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Generalized two-dimensional QED and functional determinants
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We obtain a closed expression for the functional determinant of the Dirac operator in two-dimensional
QED by confronting results on cluster decomposition with direct fermion integration in the presence of
Atiyah-Singer zero modes. The result is shown to be identical with the one obtained from the f-function
definition and the use of the modified anomaly equation.

I. INTRODUCTION

In the study of the dynamical aspects of four-
dimensional quantum chromodynamics (QCD4),
interest has mainly focused in the past on the pro-
perties (instantons, boundary effects, etc. ) of the
pure gauge theory, whereas the effects due to
quarks have been regarded as a kind of perturba-
tion. Whether this is justified or not is not clear.
In two-dimensional gauge theories, where the
pure gauge part has no dynamical degree of free-
dom, it is essential to include the matter part if
one wants to have a nontrivial theory, and it has
been demonstrated, in fact, that the quark mass
and the vacuum structure play an important role
in the understanding of the subtle differences ex-
isting between color screening and confinement. '

One way of incorporating the effects due to
quarks into a semiclassical treatment would con-
sist of performing the functional integration over
the fermionic degrees of freedom. The resulting
effective action S,«[A] would now involve, in ad-
dition to the original pure gauge field Lagrangian,
the contribution due to the fermion determinant
In(detil), where Sf is the covariant Dirac opera-
tor. In the context of two-dimensional QED and
its Abelian generalizations, ' this procedure allows
one to understand in a more conventional way the
results derived previously' on the basis of the
boson representation of fermions.

The calculation of fermionic determinants has
recently been found useful also in the semiclas-
sical treatment of theories involving no fermions
in the Lagrangian, such as the complex projective,
CP", models. ' ' Fermion determinants in two-di-
mensional QED for nontr ivial winding have also been
previously considered. "However, its functional
representation in compactform has notbeen given for
generic field configurations with arbitrary wind-
ing. It is the object of this paper to fill this gap.
We shall see that for external field configura-
tions with nontrivial winding, In(detid) will in
volve the contribution of an additional nonpoly-

II. THE g-FUNCTION METHOD

The g-function method' has been used as a po-
werful mathematical tool' for the study of the
Atiyah-Singer index of elliptic operators, as well
as for the computation of their determinants. '
In particular, for massless two-dimensional QED
the operator of interest is the Euclidean gauge-
covariant Dirac operator

i4=iN+ eg, (2.1)

where A„ is assumed to tend to a pure gauge at
asymptotically Euclidean points:

A,(x) — g(x) & „g '(x)'. (2.2)

Our conventions will be

p o& tp 1& f'1 P

nomial term in A„, which, however, cancels in
the computation of U(l)o-invariant, but chirality-
breaking correlation functions. - The result agrees
with the formulas previously. obtained from cluster
arguments. '

The plan of the paper is a.. follows: In Sec. II
we discuss the &-function approach to the calcula-
tion of the determinants, with special emphasis
on the simplifications resulting in two dimen-
sions. In Secs. III and IV we then calculate
In(deti8) for generic field configurations using
different methods: The method of Sec. III is
based on explicit functional integration taking into
account the Atiyah-Singer zero modes, and com-
paring them with previously derived results', the
calculation of Sec. IV is entirely based on the mod-
ified anomaly relation for the induced axial-vec-
tor current. The arbitrary integration constant
arising in the latter treatment is determined in
Sec. V by computing In(detid) for particular field
configurations using the g-function method. We
conclude in Sec. VI with some remarks.
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The operator (2.1) appears in the action of the
Euclidean Feynman path integral in the form of
the bilinear gi4g; in order to perform the func-
tional integration over the fermion fields g one
expands g in terms of a complete set or ortho-
normal functions [see Eq. (3.5)]. These are con-
veniently chosen to be eigenfunctions of the asso-
ciated Dirac operator 9,

(2.3a)

in fact, cancels in the correlation functions, which
lose complete memory of this arbitrary parame-
ter. Those features peculiar to two-dimensional
QED will emerge in the course of the discussion
in this section.

