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An approximation scheme is proposed for calculating masses of QQ mesons in quantum chromodynamics.
The vacuum instability is removed, not by giving the magnetic field an expectation value, but by enhancing

the amplitude of the low-frequency components of the virtual magnetic field. A simple truncation of the
Schwinger-Dyson equations incorporates such an effect. Rough numerical calculations indicate that the

equations for the gluon propagator have a solution which increases logarithmically at large distances.

Clustering does not hold for multigluon Green's functions; Instead, if generally believed properties are found

to be true for the two-gluon function, they are assumed to be true for the higher functions. Equations for
the quark propagator and the QQ bound states are set up. The ladder approximation is totally inadequate in

the confinement region, but we can make a reasonable approximation which leads to static forces at large
distances. Corrections probably involve vibrational modes of the dual string. At high energy, linearly rising

QQ Regge trajectories with tlie expected quantum numbers are found. The scheme is free from
dimensionless parameters if the quarks have zero bare mass. Our equations possess the possibility of chiral-

symmetry breaking. Massless "pions" would then appear as QQ bound states; massless v~'s would not

appear if closed quark loops were included.

I. INTRODUCTION

Our aim in this paper is to propose an approxi-
mation scheme for low-energy calculations in
quantum chromodynamics (QCD). We shall direct
our approach towards the calculation of Qg meson-
ic mass spectra. If our scheme, or any other
scheme, turns out to be successful in this respect,
it can probably be extended to other calculations.

Let us state at the outset that we cannot motivate
our scheme as the expansion in a small parameter
or, alternatively, that we know of no consistent
limiting case in which our approximation scheme
would be exact. To our knowledge the only possible
small parameter which has been suggested is 1/N
(N being the number of colors) and, indeed, if a
procedure was discovered which made no approxi-
mation other than the smallness of 1/N, it would
represent a breakthrough in our knowledge of
strong interactions. At the present time no such
procedure is known. The situation in this regard
is not very different from- that in many branches of
physics. In the absence of a small-parameter ap-
proximation scheme, what is wanted is an approx-
imation which incorporates the main qualitative
features of the physics. It is then not unreasonable
to hope that quantitative calculations could repro-
duce the correct results fairly well. At present we
are still far from determining whether higher ap-
proximations of our scheme give a convergent se-
quence.

We aim for an approximation that produces the
confinement properties of the theroy. It has been
argued that the confining forces might only become
important at distances large compared to the radii

of low-lying hadrons and that an understanding of
confinement might not be necessary for calcula-
tions involving such hadrons. 'The near linearity of
certain Regge trajectories suggests, however, that
the forces responsible for their lower members
should be similar to those responsible for the high
angular momentum states, where confinement is
certainly crucial.

Most if not all of the suggestions of a confinement
mechanism involve the assumption that the low-
frequency components of the virtual color magne-
tic field in the true vacuum have a larger amplitude
than those of the bare vacuum. Such a hypothesis
is implied in the statement that the gluon propaga-
tor diverges faster than (p') ' at small p, and is
also true for the monopole vacuum proposed by
Mandelstam' and 't Hooft. ' In the present paper we
shall not introduce monopoles explicitly, but shall
construct Green's functions for a vacuum with en-
hanced low-frequency components. Such a vacuum
should have similar properties to a vacuum which
is explicitly constructed as a monopole plasma.
The equations used for the Green's functions will
be truncated Schwinger-Dyson equations. To mo-
tivate our equations and, in particular, the method

' of truncation, we start from the magnetic instabil-
ity of the QCD vacuum, which has recently been
extensively studied.

Saviddy' and Wilczek have pointed out that one
obtains a lowering of the vacuum energy by giving
the magnetic field a nonzero vacuum expectation
value. Their calc.ulations were performed in the
one-loop approximation, but their results appeared
to be a general feature of any infrared unstable
system. The instability is related to the "Landau
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ghost, " i.e., to the pole which appears in the gluon

propagator when bubble diagrams are summed.
The energy density caused by a magnetic field X
is cg'X'lnX, and for small X, this term will out-
weigh the classical X' term. 'The fact that there
is a stable value of K which minimizes the total
(classical and quantum) energy may lead us to hope
that there is a similar stability in the gluon propa-
gator, i.e., that a better treatment would cause the
pole to move out of the spacelike region, probably
to the point p'=0.

If QCD is the theory describing strong interac-
tions, the vacuum expectation value of the magnetic
field cannot be nonzero, since Lorentz invariance
would then be spontaneously broken. We should
like to suggest that the vacuum instability implies
not that the zero-frequency component of the mag-
netic field has a vacuum expectation value, but
that the low-frequency modes are enhanced. We
have already mentioned that confinement is prob-
ably implied thereby. A method of implementing
this feature is suggested by a calculation of the
vacuum energy by Nielsen and Olesen, ' who intro-
duced a fixed, unquantized magnetic field and sum-
med the energies of the gluon modes. As ex-
pected, the low-frequency gluon modes were en-
hanced. (Nielsen and Olesen showed that, though
the energy was lowered, there was still a remain-
ing instability in their vacuum. As it is not our
intention to give K a nonzero expectation value, we
shall not pursue this point. )

We shall replace the unquantized color magnetic
field by a virtual quantized magnetic field. In or-
der to remain as close as possible to the calcula-
tion of Nielsen and Olesen, we shall not allow this
color magnetic field to interact with itself. In
other words, we -have two gluon fields, one repre-
senting the actual gluons and one representing the
virtual field. Gluons of the first type can emit or
absorb those of the second, but otherwise there are
no interactions. If, in addition, we neglect non-
planar diagrams and closed gluon loops, we obtain
a soluble equation for the gluon propagator, repre-
sented diagramatically in Fig. 1.

The gluon-propagator equation, improved by the
inclusion of Faddeev-Popov ghosts, will be ex-
amined in Sec. II. As we have mentioned, it is a
truncated Schwinger-Dyson equation, and a com-
parison will be given with other possible methods
of truncation. It is not our intention in this paper
to present detailed numerical computations, but
we shall attempt rough solutions with simple para-

FIG. 1. Simplified integral equation for gluon propa-
gator.

metrizations in order to determine whether or not
a solution exists. We shall find that a fairly simple
parametrization gives a solution accurate to S%%u~.

We believe that this is fairly strong evidence that
a solution exi"ts; if no solution existed it would

probably be impossible to come close. Our solu-
tion behaves like (p') ' for small p, or, in other
words, like ln

~ x~ at large g. We shall also ex-
amine the ultraviolet behavior of our solutions and

shall compare it with the behavior given by renor-
malization- group analysis.

