . (3)

The full I agrange function of this quantum-chro-
modynamic model is obtained by adjoining the non-
Abelian gluon field contribution:
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where the dots stand for higher-order terms
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We work in the representation where

(i 0)

(0 i)
so that we may identify quark and antiquark spin-
ors by

(9)

where

Fava 2 va v aa+ gfaba ab va

We are concerned with the character of states
where the fermions behave essentially as loosely
bound, nonrelativistic particles and pair-creation
effects are negligible. We are therefore interested
in an expansion involving inverse powers of the
heavy-quark mass M. This expansion may be ob-
tained by first performing a Foldy-Wouthuysen
transformation' from the field P to a new field P'
which yields

i ——y M —y —-gA + y o' ' 8o oI . o o

2M 2M
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(10)

and write

Referring to E[l. (6), we see that

. 8=Qt i —-M —h —h —h —''' QQ . 8g 0 1 2

in which

II
h0= +gA0,

(14)

ll2 2

The Lagrange function for the antiquark field has
almost exactly the same structure. Placing Q~ on

the. left introduces an overall minus sign from
anticommuting the fields and transposes the ma-
trices in the Lagrange function. This produces

and

0' 0' 0' = —0'
2 2 (16)

where the superscript T denotes matrix transposi-
tion. The X, represent the SU(3) color group in the
charge -conjugated, antiquark representation. The
derivatives in the Lagrange function may again be
taken to operate to the right (with a sign change)
by adding an irrelevant total derivative. Dis-
carding the total derivative gives

(18)

Before employing this Foldy-Wouthuysen reduc-
tion, a few general remarks are appropriate. The
use of the expansion implies that the rest mass
M is large compared to other energies and mo-
menta in the problem. Since there is no extrinsic
mass scale, this is a dynamical assumption. For
bound states it implies that the binding energies
are small compared to the rest mass; such levels

are called threshold bound states. Because the
virial theorem implies that the expectation value
of the kinetic energy is)of the same order of mag-
nitude as the expectation value of the potential en-
ergy, the threshold bound states are nonrelativis-
tic. The virial theorem further implies that it is
not possible to treat the velocity p/M and the
coupling constant g as independent expansion pa-
rameters in computing binding effects. '

The 1/M expansion assumes that M is large in
comparison with the momenta exchanged by the
quanta of the A„ fields. There are, however,
radiative corrections which are cut off only by
the fermion propagators at loop momenta on the
order of M. The Foldy-Wouthuysen reduction in-
troduces spurious ultraviolet divergences into
such processes. ' For example, h0 contains a
term (g'/2M)A"A„. The Wick contraction of two
such terms, one from each fermion line, gives a
gluon bubble connecting the two fermions. In
configuration space this graph gives a contribu-
tion to the potential proportional to g'/M' R',
where 8 is the spatial separation of the two fer-
mions. The singula. rity at 8 = 0 and the ultravio-
let divergence of the corresponding scattering
kernel in momentum space are spurious effects.
Before the 1/M expansion, this term is a, part of
box graphs which are ultraviolet convergent. '

Let us turn now to define the static potential
which corresponds to the formal M -~ limit. In
this limit the fermion Lagrange function becomes

& —Q i —M-gA Q+ Q— i —-M-gZ Q
. 8 0 t ' 0
8t 8t

where X is obtained from A by replacing A,, with
We should emphasize that even in this static

limit the fermion fields are dynamical entities.
They possess internal color degrees of freedom
which are altered by the interaction with the gauge
potential A0. It is not possible to give a correct
derivation of the static potential in non-Abelian
gauge theories which treats the matter fields as
fixed, external sources. To derive the Wilson
loop formula, we express the static, four-point
quark-antiquark time-ordered Green's function as
a functional integral,

ls'(qL)q(e)q'(e')q (e'))[()&. = f [SS][Sq][dqe][Sq][Sq']exp((S.„(S)+if(Se)s)q(e)q(e)qe(e')q~(S'). (SS)

Here S,«(A) is the action of the gauge field including gauge-fixing terms and the Faddeev-Popov determi-
nant. The fermion piece of the functional integral is trivially performed, for it produces simply a pro-
duct of Green's functions for the motion of the quark and antiquark in the external field A.„,. The pre-
scription that the mass M be considered as the limit M-ie, E-0', requires that these Green's functions
are retarded. Hence the determinants of the Green's functions, which give the associated vacuum-vacuum
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transformation functions, are unity. (There is no pair production in the M- ~ limit. ) The Green's func-
tion for the quark obeys

i —-M -gA G x, t;x', t' =Z5 x-x' 5 t- t'~ ~ (21)

and is therefore given by

G (x, t;x', t') 8(t t=)e-'""''5'(x-x') t epx(- g(ch'A'(x, x")) . (22)