Because of the y, invariance of 0, there exists
for every positive (nonvanishing) eigenvalue of P
a corresponding negative one. Hence, we for-
mally define, up to a sign,

R'+x'
~

2R
(2.3b)

det'i4=
g;&0

(2.5)

with the normalization
r
d'x —; —,u',.(x)u, (x) = 5... (2 4)

where R is an arbitrary parameter with dimen-
sions of length, and the X,.'s are dimensionless.

g is self adjoint with respect to the integration
measure implied by (2.4). The completeness and

discreteness of the spectrum follows from the
observation'" that for A, (x) satisfying (2.2) there
exists a one-to-one mapping from the set fu,.] to
the eigenfunctions of the Dirac operator B~„2 de-
fined on the two-dimensional sphere of radius R
obtained by stereographic projection from R,.

At this point, a comment on the physical rele-
vance of the compactified Dirac equation (2.3) is
in order. All classical quantities (representable
by tree diagrams), such as the Euclidean Green's
function (without zero modes),

idG(x, v;&) =-&'(x-y)

have a spectral representation in terms of the
eigenfunctions of the associated Dirac equation:

g u, (x)u', ( y)

The basic reason for this lies in the conformal
covariance of the massless Dirac equation. Such

spectral representations are particularly useful
for computing nonclassical quantities as the fer-
mion determinant and induced current, where
loop graphs are involved. The generalized f-func-
tion formalism based on Eq. (2.3) provides here a
natural and nonperturbative regularization. Un-

like the ca.se of classical (tree-graph) quantities,
the correspondingly regularized nonclassical
quantities will in general depend on the choice of
R in (2.3). For two-dimensional QED, asuperre-
normalizable theory, this dependence on R of the
determinant will only occur via zero modes and,

h(t;x, y) = g e "~"u,(x)u~(y). (2.6)

Recalling (2.6) and (2.4), one evidently has

where the prime indicates that zero eigenvalues
have been omitted in the product. It is this (trun-
cated} formally divergent product which enters
the Feynman path integral after fermion integra-
tion (see Sec. III); its "value" may be calculated
by various methods. The results obtained by dif-
ferent regularization procedures are all expres-
sible in terms of the associated f function defined
by

g„(s,R)= g. . . , (2.6)
X&&0 ~ i

-where the subscript A refers to the dependence of
. the eigenvalues on the gauge field A, . The label

R in the argument of & indicates that y will, in

general, depend on the choice radius of the stereo-
graphic sphere. '

g(S, R) is a meromorphic function of s, with s =0
a regular point. In terms of it, the normalized
determinant is given by

=exp(- [l„'(O,R) —go(O, R}]

+ [g„(0,R) —g, (0,R)]InM), (2.7)

where

R'+ x'
~

2R

and M' is an arbitrary dimensionless parameter
reflecting the freedom one has in the choice of
regularization procedure for computing the pro-
duct (2.5). For a Pauli-Villars regularization,
lnM is just a particular linear combination of the
Pauli-pillars regulators lnM, " For our problem
in question, f„(O,R} is convenfently calculated by
expressing l„(O,R) in terms of the Mellin trans-
form of the heat kernel'

oo P

g„(O,R)=lim, J
dtt' '

J d'x» tr h(t;x, x) —guI"(x)ut'+(x)R+x (2.9)
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where AID]] denotes the eigenfunctions (2.3b) cor
responding to (X,)=0. The right-hand side may
be evaluated by making use of the well-known
asymptotic property of the heat-equation kernel,
which reads, for the diagonal part,

2R 1, (h(t, x, x))~;R +x t 0~4@ tj

&& (a, + a, t+ a,t '+ ~ ~ ~ ) .
(2.io)

All the g,.'s are computable and for the first few
coefficients explicit formulas have been given in
the literature. " Substituting (2.10) into (2.9) we
obtain"

g„(o,R) g,(o,R)
1=

]4 ] y fd'xtx]xx ( [A]—xx ( ]0]]—X,

(2.11)

where N=number of zero modes.
Note that the result (2.11) is not model specific;

it holds for any geometric elliptic differential
operator on a compact manifold without boundary
which can be written in the Dirac form, the di-
mensions of space being arbitrary. " The form
of a«&, is, however, complicated, in general.
The dependence on the underlying metric drops
out, however, in the trace of a«&, if the corre-
sponding vacuum value (A„=0) is subtracted. In
two dimensions this simplification occurs even for
the coefficient itself. One has