In Sec. III we shall treat the multigluon Green's
functions. In any approximation scheme of any
theory one has to make an assumption regarding
such functions. One usually assumes that they are
given by the sum of disconnected diagrams, but,
in the present system, which does not possess
clustering, such an assumption is not applicable.
We shall base our assumptions on the Wilson-loop
amplitude; if properties which are generally be-
lieved to be true (and, in particular, the shape
independence of the area terms) do in fact hold for
the two-gluon function, we shall assume that they
will continue to hold for multigluon Green's func-
tions. We shall then be able to obtain an ansatz
for the loop integrals of multigluon Green's func-
tions, which is all that we require. We shall find
that the ladder approximation to the Bethe-Salpeter
equation is totally inadequate in the confinement
regime, but that it is a reasonable approximation
to replace the In(x~ term by a linear static poten-
tial. Gorrections to this approximation probably
involve including vibrational modes of the
"string. "

In Sec. IV we shall study the quark propagator.
As in the two-dimensional model, ' the equations
appear to be straightforward, with no divergences
in the infrared or ultraviolet regions. The equa-
tions for the quark propagator, as well as those for
the QQ bound state, contain no arbitrary dimen-
sionless parameter. We also examine the possibil-
ity of solutions with chiral-symmetry breaking.

he general analysis of Naris, Herscovitz, and

Jacob, ' Pagels and Langacker, ' Lane' and others
is applicable here. In fact, the physical situation
in this respect is not very different from that of
the original model of Nambu and Jona-Lasinio; the
direct four-fermion interaction of the latter model
is here replaced by an interaction through gluon
exchange. We shall show that a simplified form of
our equations does lead to chiral-symmetry break-
ing. Treatment of our actual equations would in-
volve a numerical computation, itself dependent on
the computation of the gluon propagator, but the
results just mentioned show that our equations con-
tain the strong possibility of chiral-symmetry
breaking.
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The QQ bound-state equation will be treated in
Sec. V. Our two-variable integral equation simpli-
fies greatly in the region of high energy and angu-
lar momentum —the "confinement" region. Linear
Regge trajectories with the expected quantum num-
bers are found; not a surprising result in view of
the fact that we have a linear static potential. If
the chiral symmetry of the quark propagator is
spontaneously broken, the bound-state equation will
have solutions corresponding to massless pseudo-
scalar particles.

In most of our treatment we neglect closed quark
loops, but we do examine the question whether the
inclusion of such loops changes this last conclu-
sion for the flavor-singlet sector. The original ex-
planation of the g mass involved the Adler-Bell- Jack-
iw anomaly and instantons. " A gluon propagator
which increases instead of decreasing at large dis-
tances implies that the vacuum possesses compon-
ents with fields that decrease like (r') '. The top-
ological distinction which characterizes instanton
states then disappears. Witten has examined this
question in the large-g limit of a two-. dimensional
model" +-~, g'N fixed). He found that the q
mass behaved like N ' rather than like e " and
could be calculated without the explicit introduc-
tion of instantons. In our calculations we would

expect a similar feature; the potentials or fields
fall off sufficiently slowly at large distances so
that the anomalous term in the axial-charge dens-
ity diverges when integrated over space. There is
no conserved axial charge and no reason to expect
a massless q. These expectations are confirmed;
if we include closed fermion loops we do not find
a massless pseudoscalar particle in the flavor-
singlet sector.

II. THE GI.UON PROPAGATOR

A. Discussion of approximation

As we have already explained, we use the ap-
proximation shown in Fig. 1; wavy lines represent
the full gluon propagator, dashed lines the bare
propagator. For the moment we ignore the Fad-
deev-Popov ghosts.

We may regard our approximation as a set of
truncated Schwinger-Dyson equations. The exact
equations for the gluon propagator are shown in
Fig. 2. (Tadpole diagrams have been neglected. }
Ghost propagators have been represented by dotted
lines. Comparing Figs. 1 and 2, we may be
tempted to include further corrections to the form-
er set of equations and, in particular, to use fu11

gluon propagators for both internal lines in the
bubble. It is well known, however, that such a
procedure would be incorrect. The Ward identity
shows that for low-frequency gluons there are can-

+-l
2

FIG. 2. Exact Schwinger-Dyson equations for gluon
and ghost propagator s.

cellations between the corrections to the second in-
ternal propagator and those to the vertex function.
In fact, if the propagator has a (p') ' behavior for
small p, as is necessary for confinement, the ver-
tex has an extra p' which compensates the factor
p

' in the second internal line. We must therefore
use the bare propagator for the second internal
line.

Another attractive possibility might be to use the
Ward identity directly to obtain information about
the vertex function. 'The Ward identity provide's
information about the physical (i.e., transverse}
vertex function if one momentum is much smaller
than the other two, and an approximation which
suggests itself is to regard the transverse Ward
identity, valid when

p &(p, p &&p

a.s valid when

(2.1)

Pl ~P2 ~ Pl +P3 (2.2)

An approach similar in spirit has been follow'ed by
Baker, Ball, and Zachariasen. " However, we
shall see in the sequel that a cangellation is neces-
sary to obtain a (p') ' behavior. Such a cancella-
tion does occur in our equations, but not in the
equations derived from the W'ard identity. This
feature might at first appear disconcerting, es-
pecia11y since the canceling terms depend only on
the application of the transverse Ward in the region
(2. 1), where it is valid. In fact, the absence of
the cancellation is not surprising, since the use of
the Ward identity, without inclusion of the three-
gluon term in Fig. 2, treats the quartic couplings
inconsistently. Some of the quartic couplings are
implicitly taken into account via the Ward identity,
while others should be included explicitly via the
three-gluon term in Fig. 2.

If one wishes to use the transverse Ward identity
to obtain information about the vertex function, one
must therefore include the three-gluon term.
Even then it is by no means clear how we can ob-
tain the required cancellation, since it will depend
on the behavior of the four-gluon vertex when the
momentum of one gluon is small. The Ward ident-
ity relates the four-gluon vertex in this hmit, not
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to the gluon propagator, but to the unknown three-
gluon vertex. A more detailed study of the three-
gluon term might i.ndicate a possible method of
procedure. Without the inclusion of this term we
know of no consistent truncation of the Schwinger-
Dyson equations which improves on that represent-
ed in Fig.' 1.
. We should remark that our comments above ap-

ply specifically to equations similar in structure
to those of the present paper. The equations of
Ref. 12 have a slightly different structure. It is
our opinion that our above comments can probably
be generalized to apply to equations of different
structure, but we have not proved this. If it is
shown that a solution with a (p') ' behavior can be
obtained from direct use of the Ward identity, our
comments will of course be negated.

It might be objected that the absence of a (p') '
behavior shows not that the equations are wrong,
but that the propagator does not have such a be-
havior. In fact, our equations cannot have solu-
tions with any other power behavior, and Baker,
Ball, and Zachariasen show that the same is true
with their equations. It thus appears that a consis-
tent solution, with other than a (p') ' behavior,
must involve (p') 2 together with powers of loga-
rithms. Such a behavior appears to be much less

FIG. 3. Truncated Schwinger-Dyson equations for
gluon and ghost propagators.

physically reasonable than a pure (p') ' solution;
we shall comment further on this point in Sec. III.
We therefore find it signifi. cant that a simple trun-
cated Schwinger-Dyson equation does lead to a
(p') ' solution.

The equations represented in Fig. 1 may be sup-
plemented by contributions from the Faddeev-
Popov ghosts. We then obtain the equations of Fig.
3, where the line with widely separated dots repre-
sents the bare ghost propagator. As there are no
cancellations between the gluon-ghost vertex func-
tion and the propagators, we have used complete
propagators for the internal lines of diagrams in-
volving ghosts. In fact, the ghost contribution to
the gluon propagator makes very little difference.
We require knowledge of the ghost propagator,
not mainly because of its contribution to the gluon
propagator, but as an auxiliary function for ident-
ifying renormalization constants.