The time-ordering symbol v' refers to the order of the X, matrices attached to A,'(x,x'); the fields
A,'(x,x') themselves are, of course, numerical quantities in this formula. The Green's function for the
antiquark is obtained by simply replacing A' with X'. Accordingly, we now secure

&0~T(Q~(x)Q(&(x)Q'„(x')Q~(x')}~0) =5(x-x')5(x-x')8(t t')e 'e-&' ' &8(t t')e '&-( 't'&-

x dA e' ~f«"' &exp -ig dx'A. 'x, x v exp -jg dg'g'x g'
~- Sy- ~' ) ~6

(23)

For clarity the color labels o(, P, y, 5 have been displayed explicitly.
The static potential is identified if the quark and antiquark are created and destroyed at common times. '

Introducing a complete set of intermediate energy eigenstates and reverting back to a matrix notation for
the color indices, we have

G,(x, x, -', T;x', x', 'T)=(O—~—Q(x, —'T)Q(x, —'T)Q~(x', ——,'T)Q~(x', ——', T)~ 0)

= g(0(Q(x, 0)Q(x', 0)[n) e 'a (rn) Q(x', )0@~(x',0)[0) . (24)
n

To identify the two-particle potential we must take the large-T limit which isolates the contribution of the
lowest-energy intermediate state. Comparing Eq. (24) with the functional integral representation (23) in
this limit, we infer that

T/2 T/2
C~g ' ~&'TC= dA e~~««")7 exp -ig dx A x,x exp -ig Ch'& x,x'

-T /2 -T /2
(25)

(26b)

Using these projection matrices in conjunction
with Eq. (25) isolates the potentials for the singlet
and adjoint states, V~ and V„.

'The singlet potential can be obtained by setting

P = n, y = & and summing over each pair of common
indices, for

(S )+0,~,66

while
(x)+No, 66

(27a)

(2Vb)

where C is a time-independent matrix wave func-
tion and it is implicitly assumed that the phase
accumulation associated with self-energy effects
in isolated, free-particle propagation is to be de-
leted. 'The quark and antiquark can be in either
the singlet (S) or adjoint (A) representation of the

SU(3) color group. We show in the Appendix that

the projection matrices into these states are given

by

(26a)

Recalling that A.,= -X, , we see that

T/a
V' exp —ig dxoX'(x, xo)

-T/a
-T /2

K exp —ig dx'A'(x, x')
T/2 6e

(28)

where & calls for antitime ordering. Therefore,
neglecting constant factors, we secure

g~ jg~(X X)T

dA e'~elf (~)tr(P exp ig dx'"A„x' . 29

This is the Wilson loop formula. ' We avoid the
A'= 0 gauge so that all components A" (x, t) vanish
for large times. Hence the loop integral in Eq.
(29) may be taken to run around a closed rectang-
ular contour with vertices at (x, ,'T), (x,+ —,'T),——
(x,+ —,'T), (x,——,'T). The symbol 4' indicates that
the X, matrices in the potential A„(x') are to be
ordered about this path and tr denotes the trace in
the color space. Since the functional integral de-
fines the vacuum expectation value of time-ordered
operators in the interacting non-Abelian field
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system, we can write the loop formula as

e ivs&" x) = Ttr(p exp ig dx

Note that T orders the quantized operators A„,(x')
in time, while + places the matrices X, in a se-
quence around the closed loop which differs from
the time-ordering of their attached A„,(x') opera-
tors. "

Before proceeding, we wish to discuss a bit
more the meaning of computing the potential from
Eq. (30). So far we have neglected kinetic-energy
contributions which, however, we have noted will
not be negligible compared to the effect of the po-
tential energy. The relevant argument must be
based, therefore, on an approximation of the
Born-Oppenheimer type. One is assuming that the
gluon fields exchanged between the quarks adjust

themselves to the positions of the quarks on a
time scale which is short compared to the orbital
period of the quarks. We shall now work in the
radiation gauge. Such an assumption is obviously
valid for the instantaneous potential associated
with the time component of the vector mesons, but
it is suspect when considering the exchange of
transverse virtual gluons which can live for long
times. In fact, we shall see that the static approx-
imation breaks down for these transverse gluons in
a manner familiar from hydrogen or positronium
calculations. " Therefore, we begin by calculating
the Coulomb-like potential resulting from the in-
stantaneous exchange and then develop a perturba-
tion method to include the effects of transverse
exchange and the spin and recoil corrections.