general property, which is however not shared by
g„'(0,R) —$0(o, R). Hence, the normalized deter-
minant (2.V) will depend in general on the choice
of metric, that is R. It is, in fact, easy to show
by methods similar to those leading to (2.11) that
the normalized determinant (2.V) will be indepen-
dent of R if, and only if, the trace of the energy-
momentum tensor B„„vanishes, that is, in the
absence of a trace anomaly. Such an anomaly will
always occur if zero modes are present. This
follows from the fact that, independent of the di-
mension D of space,

d x6„„x= g„O,R

1=-N+, ,I]&, J
& xtra~/2(x)

i4~)

where N is again the number of zero modes. In
four dimensions 9»WO even in the absence of
zero modes. The situation is simpler in two di-

mensions, where no trace anomaly exists if zero
modes are absent. In two dimensions a depen-
dence on R will thus only enter through the zero
modes. However, as will become evident from
our discussion in Sec. III, this remaining depen-
dence on R also cancels in the correlation func-
tions for the problem in question. Hence, in two
dimensions we may choose any value of R as far
as the correlation functions are concerned,
whereas in four dimensions the limit R - will
have to be taken after proper renormalization.

We proceed now to derive a functional-differen-
tial equation for the logarithm of the determi-
nant. It will be convenient to introduce the nota-
tion

a, [A] a~[0]—", eysq~ F~ (2.i2)

Hence, the first term in (2.11) vanishes. This
corresponds to the vanishing of the trace anomaly
in D = 2. Moreover, in two dimensions one has a
vanishing theorem: For winding number n&&0,

there are no normalizable negative (positive)
chirality "zero-ener gy" eigenfunctions. The
proof is by explicit computation, ' but there exists
(perhaps) a more elegant structural proof. As
shown by Atiyah, Hitchin, and Singer, "such a
theorem definitely fails in four dimensions, where
it is only true for multi-instanton configurations
which minimize the pure gauge part of the inter-
action. We have thus

dett j (2.14)

6X;

( )
=eu,.(x)y,u,.(x). (2.15)

Noting from (2.13) that g„(O,R) is independent of
A„we have

5I' . '
A. ; 6A.;

5A.(x), , + (y,.2)"' 5A„(x)

(2.15)

The variation of the Dirac eigenvalue can be easily
calculated from the eigenvalue equation:

g„(O,R) —g.(o, R}= -n, (2.13) Substitution of (2.16} into (2.15) yields

where n is the winding number associated with the
field configuration A~ in question. $„(O,R) is thus
independent of the particular representative A„
within a given Chem class. This is a property
specific of two dimensions. The difference (2.13)
is seen to be independent of R. This is in fact a

where

j~(x) = lim g, , '„,u~(x)y~u, (x) .
s~o (y 2 8+]. I

(2.17)

(2.IS)
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Making use of the spectral representation of the
external-f'ieM Green's function G(x, y;A), we

recognize (2.18) as the generalization of the fa-
miliar def inition

j,(x) =try, G(x, y;A)

of the induced current to the case where zero
modes are present: The limit s -0 in the g-regu-
larized version (2.18) replaces the "old fashioned, "
gauge-invariant, "separated-point" technique for
computing try, G(x, x;A) T.he g-function defini-
tion (2.7) of the determinant thus satisfies the for-
mal properties of the Schwinger functional calculus,
the induced current being given by the functional
derivative of in(deti4) with respect to A„.

Now, in two dimensions one has the simple

identity iy„y, = q „„y„,so that we have from (2.18)

~,„j„(x)= lim g, „'„,u',.(x)iy„y,u, (x) (2.18)
s~o ly. 2%s+ 1

or

Bu =&pv~v ~ (2.21)

We may again rewrite this expression in terms of
the heat-equation kernel (2.10):

a„j„(x)=»m 2, , Q,—,u';(x)y, u, (x),
2R

(2.20}
where

CO P

B„j (x)=lim. . . , J
dtt' 'try, h(t;x, x) —guIO](x)uIO] (x)

~i

(2.22)

(

Recalling (2.12) and noting that try'„[0] =0 we thus obtain from (2.22) and (2.17) the desired functional-
differential equation for I":

or' 2

(2.23)

This equation will provide the basis in Sec. III for calculating I' for generic external field configurations.
As already noted, the R dependence coming from the zero modes actually cancels in the correlation func-
tions as we shall see in Sec. III.