B. Setting up of equations

We now proceed to set up the equations for the diagrams in question. Let us start with the gluon bubble.
Polarizations will be denoted by Greek indices &, p, , p, p. Color indices will be suppressed, as the bubble
depends on them only through a-Kronecker 5. We use the Landau gauge throughout. Integrals over com-
ponents of momenta will be in Minkowski space with a timelike metric, but, when we integrate over invar-
iants, we make a%'ick rotation to Euclidean space. The bubble is then equal to

—,(P,).; jdPdP()'(P P"P.)t (P, P+ P )'-&P"P, 'P*')PP-—
~ * ((pp "*")(P.~- *g-: )(P '(P +P P -PP""Pf ~8"'Pn, (P P)

where c, is the quadratic Casimir invariant for the adjoint representation of the group [N for 8U(N)]. We
have denoted the correction factor to the gluon propagator by F(p ). On doing the algebra we find

4 2

2(2 )4 c1 dpldp2 ~ (P Pl . P2)F(P2 ) 2
Pl P2

Pl P2 Pl P2 2 2P P + + + P P2) l 2

+ [(O' +P')(P" P")+(P" + P")(O' -P-)t(p 'P ) -p —
p2 I

We first perform the angular integrations in (2.4). Let p' = P, -
performing the angular integrations,

+ PIPED ) 4 + (PI PI )

Pl P2
I ~%

z"" 4(P'+P')-4(P P.)'I ~ +
&Pl P2 )-

(2.4)

Pl Pl P2 P2 We find that, after

dp dp $4(p p + p ) / /F ldp d@ g(p I/2+/ I/2 FI/2)g(F I/2+ F /2 FII/2)g(p I/2+ p1/2 p I/2)

(2.5a)
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where

[(pl/2 + p 1/2)2 p ]1/2[ (pl/2 p 1/2)2 + p ]1/2

'The angular integrations over components of momenta give

& p,'p."& =
& p."p,"& = &p,'-p,"& = &p.'-p.

& =,.~ p g"-,

(2.5b)

(2.6)

where the sign = means up to terms involving pl or p". Inserting these expressions in (2.4), we find the
following expression for the bubble:

2 .(~1/2f. J3 1/2~2

ic g~" g dp dp p p F(p )[(p +p )2 —p ] [-(p —P ) +P ]48(2v)3P2 2
/ 1/2

2

x [ 2 p + 5PP, + —,P,'+ 5P, (P + P,}+2 P,'] + longitudinal terms . (2.7)

The integration over P, may be performed explicit-
ly, as it does not involve the unknown function
F(P, ). We find that the transverse part of the bub-
ble is

I

and, after performing the angular integrations, we
obtain

K3 P, P1, P2 G .P1 I' P2 dP1dP2,

K, (P, 'P2)F(P2)dP2, (2.8a) where

where
2

K, =ic, , [18+(25p,p ' —~P,2p 2)g(p-p, )I 1 y92 2

+ (25P, 'P - ~P P )g(P —P)] .
(2.8b)

2

K3(P, P1,P2) —-lcl
(

Q3 P Pl P38 2g)

x g(p 1/2 + p 1/2 Pl/2)

x g(p (p 1/2 pl/2)2)

C. Solution of integral equations

(2.13)

(P Pl P2 }PlP2 G(P1 +(P2 } 2 2
Pl P2

(2.9)

where G is the correction factor for the ghost
propagator. Performing the angular integrations
with the aid of (2.5) and (2.6), we find that the
transverse part of the gluon loop is

K2 P, P1,P2 G P1 G P2 dP (2.10)

where
2

K2(Pt Pit P2) — zcl 48(2 ')3 P Pl P2
7t' J

x g(p 1/2 + p 1/2 pl/2)

x g(P —(P,'/ —P2'/') ) . (2.11)

The loop in the ghost propagator is given by the
integral

2v) dP dP. 5 (P-Pl+ P.}IP- (P. P3)')
P2

x G( p,')F(p, ') . . . (2.»)
Pl 2

The other diagrams are somewhat simpler. For
the ghost loop in the gluon propagator, we obtain

,(,„) "f dt ct

The integral equations represented by Fig. 3 now

take the form

t(c)= ( p ftt, (cp, )t-(p, -)cc, ,

-1
K2»P1 P2 G P1 G P2 ~1~2

t

(2.14a)

t'(s')= (-t' ' ftt, (pc, )t"(pie', ,
L

(2.15}

and we are interested in a solution where + be-
haves like P ' as P approaches zero, correspond-

c(c)= t-t 'ft((pt pic, (p, )t„(p,wa,pt, ,

(2.14b)

the kernels K„K„and K, being given by (2.8),
(2.11), and (2.13), respectively. To investigate the
nature of their solutions, we shall first neglect the
ghost term in (2.14a). We shall later return to
consider it. Since the ghost term is much smaller
than the gluon term (the relative contributions to
the asymptotic behavior in perturbation theory are
1:25), we would not expect it to change the qual-
itative nature of the Solution.

Vfe thus have the equation
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ing to a (g ') ' behavior of. the propagator .First
let us say precisely what we mean by such a be-
havior. On taking the Fourier transform; we find
the following result:

[(p
' + ie) ' + (8n) ' ln(k eyo) 6 ( p) ]e'~dp

2n'-In(r/y ), (2.16)

where the value of the constant 0 will not concern
us. By a (p )

2 behavior we shall always mean a
logarithmic behavior in coordinate space. In other
words, a factor (p ') ' is to be replaced by the
quantity in square brackets on the left of (2.16).
We shall encounter integrals of the form fP, 'dP„
where the singularity at P, =0 arises from the
(p ) singularity of the propagator. According to
(2.16), we must replace the logarithmically diver-
gent constant arising from the lower limit by an
infrared finite constant whose value depends on r, .
The value of rp will not enter into any of our re-
sults; the only place it appears is in the gluon
mass renormalization. Since we shall not be able
to obtain a solution to our equations unless the
reciprocal of the gluon propagator is zero at p= 0,
we choose the value of r, so as to give such a zero.
In other words, we require the renormalized gluon

, mass to be zero. We then need not explicitly refer
to the value of r, . Notice that, in this way of look-
ing at the problem, we do not introduce any physi-
cal information about the gluon mass. We simply
choose the value of r, so as to solve our equations.

An alternative approach would be to recall that
the reciprocal of the gluon propagator obtained
from the exact, gauge-invariantly regularized,
Schwinger-Dyson equations (including the tadpole
terms) would vanish at p =0, as may be shown
from the Ward identities. Hence, when truncating
the Schwinger-Dyson equations, one might add a
constant term to the reciprocal of the propagators
so as to effect such vanishing. The constant rp
would not then enter into any calculations. The
actual method of procedure is independent of which
approach we adopt.

We may now note that if we write

to the denominator of P. Since there is no other
term in the denominator which diverges like
P ' lnP, the denominator could not possibly behave
like P, and we could not obtain a solution of our
equations which behaved like P ' for small P.
This is the cancellation referred to above, which
occurs in our equations but not in certain other ap-
proaches to the problem.

Besides neglecting the first term on the right-
hand side of (2.17) in the integral of (2.15), we can
also neglect the term 18c,g'/(192n') in the kernel,
as this term, too, gives a contribution proportion-
al to P '. We may therefore rewrite Eq. (2.15}as

P(P) = AP '+ F,(P), (2.18a)

(2.18b)

2

fC, (P,P, )= '~, f(25P,P '- ,'P, 'P ')—8(P-P,}

Ex=aP2, P, &Pp

F~ =F~, P2 &Pp,

(2.19a)

(2.19b)

where Pp is an arbitrary point, we find

P ' E, P, P2 F, P, dP~ =aP +bP, P-O

(2.20)

where = means equal up to constant terms. Hence,
if we take e = 1, we obtain the required output

+(25P, 'P —~P, 'P')8(P, -P)].
(2.18c)

All mass-renorma)ization terms have been re-
moved from (2.18). One still has to perform wave-
function renormalization; if one is seeking a solu-
tion of the form F(P)-const&&P ', P-O, one sub-
tracts out the constant term (at small P) in the de-
nominator of (2.18b).