The Coulomb exchange approximation evaluates
the functional integral of some functional E[A] as

t'i
[dA]e'~erf &"&E[A]=exp~ — (dy)(dz), Dao(y z) y'[A]

E2

Since the Coulomb propagator 2 2

H, =2~ + +V(x-x). (35)

(32}

V(~) g A.
' X

4mB (33)

Comparing this with the projection matrices (26)
gives the potential in the singlet state,

(34a)

and the potential in the adjoint state,

g2
V„(B)=+—

6 4' (34b)

The kinetic energy modifies the Green's func-
tion defined in Eq. (21) by replacing gAo with
P'/2M+gA'. Otherwise the analysis of the instan-
taneous interac'tion goes through as described
above. The effect of this modification is to pro-
duce a two-particle Green's function G,(x,x,—', T;
x', x', ——,'T) [Eq. (24)] which corresponds to the
8amiltonian

is instantaneous, using Eq. (31) to compute the
potential from formula (25) produces matrix
combinations A. X with both X, and X, at the same
position in the time ordering. . Hence the result in-
volves only A. A, which, of course, commutes with
itself. There is no problem with matrix ordering
and we derive easily
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FIG. 1. Feynman diagram for the spin-spin interac-
tion. Solid lines indicate quark or antiquark propagation;
dashed lines correspond to instantaneous, "Coulomb"
exchange; the wavy line corresponds to the transverse
gluon which mediates the basic magnetic interaction.

Both the corrections to the spin-independent po-
tential from transverse gluon effects and the spin-
dependent interaction terms of higher order in
M ' displayed in Eqs. (14) and (15) can be treated
as perturbations, changing G, to G, + 5G, . To il-
lustrate the character of these corrections which
are nonlocal in time, we consider the contribution
arising from h, of Eq. (14}. We work to all orders
in the instantaneous Coulomb exchange but to low-
est order in the transverse exchange. Therefore,
the functional integral over the transverse gluons
reduces to a simple Wick contraction of the fields,
replacing iA~(y)A,'(z) by the transverse propagator
D~,'(y-z). The correction we are now considering
is illustrated by the Feynman graph of Fig. 1.
Before the contraction of the transverse gluons is
performed, the Coulomb exchange perturbed by
ky on the quark and h

y
on the antiquark produc es
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r/2 t
6Gc2ou)(T/2. T/2) - ch chG2(T/2 ~ f )( fk&)G2(f ~ I'}( ('/)))G2(f ~ T/2)+ (h& /)) )

-r/2 -r /2
(36)

We are now using the usual operator notation of two-particle quantum mechanics. The integration limits
appear as shown since the Green's functions are retarded. The contraction for the transverse gluon ex-
change now yields

y4k) gt ~2 klkm T/2 t
6G (T/2. T/2); "

6 (ff (ff e (((o-(r/a () -' o()). e((i~ x* (&

)( e(//o(t t) -o m)( -e (i)(xw t)e-(Ho(t+T/2& (37)2M

where we have dropped the second term involving the interchange of quark and antiquark variables since
the structure in Eq. (37) suffices to illustrate the points which we wish to make.

Since we are interested in the energy shift which follows from this variation of the Green's function, we
take its diagonal matrix element in some state

~
Q) which is an energy eigenstate of the unperturbed

Hamiltonian,

(38)

Since t-t is positive, we can perform the k integral by closing the integration contour in the lower half
plane to obtain

The time integrals yield

r/2 g

x dt dt(Q
~

c'X 8(' "e (((':(&is&& s+ "' & () "X e ("'"~ ((&)) .
-r /2 -T /2

(38}

(40)
r/2

(ff ((( ()(/(p+i)is)(, [1 ((((o+iti--z)r]
r/2 r/2

— Ho+ }kl E(HO+ [k—[ -E)'
The oscillatory term effectively vanishes in the lim(t T- ~, while the time-independent term is a wave-
function renormalization effect. The term linear in T gives an energy according to

8 " '
& =e ' (1-(b,ET),

and so we obtain

&E = — '5' "k'
4M' (2w)' 2!k1' ' ~ ' H + Ikl E', ) '—

(41)

(42)

The energy shift is given by a nonlocal operator rather than by a correction to the potential. Let us now
take

~
Q) to be a color-singlet state. Since the operation of X, changes

~
Q) to the adjoint representation,

only the potential V„appears in H, . If we had ignored the kinetic energy in our calculation, the energy de-
nominator in Eq. (42) would be a numerical quantity and the energy shift would be given by a local spin-de-
pendent potential,

g' 4 ((f'0)""'=4M 3 (2.)
""' k 0 ~ 0-o'ko'k

2lki [ski+ V„(-V, (%)]
(43)

The graph has been considered in this approxima-
tion by Dine' who notes also that the neglect of
quark motion in such a process is not justified in
perturbation theory.