III. DETERMINANT FROM FUNCTIONAL INTEGRATION AND CLUSTER ARGUMENTS

For zero-winding field configuration A'„" the generic form of the fermion determinant in the Schwinger
model has been known since Schwinger's pioneering work. " It is conveniently written in the form

82
I']A]= —

J
d' fd' 'xex„z,(x)D(x x')e„, iz (x ), „,— '

where 1 is defined as in (2.14);

E„„=BA„-8 A

and

(3.1)

(3 2)

D(i}= ——ln]r'z', OD(z) = -V'(~) .j
4m

In this section we determine its form for generic field configurations of
a formpl representation for the 8-vacuum fermion correlation function in
comparing the expression with the exact result as obtained in Ref. 5 from
ties of the theory. Our starting point is the functional integral

&B~q,(,) ~ ~ ]t. ( „)T]„(y,) T], (y ) ~B&„

=Z 'exp iB eq„„F „(g) dT]]d]t]y (x,) ~ ~ ~ q (x„)7]]q (y, ) ~ ~ ~

(3.3)

arbitrary winding z by obtaining
terms of the determinant and
the well-known cluster proper-

iT'z. (Z ) eey f ii ei](e]idi](z], '

(3.4)
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where

Z = det(id)

and where the functional integral on the right- hand side def ine s the corre lation function on the left. In
order to perform the functional integration in (3.4), we expand the g (x)'s in terms of a complete set of
orthonormal functions u, (x):

(x) = Q b,. u,.„(x) (3.5)

where the expan s ion coefficients b,. are Gauss mann var iab 1es satis fy ing the usua l rule s

db db~ b' = b2 = 0 (3.6)

bb

The u,.'s are conveniently chosen to be solutions of the eigenvalue problem (2.3) and (2.4).
Replacing d(t) d(t) by IIdb,.db,. and recalling that according to our discussion in Sec. II there exist, in two

dimensions, precisely n normalizable "zero-energy" eigenfunctions u,'" [with chirality = sgn(n}] in a wind-
ing field A P, we obtain after integration (we set m = n for convenience)

&8
~

(t).,(,) ~ y.„( „)T()„(y, ) ~ ~ ~ q,„(y„)
~

e)

r~ ALn7

i

(3.7)

wher e the produc t only runs over the nonvanis hin g e igenvalue s . In orde r to compare this result with the
result (2.20) obtained in Ref. 5, we expand the orthonormal "zero-energy" eigenfunctions u',."(x) in terms
of the nonorthonormal set of "zero-energy" eigenfunctions,

(0) p,
ggI"(x) = — [p, (x, + ix, )]'

e(() ()() A )
(3.3a)

wher e"

tf)(x;A} = e d 'z D(x —z)&„8~A„(z) (3.ab)

and i(, is conveniently chosen to be the sa.me arbitrary parameter as appearing in the definition (3.3) of
D(z). A s already advertised, all "zero-energy" eigenfunctions have the same chirality (in two dimensions).
Hence, among all correlation functions (3.4) only that one is nonvanishing, for which c(,. = P,. = 1, i = 1, . . . , n.
This is of course entirely in agr eement with what we know from the operator solution of Lowenstein and
Swieca. " We shall thus omit from here on the indices ot,. and P, , it being understood that ot,. = P,. = 1.

Expanding now the uIO)'s in terms of the eigenfunctions (3.9)

uI"(x) = Q a, ,yI"(x) (3.9)

we may cast (3.7) into the form

&~
~
4,(x,) y, (x„)y, ( y, ) ~ ~ ~ T)),( y„)

~

(I) )

A [n &

aet(a a)e'" (P e,,.. . , t),''(x ) (',"(x
)) (P e„.. .,„il'l,'(X)'' '(t', '( )J. X(8 10)
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The totally antisymmetric product of eigenfunc-
tions in (3.10) reproduces the translationally in-
variant polynomial in Eq. (2.20) of Ref. 5. (See
also Ref. 6.) It is useful to introduce the "nor-
malization matrix" Rdefined by the overlap inte-
grals p „(x)=- 0,'"'(x)r, (',"(x) (4.1)

particular set of eigenfunctions (3.8) and expand-
ing the u',"(x}'s in terms of these, as done in Eq.
(3.9).