We can now make an ansatz for the behavior of
E at small P. First let us suppose that the terms

2P, P 8(P-—P, ) —+P, P2 8(P, P) in (2.1-8c)
were absent. If we try an input

P(P, ) =A/P, +F,(P, ), (2.17)
F=AP (2.21)

and insert the term A/Pn into the integral in the
denominator of (2.15), the result is a mass-renor-
malization term of the form const &P ' in the de-
nominator. The term may therefore be neglected.
This feature is due to the fact that the constant
term in the brackets of (2.8b), i.e., the term 18,
contained no 8 function. If (2.8) had contained a
term of the form a8(P —P2)+b8(P, P), a term
~2 ' in E would have given a contribution

t(b —a} lnP+ const]P '

By taking F, =aP+bP'+ ~ ~ ~ for P &P„we obtain
an output

E=AP '+ aP+ bP + ', P (2.22)

which is consistent in form with the input.
%'hen we take into account the complete kernel

(2.18c) the situation is slightly more complicated,
since an input E,(P, ) ~aP, produces a term
P lnP in the integral (2.19). However, if we again
start from the ansatz (2.19), we find
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P' K, PP E, P dP=aP +bP, P-0 input:

F =25(P/P )
& + 1.276(P/P )' ' —0.573(P/P )"73

where

(2.23a)

25 7 25 7
+ + (2.23b)

n+1 2(n+3} o. 2(n-1) '

+0.297(P/Pa) ', P & P

=23.68(P/P ) '+ 2.315, P &P

output:

F = [43.04(P/P, ) —2.195(P/P, )"'"

(2.28a)

(2.28b)

n=-1+(186)' '/6 =. 1.273, (2.24)

the constant a vanishes. An input to (2.18b) of the
form (2.19) thus produces an output F(P)~P ' (P
small). We can then improve the ihput; for in-
stance, if we replace (2.19a)'by

(2.19c)

we obtain hn output

F=AP '+ aP +bP"' + O(P +'), P small.

(2.25}

The output is consistent in form with the input up
to the term in p~+'. By adding further terms we
can obtain consistency up- to any order, though it is
unlikely that the series converges.

The above reasoning does not prove that a solu-
tion with a P ' behavior exists, but merely sug-
gests the possibility. To explore the matter fur-
ther, we attempted to find an input which would be
numerically reproduced, to reasonable accuracy,
by the output. After a few false starts, we used
the following ansatz:

F =A(P/P, ) '+B[(1 —k —l)(P/P, )

+k(P/P, )"'
+l(P/P )

' ], P &P, (2.26a)

F =A(P/P, ) '+B

+ (0+2k +4l)j[ B B(P/Po)] i P + Po ~ (2 ~ 26b)

Vfith this parametrization, P and its first deriva-
tive are continuous at P =Pa. Leaving A/B arbi-
trary, we fixed k and l by the requirements that (i)
at P =0, the coefficients of the terms AP ' and

aP in the output should agree with those of the in-
put, and (ii) at P =P„ the output should agree with
the input. We then fixed the value of A/B so as to
optimize the agreement of the output with the input
for P &po.

'The parameters thus found were

(2.29a)+0.539(P/P, )""]', P&P, ,

= [115.7(P/P ) ln(P/P ) —57.8(P/P )

+122.2 —25.17(P/Po) +0.9(P/Po) ]",P&Po.

(2.29b)

We then found values for F(PO}/F(P) as listed in
Table I.

Except at the last point, we find agreement be-
tween input and output to within 5/&. For larger
values of P/P, we should have to adopt a different
ansatz, since the input (2.28) does not represent
the asymptotic behavior. It is not difficult to see
that the solution to (2.18) has the asymptotic be-
havior const x(lnP) '". We should therefore re-
strict (2.28b) to a range P, &P& P,', and take

F =const&& [ln(P/P )], P &P,'.
Choosing the joining point Po so that I' and its
first derivative are continuous across it, we find

P,'/P, = 78,

input:

(2.28c)

TABLE I. Comparison of input and output for solution
of gluon-propagator integral equation.

P/Po
F{P)/F(P,)

(input)
F(P)/F(PO)

(output)

2

3
4

2

0.515

0.763

1.436

1.838

2.547

0.531

0.787

1.489

1.927

2.674

F(P) =0.211F(PO)[ln(P/Po)] ', P )Po.
(2.28d)

Vfe have not checked the output corre'sponding to
this new input, but, in view of the agreement be-
tween the old input and output, and the fact that the
new input and output agree asymptotically up to a

A/B =25, k=-0.573, l=0.297. (2.27)
10

3.69 3.78

5.50

The normalization of input and output depends on
the renormalization convention; with arbitrary
normalization, we found

20 7.43

9.32

7.35

9.91
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constant factor, we do not expect any large dis-
crepancy. We believe that the 5%%u~ agreement be-
tween input and output indicates pretty convincing-
ly that our equations for I' have a solution which
behaves like p ' at small p. Furthermore, our
analysis of the small-p limit indicates that no
other behavior is consistent. In particular, the
ans'atz E(P) =const would lead to a logarithm in
the denominator of (2.18b).

Let us now briefly examine the ghost terms in
our equation. We first consider (2.14b), where,
for E, we take the solution of (2.18) already ob-
tained. The ansatz Q -P ', & -0, is not consist-
ent, since one would then obtain a term proportion-
al to P ' in the denominator of (2.14b). In fact,
the situation is simpler than in the equation for j",
we can obtain a consistent small-P behavior by
iteration, starting with F(P) =const. The only di-
vergent term is a gluon mass-renormalization
term which we set equal to zero as before. We
may also remark that the iterated expressions are
free of Landau ghosts. It thus appears likely that
the equation for 6 will have a consistent solution
which approaches a constant at p =0, though we
have not carried through a numerical analysis.
The overall constant again depends on our renor-
malization prescription.

Finally, inclusion of the second term inthe de-
nominator of (2.14a) makes little qualitative differ-
ence; the only change is that the constant term in
the small-P expansion for +, which was previously
set equal to zero, must, now be chosen so that the
lnp contributions from the two terms in the denom-
inator of (2.14a) cancel. In view of the smallness
of the ghost contribution

touche

gluon propagator,
it is unlikely that the nature of the solution would
be altered. It is necessary to say something about
renormalization in order to determine the relative
magnitude of the two terms in the denominator of
(2.14a). We now turn to this question.

D. Ultraviolet behavior and renormalization

It is not difficult to see that the solution of (2.14)
have the following high-energy behavior:

g'cZ(P)- 2,' i (, P-
272g PQ ]

g2c p x

G(P)- 0,' ln
7T

Q

(2.30b)

( 11g2 p -~3/2a
P(P)-( in

7T Q

2 p "9/44
G(P)- ~" in-48x' P

(2.31a)

(2.31b)

We may compare (2.30) with the exact renormaliza-
tion-group results:

While our equations do not automatically give the
correct high-energy behavior, we notice that the
error made is not very large.