For Coulombic states in the weak-coupling limit,
the typical wave numbers which contribute to the
integral in Eq. (42) are given by k- a, ', where
((,=(aM) ' is the Bohr radius with o(=g'/4)(.
Since the unperturbed binding energies are of or-
der u M, the Ho-E contribution to the denomina-
tor is a higher-order effect. If we neglect it, we

I

can carry out the integral to obtain the spin-spin
part of the Breit Hamiltonian. 'The remaining
pieces of the Breit Hamiltonian are obtained from
the other M ' effects which arise from perturbing

- with h, and h, while neglecting binding corrections.
All of these terms give corrections to Coulombic
energies of order n'M. The effects of the H, -E
term which invalidates the instantaneous potential
model are of higher order by an additional factor
of n. These nonlocal terms contribute to the ener-
gy at the same order as the Lamb shift which is
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also nonlocal and requires the inclusion of binding
effects.

In the ground state, the effect of the energy de-
nominators is to decrease the spin-spin interaction
strength from that predicted by the Breit Hamil-
tonian. In an intermediate coupling regime such
as that of the J/g family, it is tempting to think
thai such an effect may be relevant in understand-
ing the g —q, splitting. However, we cannot say
anything definite about this since we have not con-
sidered effects such as that of anomalous color
magnetic moments which might be important in
this region. "'"

'Therefore, it does not seem meaningful to us to
derive a potential between static quarks to arbi-
trary orders of perturbation theory and assume
the result is relevant for computing bound states in

a nonrelativistic Schrodinger equation for heavy
quarks. We have illustrated this point by consid-
ering the binding-energy corrections to the magne-
tic interaction produced by the exchange of a
single transverse gluon. (See Fig. 1.) Similar
phenomena arise in any process which involves
the exchange of transverse virtual gluons since
these gluons can propagate over long time inter-
vals. For example, similar energy-denominator
effects arise in the process displayed in Fig. 2

which involve corrections to the spin-independent
potential from the exchange of a transverse gluon
between two Coulomb gluons.

Kinetic-energy effects should also be included in
attempts to calculate the Van der Waal's forces
between Coulombic singlet bound states which have
been considered only in the static quark limit by
Bhanot, Fischler, and Rudaz. "

The Coulombic states we have used should des-
cribe very heavy quarks whose effective coupling
constant is small. However, the argument that
potential and kinetic energies are of the same
magnitude, which implies the breakdown of the lo-
cal potential picture, follows from the virial theo-
rem and should also apply to an intermediate
coupling region relevant to the J/P and T families
of states. For example, the physical relevance
of the potential between static sources calculated
by Giles and McLerran" using a nonperturbative
semiclassical method is suspect on this basis.

We have not addressed ourselves directly to
attempts to compute long-range potentials or spin-
dependent effects which result from contributions
of nonperturbative gauge field configurations (in-
stantons and merons) to the Wilson loop formu-
la."'" From the general arguments presented
here, it appears that a local potential can be as-
sociated with such effects only if their duration
is short compared to the orbital period of the
fermions. 'The same observation has been made

previously by Dine. ' Such a limit seems to be
present in the ad hoc instanton scale cutoff used
by Callan et al."'" Whether or not the effects of
small-scale instantons do indeed dominate over
those of long duration appears to be an open ques-
tion. "

We cannot rule out the possibility that some
summation of diagrams or other nonperturbative
effect may provide a posteriori justification for a
static potential. The motivation in searching for
such a result is the apparent success of potential
models in charmonium spectroscopy. The quanti-
tative evidence, however, does not rule out the
level-dependent, energy-denominator effects we
have discussed here. The most striking feature
of the quarkonium states is the success of des-
cribing them as levels of a two-body nonrelativis-
tic system, which can survive in either case.
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A. ~ A. =+X,A.,= x 1.X'-1
.a

(A2)

The generators of the charge-conjugate represen-
tation are given by A.,= -X~. 'The direct product of
the two representations has the generating matri-
ces

(A~3)
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FIG. 2. Feynman diagram for the lowest-order non-
Abelian gluon interaction.

APPENDIX

We consider an SU(N) color group. The &'—1
generators of the defining representation X, are
taken to have an isospin normalization,

(A1)
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which give the invariant

I ~ I= x 1+ 2) ~ X. .N'- 1
(A4)

whence

The direct product of the two N-dimensional rep-
resentations reduces into, a singlet with one com-
ponent and an adjoint with N'-1 components. In
the singlet subspace I,= 0 and hence

(I 'I)s=o.
To compute the value of the invariant in the ad-
joint subspace we take the trace of Eg. (A4):

N2- 1trI I= (N' l)(I-'I)„=

N2- 1
singlet

„1
adj oint

and the completeness property

g(s) +g(A) 1

Thus

(s) 1 —2' 'A.

N'- 1+ 2NX ' X

N

(A7)

(A8)

(A9a)

(A9b)

(I I)~=K. (A5b)

Projection matrices into the two subspaces,
I'(s) and I'("), can be immediately constructed
from the corresponding values

With these operators and standard algebraic tech-
niques one can project the singlet and adjoint
pieces which are generated from any terms in the
expansion of the Green's function.
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