Defining the matrix p by

(N 1),d2x y(0)(x)y(0i(((x)'2R (3.11)
and using (3.12), we may cast the anomaly relation
(2.23) into the form

in terms of which

a~a=A. (3.12}

Hence, comparing with the "clustering" result of
Ref. 5, we conclude that

IV([A] e-r[A3e-tr(lnN(A, l )

gZ; [0]
(3.13)

IV. DETERMINANT FROM ANOMAI, Y RELATION

In this section we obtain a generic expression
for det(iP) using a method" which does not re-
quire an a priori knowledge of fermion correla-
tion functions in an external field, but merely
relies on the modified anomaly relation (2.23). We
now choose R =1.

In order to integrate Eq. (2.23), we need to de-
termine the zero-mode contribution as a function
of A; this in turn would require the construction
of the orthonormal set of "zero-energy" eigen-
functions uI0'(x). We shall get around the ortho-
normalization problem by working instead on the

This generalizes the result (3.8) of Ref. 5 to arbi-
trary winding.

As was already remarked, only the first factor
in Eq. (3.13) contributes to zero-winding fields.
The second factor, characteristic for fields A, of
nonzero winding, is highly nonlinear in A, . It is
however, to be noted that only the combination
det(iI((} && exp(trlnN) actually occurs, that is, the
zero-mode part in det'(i1If) drops out in the corre-
lation function (3.10). According to our discussion
in Sec. II, this means that the correlation function
(3.10) is in fact independent of the size of the
stereographic sphere. We shall thus set R = 1' from
here on.

The calculation above is unsatisfactory in the
sense that it relies on the knowledge of the tunnel-
ing correlations functions, which in general in-
volves the solution of an even harder problem than
the calculation of the determinant itself. In the
following section we shall present a more self-
contained method which essentially relies only on
the knowledge of the axial-vector current anomaly
relation in the presence of zero modes which is
also known for QCD, and QCD4.

+, tr(N[A]p(x)),
4e

(4.2)

where the "normalization matrm" N has been de-
fined in Eq. (3.11).

Integration of (4.2) yields

5A ( )
= —

2 ) d'y B„D(x y)g„„F-„„(y)

-2e dy zBD(x —y)1+$
x tr(N[A]p(y))+ B F(x) . (4.3)

I"[A]=I'[A]+ tr lnN[A]+ c, (4 5)

where c is an arbitrary integration constant whose
value can depend at most on the Chem class to
which A, belongs, but not on the particular con-
figuration within that class.

Comparison with the previously obtained result
(3.13) shows that c=0. This is, however, not a
very satisfying way of determining this constant
since the method presented here should be self-

The first term will give rise to the "zero-winding"
form of the determinant, Eq. (3.1), after integra-
tion. Note, however, that I'[A] is finite also for
nonzero-winding configurations; the second term
gives a new contribution to configurations of non-
zego winding; the third term is the gradient of an
arbitrary function F(x). Recalling that B,j„(x)=0
and using (2.17), we have

OF(x) = 0.
Only the trivial (constant) solution is consistent
with a normalizable current; hence, the third
term in (4.3') is actually absent.

Now, a simple computation starting from the
definition (3.11), and using (3.8), gives

tr lnN[A]= -2e d'y, B,D(x —y)
2 2

6A„x 1+/
x tr(N[A] p(x)). (4.4)

This allows us to integrate Eq. (4.3) with the re-
sult



~ENE~ALIZED T%0-DIMENSIONAL @ED AND FUNCTIONAL. . .

contained. The constant e may, however, also be
determined if one succeeds in calculating the de-
terminant for some conveniently chosen repre-
sentative within each Chem class. This will be
done in the following section.