Equations (2.30) enable us to determine the rela-
tive normalization of I and |", which is required in
the solution of (2.14). We use the same normaliza-
tion factor; we then observe that

P/G' - l7/25, P—
We may also remark that g'pg' is a, renormal-

ization-group invariant at high energies; this is
true whether we use our equations (2.30) or the ex-
act equations (2.31). We find that

& 3cg'&G'-
(

', in (, our equations

(2.32a)

(11c~ p (g'EG'-( 48' in (, exact results.
PQ]

(2.32b)

It is possible to build the exact asymptotic be-
havior into our equations, at the cost of having an
arbitrary joining point between two different forms
of the kernel. We should like to get an expression
for the vertex in Fig. 2 which is exact at high en-
ergies. In particular, we should like an expres-
sion for the vertex which is accurate when all three
components of the momenta are large, and when

p, » p, p, » p, since this is the region which de-
termines the logarithmic behavior of the propaga-
tor. The Ward identity relates the longitudinal
part of,the three-gluon vertex to the gluon-ghost
vertex and the propagators. At high momenta, the
Landau-gauge gluon-ghost vertex is equal -to the
bare vertex. It may then easily be seen that the
three-gluon vertex is given by the simple formula

(2.33)

where V~ is the bare vertex and p„ is any one of
the momenta p, p„p„ if these are of the sa,me
order of magnitude. [The effect of changing p„be-
tween the three p's is smaller thanthe main term
by a power of 1n(p ), and (2.33) is in any case only
accurate to leading logarithms. ] If one of the three
p's is much smaller than the other two, we must
take p„ to be one of the larger p's. 'The leading
logarithm in the transverse part of V is the same
as that of the longitudinal part, and we may take
(2.33) as valid for the entire vertex at high energy.

Equation (2.33) is a kind of renormalization cor-
rection to p. As with all renormalization correc-
tions, we must apply it to boN vertices in Fig. 2.
We have not proved this last statement, but it is
easy to check it for the simplest nontrivial dia-
gram, Fig. 4. Let us first consider the left-hand
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P3r ~ Pl
I
I p
I r
I r

Pg
~ Pp

FIG. 4. Overlapping gluon-propagator diagram.

triangle as a single vertex. We are interested in
the case where all p's are large and, if p„p, »p,
we are interested in terms proportional to p'/p, '
(among others), since these contribute to the high-
energy behavior of the propagator after mass re-
normalization. The high-momentum part of the
loop integration for the vertex in question, i.e.,
the region for which p„p4»py p2 then gives us
the leading logarithm, which is equivalent to the
second term in the expansion of (2.33). There will
be an additional contribution of the form
(p /p, ) lnp, (p «p, ) from the region where

p3 p4 «p„p, . To evaluate that contribution to the
final result, we consider the right-hand triangle
as a single vertex. We then obtain a second term
equal to the first.

To obtain the asymptotic behavior, me must thus
correct the gluon term in the gluon propagator by
two factors F '(p, )G(P, ), where P, is one of the
internal momenta. We could take P, either equal
to Py or to P2, since the asymptotic behavior is
determined by the region P, =P, »P3. For reasons
of symmetry we take a factor

F (P,)F ~(P, )G(P, )G(P ).
We have already included a factor F '(P, ) by taking
a bare gluon propagator for the p, -internal line in
(2.3). We must therefore make the replacement

F(Pq) G(P~)G(P2), P„P2 &Po

in (2.8a). Our final result will, of course, depend
on the value of Po chosen. We should obviously
take a value where the asymptotic formulas for the
propagators are reasonably accurate. .As long as
we do so Eqs. (2.31) indicate that G' does not differ
much from I', and the result should not depend
sensitively on P, . It is now not difficult to check
that the asymptotic behavior of the solutions to our
equations is given by (2.31).

As a check of the sensitivity of our equations to
the choice of gauge, we might calculate the asym-

ptotic behavior of the qua. ntity g &G, which is
gauge invariant. In Feynman gauge, we find

P )-1

4n P, )
(2.34)

The Feynman-gauge and Landau-gauge results dif-
fer from one another by a factor —,', with the cor-
rect result in between.

It may perhaps be worth mentioning that, in the
gauge with bare propagator g"'- —,

' p"p" (p') ', the
factor (2.33) is unity, and our calculations would

give the correct asymptotic behavior.

III. MULTIGLUON GREEN'S FUNCTIONS

If the gluon Green's function behaves like

kin�(~~

at large distances, the loop integral

T dx A xdx' A x'
E (3.1)

do"~de'""x-x' 'x-x' ' x-x' '

(3.2)

where the integral is over any surface bounded by
the loop; it will be independent of the surface
chosen. For a plane loop, (3.2) is the area of the
plane surface bounded by it.

Before we can perform calculations involving
quarks we require information regarding multi-
gluon amplitudes. Such information is necessary
in any theory, and, if the two-particle propagator
decreases at large distances, one usually assumes
that the multiparticle Green's functions are given
by the sum of disconnected diagrams. In the pres-
ent theory, where the two-gluon Green's function
increases at large distances, clustering does not
occur, and we must replace the assumption of dis-
connectedness by another ansatz. Our proposal
will be based on two assumptions.

Let us consider the second term obtained by ex-
panding the exponential of the Wilson integral:

behaves like k(N' —1)v8, where 8 is the area of
the loop. We define the area of a loop which is not
in a plane as follows:

1
~K X pT CpyyQ

(3.3)

This expression will contain a term proportional to
6', obtained from the region of integration where
all four x's are distant from one another, and
terms smaller than 8' (for large 8), obtained

I

from the region of integration where two or more
x's are close to one another. Our first assumption
is that only the most divergent terms in (3.3) are
important; the terms smaller than 8,' will be as-
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sumed to be given by the sum of disconnected dia-
grams.

Our second assumption concerns the dependence
of the most divergent terms on the shape of the
area. The first term, given by (3.1), is indepen-
dent of the shape. This fact was partly a result of
our choice of integral equation —we chose the equa-
tion represented by Fig. 1 rather than that obtained
by direct use of the Ward identity —but it is never-
theless true that a simple choice of integral equa-
tion led to this result. Most models of confinement
possess the feature that the %'ilson integral does
not depend on the shape of the area. We shall as-
sume that our result for the two-gluon propagator
is not a coincidence, but is a property of the theory
which is maintained for the higher Green's func-
tions. We thus assume that the leading term of
(3.3) is independent of the shape of the area.

Ne can treat the higher terms in the expansion of
the Wilson integral in a similar way. The term in-
volving the 2~-gluon Green's function depends on
8", and will be assumed to be independent of the
shape of the loop. The whole Wilson integral is
thus independent of the shape of the loop. By con-
sidering a loop which itself consists of two we11-
separated loops, we conclude that the only possible
form for the Wilson integral is e "e (up to peri-
meter-dependent or shape-dependent, area-inde-
pendent, factors). We can then. identify the zth
term in the expansion with the contribution of the
2g-gluon Green's function. In particular, the fac-
tor n is just k(Ã' —&)v, k being the constant of
proportionality between the two-gluon propagator
and in(xi.

As long as we are only interested in color-singlet
states, we may in principle perform calculations
by integrating over closed quark loops. For in-
stance, the energies of bound states can be deter-
mined from the Green's function
(Z'[@(x)OP(x)+(y}O,@(y)]), where the operators
0, and O, may involve y matrices or derivatives.
Such a Green's function can be determined by in-
tegrating over loops passing through g and y. If
we neglect the effects of further virtual quark
loops, each loop will be w'eighted by the vacuum-
expectation value of the Wilson integral. The above
arguments therefore give us all the information we
require with respect to the large™distance behavior
of the Green s functions.

Our expression for the Wilson integral is the
same as that given by a model with Abelian, non-
interacting gluons whose propagator behaves like
0 ln)x) at large x. Planar and nonplanar diagrams
must be included; the nonplanar diagrams take into
account the interactions between the actual, non-
Abelian gluons. Notice that it would be completely
inadequate to neglect the nonplanar diagrams. The

higher terms in the wilson expansion are domin-
ated by such diagrams, and the planar diagrams
alone would not give a behavior e "~. Vfe have ex-
amined the Bethe-Salpeter equation in the ladder
approximation, with a (p') ' gluon propagator,
and we found no hint of a confinementlike spec-
trum.

The solution of the QQ problem with the inclusion
of crossed gluon lines would appear to be a formid-
able task, even without gluon interactions or vir-
tual quark loops. However, an approximation
which suggests itself is to replace the expression
(3.2) for the area by the following, noncovariant

expression

X-X' a4 X4-, X4 dX4dX4. (3.4)

In other words, we divide the area into a number
of infinitesimal strips by lines perpendicular to the
g4 axis, we then project each strip onto the plane
formed by the x4 axis and the long edge of the
strip. To obtain an idea of the error made we may
consider the case, relevant for the asymptotic be-
havior of Regge trajectories, where the edges of
the area rotate with an angular velocity g around a
fixed point. (For the moment we use real time. )

he area is then out by a factor 4p. The presence
of the 5 function in (3.6) gives us an instantaneous
interaction, and the associated dyanmical problem
is soluble without difficulty.

Our approximation involves the replacement, in
the propagator, of

A(~„„—s„8,8 ') in(x( by Aw(x(5„,5„
or of

(3.5a)

A[5q, —P~P, (P') '](p ) ' by A5q 6, . (3.5b)

More precisely, we divide the propagator into a
term proportional to (p') ' (or 1n~x() and a re-
maining term. For the first term, we make the
replacement (3.5); the remaining term is not
changed. It is then reasonable to use approxima-
tions similar to those of the last section for treat-
ing systems involving quarks, whereas approxima-
tions of this type, without the replacement (3.7),
would be totally inadequate for studying the con-
finement properties of the theory.

We have not examined the question of the im-
provement of the approximation (3.4). The formu-
la e ~ for a Wilson loop suggests a dual-string
Lagrangian, which (3.5) replaces by a static force
between quarks. It therefore appears that one
should improve on the approximation by taking into
account the vibrational modes. Possibley one
might treat those modes with wavelength greater
than a certain value; for shorter distances one
would use the covariant gluon propagator. Need-
less to say, the spirit of the approximation (3.5) is
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fundamentally different from the general spirit of
our approximation scheme. We hope to return to
examine possible methods of improvement and
thereby to gain more insight into the approximation
in question.

We have not attempted to obtain the multigluon
Green's function themselves, but simply the inte-
grals such as (3.3). We do not require additional

information in order to calculate the meson spec-
trum. The Green's function will depend strongly
on whether various combinations of points are col-
linear, coplanar, or (possibly) on the same three-
dimensional surface, as may be seen by consider-
ing the expectation value of Eo;(x,)E,~(x, ) in a state
with a heavy well-separated QQ pair T.his quantity
depends on the vacuum expectation values

TrT 'T ' ~ 7~ T dy g ydy'og~y' ~ ~ ~ dy" g& y" (3.6)

the integrals to be taken over the quark world
lines. As we would expect the expectation value to
be large if g, and x are collinear with the quarks,
we conclude that the integrand must depend on the
collinearity or coplanarity of the various points.

IV. THE QUARK PROPAGATOR

'The results of the previous section cannot be
used to calculate the actual quark propagator, as
it was assumed that all amplitudes are to be func-
tionally integrated over closed quark loops. The
calculations in this section give us an "effective
propagator" to be inserted into the QQ bound state
integral equation.

We shall use the equation for the quark propaga-
tor shown in Fig. 5. 'Thus

2

s (s) = rr s+,(ss„).f ssss s (s -,s+. s'-)-, .
&&y~S(p, )y D„„(p,), (4.1)

where S is the quark propagator and D the gluon
porpagator. According to the results of Sec. GI,
the term A, [5„,—p„p„(p2) 'J(p') ' in D is to be
split off and replaced by the expression (3.7b).

The fact that D consists of a covariant and an in-
stantaneous part may make (4.1) a bit awkward to
handle practically. If the instantaneous term alone
were present, Eq. (4.1) could be solved exactly as
in the two-dimensional model. In fact, the first
iteration for S ' would be the exact solution. One
may therefore hope to solve (4.1) by iteration,
starting from the solution of the equation where
the covariant term alone is present.

Next let us discuss the question of renormaliza-
tion. By using an analysis similar to that used for
the gluon propagator, we find that the integrand in
(4.1) requires an extra factor (".2(p, ) at high ener-
gy, where G is the correction factor for the ghost

FIG. 5. Equation for the quark propagator.

I

propagator. In deriving this result, we use the
T aylor-Slavnov identity for the quark-gluon ver-
tex, ' together with the fact that both 5 and the
auxiliary function II are ultraviolet finite in the
Landau gauge. Thus

2

S '(p) = iy -p+ (, dp, dp2f)'(p —p, —p, )
.2(211)'

~ y"~(p, ) y "~„„(P,)d'(P, ) .
(4.2)

Since g DQ~ is a renormalization-group invariant
at high energies, we can take Eq. (4.2) as it stands.

'The function G' tends to a finite limit as p, -0,
and we can therefore use the integrand of (4.2)
throughout the range of integration. In fact, the
Landau- gauge Taylor-Slavnov identity

(Z,Z2 ')„. .. = (Z2 ') @.„
suggests that we should associate a factor G with g
if we renormalize at some finite value of p, . Equa-
tion (4.3) would then instruct us to normalize the
quark propagator to be unity at an arbitrarily chosen
value of the quark momentum and zero gluon mo-
mentum. The correction factor I' to the gluon
propagator would be normalized so that

( 75 p ) 1/2r 1 1 p 13/22

4Sv' l p
at high energies, depending on whether or not we
modified the equations for + so as to obtain the
right high-energy behavior. Finally, we should
add a factor G(0) at each vertex. The result would
be independent of the quark momentum chosen. We
cannot follow this complete procedure, since we
are using the bare quark-gluon vertex, but we do
confirm the presence of the factor G(0) associated
with each vertex function at zero gluon momentum.

We conclude this section with a treatment of pos-
sible chiral-symmetry breaking in the solutions of
our equations. Chiral-symmetry breaking is inde-
pendent of the confinement properties of the sys-
tem and is not sensitively dependent on the low-p
behavior of the gluon propagator. We shall there-
fore consider the covariant part of the gluon prop-
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S '(p) =-~ [~ pH, (P)+ H, (P)] (4.4)

agator alone. The angular integrations in (4.2) can
then be performed. Let us define

where

3g
16(2n)' ' (4.Vb)

where, as usual, P =p'. We then find the equations

x fP, [H, (P, ) ] + [H, (P, ) ] }'dp, ,

(4.5a)

82 K5 P Py Hp Py

& (P, [H, (P, )]'+ [H (P, ))'} 'dP, , (4.5b)

where

Z, (P, P,)-,
(

x ' F(P)
2

x[ 2P, - P- P, P, '(P--P, )']Z,

(4.6a)

The factor a'~' has been chosen so that [H, (0)]' = a.
Vfe can now check the validity of the replacement

of the term (H, }2 in the denominator of (4.5b) by
a. We examined the case ~ = —,', where the hyper-
geometric function on the right-hand side of (4.11)
is a sum of complete elliptic integrals. We found

that our approximation made a change of less than

5% in the denominator of (4.5b) throughout the
range of P. The expression (4.Va) is therefore a
fairly accurate solution of our equations (with F,
the gluon-propagator correction factor, equal to
1), and it is extremely like1y that the equation does
have a solution. Note that the constant g, which
sets the scale, may be chosen arbitrarily.