V. DETERMINATION OF THE ARBITRARY CONSTANT c

g [n 3(z)—
e "1+x'' (5.1)

The corresponding zero-energy eigenfunctions
(3.9) are easily calculated to be

)1/2
el"(~)=(—"~& Eu(*, +~~.)I''

Q
& (- 2)n)2, l=1, . . . , n.1+X

Substituting this result into (4.9) we obtain for
the normalization matrix N [Ecl. (3.12)]

In the following we shall fix the arbitrary con-
stant appearing in (4.5) by evaluating (4.5) for a
particular representative in each Chem class
and then comparing this result with the result one
obtains from the definition of the determinant in
terms of the f function, Eq. (2.6). The particular
representatives we shall consider are

I

Eq. (3.7) in the external vortex field (5.1) reads

1+zz

2a, +n z
1+hz j

28 g
—tl — Qg

0

(5.4)

It is convenient to introduce a new spinor y by

u ~ (1+zz) "" y,

,u, . (1+zz)"~' y, .
y, then satisfies the differential equation

[I-' —(1 —n)(l + zz) z a;] q, = ).'y, ,

where

(1+zz)'a.-a, .

(5 5)

(5.6)

I =I I +L32 L

where the operators

L,= -i(z'a, + a;),
I, =-i(z'a-, + a,),
L3= zB,—Z~;

I ' can be identified with the square of the angular
momentum operator I '

which yields

I (n+ 1)
r(I)r"(n- 1+1) '

satisfy the usual angular momentum commutation
relations. Thus, for m=1 we immediately have

X' = I(l + 1), d, = 21+ j. , (5.7)
tr(ln N) = — (n —2l) ln /+ —,

' n2 Inp'.
-1

(5.2)

On the other hand, substitution of (5.1) into (3.1)
yields

where l =0, 1, .. . and d, denotes the degeneracy of
the square of the eigenvalues. For the general
case, we have two sets of solutions corresponding
to the ansatz

I'=-&n —2n» p'.1 2 1 2

Hence, combining everything in (4.5) we have for
the special field configuration (5.1)

and

e, =z f(y)

e, =z g(y),

(5.6a)

(5.8b)
I"=—2n' — n —2l lnl+e. (5 3)

Z Xy+ZXg p Z Xy ~ZX2 p

%'e. now proceed to determine the so-far unknown
constant e by calculating I' from its definition in
terms of the f function, Eqs. (2.7) and (2.14).

The calculation of I" thus involves two steps: (a)
finding the eigenvalue spectrum of the operator
iP in the external field (5:1)and (b) calculation of
~'(0, 1).

(a) Eigenvalue spectrum. Introducing the vari-
ables

where we have found it convenient to introduce the
variable y = 1+zz.

Substitution of the ansatz (5.8) into (5.6) yields
the differential equations

y'(1 —y) f"—[(n —1)y(l —y) + (m + 1)y'] f'
+ [(n —1)my —g']f = 0,

(5.9)
y'(1 —y) g"- [(n-1)y(l —y)+(m+1) y']g'

-Kg=0.
We expand f and g in a power series,
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f(y}=~ gf.~"

a(x}=x'g r v"
(5.10)

A ni2"
(2l+n) lnl(l+n) —ln l+ —

~l=1 2j

n 1
(5.14)

Substituting this ansatz into the above equations and
requiring the series to terminate for some integer
k =N yields, respectively,

o =-(m+N) with X'=(N+m)(N+m+n), m=(0, ~)

or

o, = -(N+ 1 —n) with A.
' = (N+ 1)(N+ I —n), m = 0,

and

n=l

P = —(N+ m + 1 —n) with X' = (N+ m + 1)(N+ m + 1 —n),

and A some (large) integer.
The sum (5.14) is conveniently evaluated by

making use of the asymptotic formula

1 (C4+A) s"
(v+ o.)' R ' 1 —s

+ (o!+A)- (&+.A)- -s+ p(A- -
)12

We obtain after some calculation
2

It '"~ = ——+ 2 [ps(-1, 1)+ fs (-1,1+n)]

or
mon-1 -n[&s(0, 1+n) —&s(0, 1)]—4&„'

~

-1,1+ —
~

P= —N with X' =N(N+n), m &N,

where the allowed values of m are determined by
the condition that the solution (5.5) be normaliza-
ble in the sense of (2.4). However, not all of the
corresponding solutions are found to be indepen-
dent. Selecting only the independent ones, we may
summarize the results by the simple formula

n' n2 ~ ( nt——y ——
& I s, 1+ —

I
- g (s, 1)

2 2 z& 2) z

Introducing this result in (5.13) and combining
terms, we are left with

2

g'(0) = ——+ 2[&R(-1,1+n) —fs( I, 1)-]

-n[&&(0, 1+n) —&$0, 1)]+4/s4(-1& 1),
X, =l(l+n), d, =2l+n, (5.11)

which is readily evaluated to be

where d, refers again to the degeneracy of A.'. The
result (5.11) also includes the case of zero exter-
nal field n=0. For n=1 we recover the previous
result (5.'I).