Next let us investigate the effect of a slight
change of the gluon-propagator correction factor
+, which breaks the scale invariance. The change
5H, of the solution of (4.5b) (with H, =1) will be
given by the equation

H5(P& Pl) 16(2 )3P J~

' F(P2)~.. (4.6b) 6H (P)= ~bK, (P, P, )H (P,)(P, + [H, (P,)]}'dP,

The range of integration is given by the 0 functions
in (2.11). We are interested in possible solutions .

of Eqs. (4.5) and (4.6) with H2 x0.
The existence of solutions to the equations will,

of course, depend on the precise form of j'. Here
we shall only investigate the general question of
the likelihood of the existence of solutions to equa-
tions such as ours. We shall therefore make the
following simplifications, which will enable us to
use the result of Maris, Herscovtiz, and Jacob. '

(i) We shall take H, =1 so as to decouple our
equations. Since we are using the covariant part
of F alone, corrections to II, will not change its
form qualitatively.

(ii) We shall assume that F is approximately
equal to 1; in other words, we use the bare gluon
propagator. We do not wish to take I' precisely
equal to 1, since the equation would then be scale
invariant and its qualitative features would be
changed. We shall therefore begin with the case
+=1, and shall subsequently investigate the change
caused by a small change in g.

As in Ref. 7, we shall make the additional ap-
proximation of replacing the term JH2}' in the de-
nominator of (4.5b) by a constant a, say; we shall
return to check the validity of this approximation.
The. solution to the equation has then been given by
Naris, Herscovitz, and Jacob':

H, =a'~2~, (-.'+(-.'- X)"',—,'- (-,' —X)",2, -Pa '),
(4.7a)

+ K5 P, P~

x (P, —[H, (P,)]'}(P,+ [H, (P,)]'}-'

&& 6H2(P~)dP~, (4.8)

dPI PP P — H2 P

&& (P+ [H, (P)J'} '5, H, (P) =0. (4.9)

The extra factor p in (4.9) arises from the fact
that we must multiply K,(P, P, ) by P to obtain a
symmetric kernel.

Suppose, now, that the change in g approaches
zero when P approaches zero or infinity. If this
change has a fixed sign, the inhomogeneous term
I will have the same fixed sign. Furthermore,
6,H, has a fixed sign, at any rate if (4.7a) is area-
sonably accurate solution of the scale-invariant

where 5K, is the change in K, caused by the change
in F. Equation (4.8) is an inhomogeneous linear in-
tegral equation for 5H, . The corresponding homo-
geneous equation has a solution, since, by changing
the scale of H„we can continue to satisfy (4.5b)
without changing the kernel. If 5,&, is this homo-
geneous solution, Eq. (4.12) will be soluble pro-
vided that the inhomogeneous term I satisfies the
equation
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equation; the change in II2 has the same sign as
the change in g. Since the factor P —H, in (4.9)
changes sign at a certain value of P, it follows
that we can change the sign of the left-hand side of
(4.9} by scaling the change of E upwards or down-
wards. In particular, we can scale the change of
E in such a way that (4.9) is satisfied; Eq. (4.8) is
then soluble. Alternatively, for a given value of
the change of F, we can scale the function 02 in
(4.8) in such a way that the equation becomes solu-
b}e.

The above arguments assume that the change of
I' is zero for small and large I but, since our
equations are convergent at both ends of the range
of integration, we may remove this restriction by
a limiting process. Our result ls thus that the
family of solutions to Eq. (4.5b), with H, =1 and
I' =1, becomes replaced by a single solution when
the scale invariance is broken by a slight change
in F.

We may mention that our last result is true
whether or not the theory is asymptotically free.
The feature of our results which would depend on
asymptotic freedom would be the behavior of the
solution if we were to imagine that the constant g'
could be varied while the scale breaking of F were
held fixed. We, wou}d then find that the pole in the
quark propagator would move from zero or infinity
according as F decreased or increased at large
p

14

Finally, we must ask whether the solution with

0, g 0, if it exists, is the one which is realized in
nature. We shall investigate the question by
"turning on" the coupling. Quantum chromodyna-
mics (with massless bare quarks) contains no ar-
bitrary dimensionless coupling constant, but we
can introduce one by applying an ultraviolet cut-
off—by putting the system on a lattice, for in-
stance. Once we are on a lattice we can also give
the gluons a bare mass to ensure weak coupling at
low momenta, though the strong coupling at low
momenta appears irrelevant to the present prob-
lem. With weak coupling and ultraviolet cutoff,
our equations possess no solutions with II2 g0; we
are in the regime with true chiral symmetry. We
can now gradually increase the strength of the
coupling by taking the ultraviolet cutoff to infinity.
At a certain point, a solution with 02g0 begins to
appear. The system then has a massless pseudo-
scalar particle. Furthermore, since chiral sym-
metry is still realized as a true symmetry when
the H, &0 solution just begins to appear, the sys-
tem also has a massless scalar particle. We are
thus in a typical situation of the onset of chiral-
symmetry breaking and, as the cutoff momentum
is increased further, we would expect the system
to choose the symmetry-broken mode.

V. QQ BOUND-STATE EQUATION

A. Leading Regge trajectories

For qg bound states we use the Bethe-Salpeter
equation:

x dP'&"y(E, P'}&'D„„(P—P')S(P - &E),

(5.1)

where D is the gluon propagator modified as in
Sec. III. By E we mean the vector (E, 0, 0, 0). We
are using a matrix notation for 4', the antiquark
spinor indices label the rows and the quark indices
the columns. Notice that our equation for QQ
bound states is consistent with that for the propa-
gator. If, in the inhomogeneous equation corres-
ponding to (5.1}, we insert the solution of (4.1) for
8, take E=O, and join the quark lines at the ends,
we recover the solution of (4.1).

Since the force between the quarks at large dis-
tances is a static force proportional to

~ x(, we
should expect confinement. We shall verify this by
showing that the Regge trajectories are linearly
rising (I~E') for large I and E. In this regime we
require $ at high momenta, as may be demon-
strated by rewriting the equation in coordinate
space; the singularity, at ~=0, of the Fourier
transform of 8, governs the high-3 region. We may
therefore take

(5.2)

On the other hand, we require the large-distance
or low-momentum part of D&„, and we may take
the expression (3.7b). Renormalizing as in Sec.
IV, we replace the constant A by A' AG (0); the
combination g'g' will be independent of g'.