(b} Calculation of &'(0). For the eigenvalue spec-
trum (5.11) the P function (2.6) is conveniently
written in the form. [we set f„(s,l) —= g(s)]

2

g '(0) = ——— (n —2l) In l + 4gs(- 1, 1) .
/=1

Subtracting the n = 0 contribution and recalling
(2.13) we obtain for the normalized determinant

det(iQ)
det(ill)

400 "2'+ 1 n'
g(s)=2 g l+ — i, . (5.12)

2 ~ 4l+n 2'

Performing a binomial expansion and differentiat-
ing with respect to s we obtain, for s =0,

4'(0)=44„'(-l, l+ —
)

2+" ~„2s+1,1+" — +a&"', (5.13)
2 2s

where gs denotes the usual (modified} Riemann g
function, and

P (" = lime(")

with

(n —2l) ln l+ n InM .
2 -1

(5.i5)

Comparison with (5.3) shows that the so-far unde-
termined constant c is equal to nlnM. In particu-
lar, the result (3.13) obtained by comparison with
the known form of the Schwinger-model correlation
functions' corresponds to the choice M =1.

VI. CONCLUSION

Our explicit construction of the Schwinger-model
determinant in a generic field of arbitrary winding
has shown that the presence of Atiyah-Singer zero
modes leads to a nonlocal and nonpolynomial modi-
fication of the well-known zero-winding result
(3.1). Nevertheless, this added complication does
not manifest itself in this dramatic way in the
fermion correlation functions (3.4) which, after
integrating over the fermionic degrees of free-
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dom, are still described in terms 'of an effective
action involving only up to quadratic terms in A„,
independent of the winding. This reflects, of
course, the exact solubility of the model.

It is clear from our discussion in Sec. III how
the result (3.11) generalizes to an Abelian gauge
theory with flavor. For an external field configu-
ration of winding pg, there will now exist n&& N
zero modes, where N is the dimension of the fla-
vor group SU(Ã), so that the first nonvanishing
fermion correlation function will be of order 2n¹
This is indeed borne out by explicit operator solu-
tions which have recently been constructed for
this case.'

One may similarly rederive the results obtained
previously from boson representation for the torus
of SU(N) color 2 This does not, however, include
the question of screening versus confinement'
where the ongoing aspects of boson representation
are involved which have not been understood so
far within the framework of functional integration.

An interesting model results from combining
QED, with the CP" model. " The fact that the non-
polynomial part in the fermion determinant does
not manifest itself in the correlation functions al-
lows one to study "induced instantons" in this
model, which, unlike the case of QED„are expec-
ted to consist now of a whole parametric family
of configurations minimizing the effective action
for every Chem class. In this sense, this hybrid
model provides a more tractable working ground
resembling the situation one would expect to en-
counter in QCD4 if configurations were conside'red
which minimize the effective (correlation function

dependent) action obtained after fermion integra-
tion.

Finally, let us remark that the techniques used
in Sec. IV for calculating the QED, determinant
may also be applied to QCD, . This is, however,
a much less trivial task despite the fact that the
topological aspects are trivial here; the corre-
sponding determinant is no longer a polynomial
in A, .

After completing this work we received a report
by A. Patrascioiu (Ref. 20) where the problem of
nonzero-winding fermion determinant for QED,
was studied for a special field configuration. The
open questions raised in this paper are answered
in our work. If we were to discuss our problem
on the sphere as a limit of a boundary-value prob-
lem (a sphere with a boundary around the north
pole) as Patrascioiu does, great care would have
to be taken in choosing the right type of boundary
condition which does not lead to "topological ob-
structions. " The correct boundary condition for
the Dirac equation is necessarily nonlocal and of
the "spectral" kind. "
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