We thus have the equation

x((P p')') '[1' ~ (p ——,'E}+ye] '.
(5.3)

As the kernel I(p —p')~] ' is independent of po, we
may eliminate the zeroth component by integrating
over it. We thus define

(5.4)

Then
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2 I Ps

y(E, p)=
8 2, dp'(y'-y p)y')t(E, p')y'(y'+y'p)[(p-p')'] '((PI-2E) '

2 I Ps

8(2m)'
dp'(y'+ y p)y')((E, p')y'(y'+ y.P)[(p-p')'] '(IPI+ 2» '

~ (5.5)

We are interested in solutions where (p( and E
are large and nearly equal, and we may therefore
neglect the second term on the right-hand side of
(5.5) in comparison with the. first. By taking the
factor (Ipl ——,'E) ' into the numerator of the left-
hand side, we can write our equation as a differ-
ential equation in coordinate space. Separating
variables in the usual way, we may write

l I+1)
+P, ' ~

lul=-, +
2, l, ' ~ (5.6)

The projection operators (yo a y p) yo will commute
with (I/64m)(x(, the Fourier transform of the ker-
nel

8(2 ), [(P-P')'] ',
since the momentum p is mainly angular. We can
therefore eliminate these projection operators by
taking a wave function in the projected space, i.e.,
by writing

x =(y' yp)y'e-y'(y'+ y p) (5.7)

Furthermore, if we write

4=4 y'+4. y p+6+4. y'y p, (5.8)

we may also commute the operators y p through
the potential and write the differential equation as
an equation for the p, 's, r = 1, .. . , 4. Note that the
terms in (5.8), when sandwiched between the pro-
jection operators, span the space generated by
these operators.

With these definitions and approximations, our
equations become

In the regime of interest, the term l(l+ I)/r is
much greater than P„and

(r-R(&R,
where 8 is some average value; these facts may
be verified from the solution of our equation. Thus

kR 64& R' 2l
(5.10)

Equation (5.10) is a simple-harmonic-oscillator
equation. We may in fact neglect the zero-point
energy of the oscillator, which will be of order 1 '.
Thus, using (5.9), we find

g'A'
4m

g2gI
y, = exp — (r R)—

64m

(5.11)

(5,12)

From (5.11), we confirm that we obtain linearly
rising trajectories at large E or $.

The form (5.8) of our solutions shows that there
are three types of trajectories, all with equal
slope. As in the nonrelativistic quark model, the
trajectories correspond to the m, p or o, and +y,'
the p trajectory is doubled.

B. Chiral-symmetry breaking

If our propagator S possesses chiral-symmetry .

breaking, we should expect our Bethe-Salpeter
equation to have a zero-mais pseudoscalar solu-
tion. This has been shown directly by Lane' for
the exact Bethe-Salpeter equation and, as long as
our equatioris for the propagator and the two-quark
bound state are consistent, a similar result should
(and does) hold in our approximation.

We start again from our equation (4.1), but we
now write it as an equation for $ instead of $ '.
Let

&(P) =i [y PE, (P)+ E,(P)] .
If E, is nonzero, it will satisfy the equation

(5.13)

SgE —
2(2 )

(E -PE

R' = 64w1/g'4'.

If r R—-+ r', we may expand the term 1/x in powers
of r' and retain only the first two. Thus

—+ —p„'- ,'E+
I y, (r) =0, -g'~'(&I~

y 2) " '
64m

(5 9)

I

de. d & P Pl P2 y"E2~ DP Pl ' 5 &4

Hence

where p„, is the radial wave function of the lth
partial wave of p„. Under the conditions of inter-
est, the important values of r will be near the
minimum R of the sum of the two r-dependent
terms. Thus

(y pE +E)Zg

dpzdP2 P Pz P2 'Y

& (y,E.)y" (y PEi+ Em)&p. (tx)
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l.e.)

7E =
g(g )

&(P) f&p&M (p p p)l'"

&&(y,E,)y'S(P)D„„(p,). (5.15)

Thus y,E, does satisfy the Bethe-Salpeter equation
(5.1) for E= 0.

We have been neglecting closed quark loops
throughout our treatment. At this point, however,
it is interesting to determine whether they would
affect this last conclusion, since we might expect
the zero-mass pseudoscalar particle in the flavor-
singlet sector to acquire a mass when closed loops
are included. A logarithmic behavior of the gluon
propagator would mean that the contribution of the
triangle anomaly to the axial-vector current would
diverge at large distances, and there would be no
meaningful conserved axial- vector charge.

Once we include closed loops, we have coupled
integral equations for the QQ and two-gluon wave
functions. If the equations were covariant, as they
would be without confinement, there would be no
possible two-gluon pseudoscalar wave function,
and we would not have coupled equations for this
particular state. With confinement we have seen
that the equations are not covariant, and we can
have a pseudoscalar two-gluon wave function of the
form i0~„,p, , where g and v are the gluon polar-
ization indices. It is not possible to derive the
Bethe-Salpeter equation for the coupled wave func-
tions at E =0 from that for the propagator, and the
argument for the existence of a massless pseudo-
scalar particle does not go through.

It might be objected that the absence of a mass-
less Qavor-singlet pseudoscalar particle, depend-
ing as it does on the noncov3riance of our approxi-
mation, could be a consequence of the approxima-
tion itself, and that the massless particle would-
reappear if the equations were improved. There
is, however, nothing in the structure of the equa-
tions which would indicate the presence of a mass-
l,ess pseudoscalar particle. If the matrix element
of the axial-vector current is calculated in the ap-
proximation to which we are working (including

'

closed quark loops), triangle diagrams will occur.
One therefore obtains an anomalous contribution

(5.16)

to the axial-vector charge density. In the matrix
element

« lio(x)ln &

the contribution from the first term of (4.2) will
fall off like ~x~

' as x approaches infinity, and the

total charge will not be finite. It could happen that
there was a cancellation between the two terms of
(4.2); to the extent that such a cancellation is pos-
sible we have not disproved that a more correct
version of our equations will yield a massless g.
At present we see no reason for a cancellation and
therefore no reason for a massless g.

VI. CONCLUDING REMARKS

The approximation scheme proposed here ap-
pears fo predict many of the qualitative features of
the hadron spectra, and it may be hoped that actual
calculations will give reasonably accurate results.
In principle one should be able to extend the scheme
to higher approximations though, at present, we
have no idea of the convergence of the series.

There are two immediate questions which we
hope to investigate. The first concerns the ansatz
regarding the multigluon Green's functions. One
should be able to test the consistency of the ansatz
by examining the equations for the four-gluon
Green's function. If it turns out to be consistent,
it is unlikely that it will be inconsistent for the
higher Green's functions.

We should also like to examine the improvement
of the approximation (3.4) for the area of a loop.
As we have already mentioned, we believe that
higher approximations would involve consideration
of the vibrational modes of a string; the static
force already -introduced corresponds to the long-
itudina1. mode. As we have been using the covariant
form for the short-distance part of the gluon prop-
agator, the string would be expected to interact
with gluons. Of course, the string itself is intro-
duced to take certain gluon effects into account,
and one will have to be careful not to double count.

Note added in proof It has be. en pointed out to
the author by M. Peskin that the definition (3.2)
for the area of a nonplanar loop is unreasonable,
since a loop consisting of two widely separated
loops should have an area equal to the sum of the
areas of the individual loops, together with possi-
ble terms which decrease exponentially as the dis-
tance between the loops increases. The definition
(3.2) does not satisfy this requirement for nonplan-
ar loops. It is still true that the expression e
can formally be written as the sum of contributions
from n-point Green's functions; the sum will
probably converge for nearly planar loops. Our
calculation for the two-point function correctly
gives us its contribution to e ™8(for large loops).
and our plausability arguments for identifying the
contribution of the higher Green's functions re-
main as before. A consistency check for the four-
point function is obviously needed.
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