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The kinematics-free angular momentum trajectory, called the 7y trajectory, is illustrated numerically in
nonrelativistic potential scattering using Yukawa and exponential potentials of various strengths. The y
trajectory, in contrast to the a (Regge) trajectory, is free of elastic kinematics and so is real for all energies
above threshold and real for certain energies below threshold. Resonances are caused when the 7y trajectory
passes through the resonance angular momentum at the resonance energy, and bound states are caused when
the 7y trajectory passes near the bound-state angular momentum at the bound-state energy. Numerical
illustrations of the following. 7y trajectory characteristics are given: the reality of 7, bound-state and
resonance production, threshold and high-energy behavior, and collisions of trajectories below threshold. In
addition, general properties of vy trajectories in the context of potential scattering are discussed.

I. INTRODUCTION

In a previous investigation!' an angular momen-
tum trajectory, called the y trajectory, was in-
troduced and used to analyze selected experi-
mental pion-nucleon, partial-wave, elastic scat-
tering amplitudes. As is well known, the Regge
(or a) trajectory is defined as the zero of the in-
verse S matrix and is real below threshold (bound-
state region) and complex above threshold (re-
sonance region). Also well known is that the o
trajectory causes bound states or resonances by
passing through or near the state angular momen-
tum at the state energy, respectively. In con-
trast, the y trajectory is defined as the zero of a
function Y which is that part of the partial-wave
amplitude denominator which does not contain
the elastic kinematics. Because of its definition
the y trajectory is real for all energies above
threshold and real for certain energies below
threshold, and is an analytic function of the energy
at threshold. In addition, the y trajectory causes
bound states or resonances by passing near or
through the state angular momentum at the state
energy, respectively. This bound-state/resonance
behavior of the y trajectory is the complement
of that of the « trajectory recalled above. In
general, the v and « trajectories appear to be
complements of one another.!

The purpose of the present paper is to provide
specific numerical illustrations of the y trajectory
in nonrelativistic potential scattering using Yukawa
potentials of five different strengths and an ex-
ponential potential. The illustrations provide con-
crete examples of all of the basic y-trajectory
properties stated in TH, and in addition furnish
an opportunity to compare y and « trajectories
for the same potentials, since numerical examples
of the « trajectories have been calculated pre-

viously for the Yukawa potentials.? In addition
to the numerical examples, some discussion of the
general properties of y trajectories in the context
of potential scattering is presented; in particular,
two proofs that y is real above threshold are
given. )

In Sec. II the numerical method used to calcu-
late the y trajectories is given, and the relation
of the y trajectories to the properties of the scat-
tering phase shift § is discussed. In addition, the
energy regions where vy is real are examined. In
Sec. III are presented y trajectories calculated
for attractive Yukawa potentials of various strengths
and y trajectories for an exponential potential.
The numerical y trajectories are used as a basis
for the discussion of the general properties of y
trajectories. In IV a summary of y-trajectory
properties and conclusions are given.

II. COMPUTATIONAL METHOD; PROPERTIES OF vy
A. Definition of v ; potentials

As discussed in TH, the partial-wave elastic
scattering amplitude of two spinless particles,

A(E, 1) ={exp[2i5(E,1)] - 1}/2ik,
may be rewritten as
A(E,1)=E' cosnl/[Y(E,1) + (-E)**/?] |

where Y(E,!) is a meromorphic function of E and

! which contains no elastic cut, i.e., no right-hand
cut in the energy plane from threshold (E=0) to
the first inelastic threshold (E=E, ). Here E,
the energy, is related to k by E=%?, I is the angu-
lar momentum index, and 0 is the scattering
phase shift; this notation differs slightly from
that of TH. The relationship between Y(E,![) and
the scattering phase shift 6(E, ), which is useful
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for our purpose, is

Y(E,1) = E***/?{[cosnl][cotd (E, )]+ sinnl}. (1)

The Regge trajectory a(E) is defined as a zero
of the denominator of the partial-wave amplitude:

Y(E, a(E) + (-E)*®*1/2=0, (2)

while the y(E) trajectory is defined as a zero of
Y{(E,1):
Y(E,7(E)=0. (3)

From Eqgs. (1) and (3) one obtains a direct re-
lationship between the y trajectory and the phase
shift 6:

Y(E) = (n+3)=0(E, v(E) /71 (4)

where # is an integer. Equation (4) can be used
to obtain y(E) provided 6 (E, ) is known.

Before discussing our numerical method for the
computation of y(E), we observe that there is a
question as to whether the y trajectory can pass
through half-integer® points of angular momentum.
For [ =half-integer, Eq. (1) appears to yield ¥

() g=8
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FIG. 1. (a) and (b) The phase shift 6 (E,l) as a func-
tion of angular momentum 7 for fixed, real energy E
>0 for the Yukawa potentials V(7)=—ge™" /» with g
=8, 10. The energies for the four 6 curves shown are,
starting from the top curve atl=0: E=0.01, 0.04, 0.25,
and 25, respectively. The solid dots on the 6 curves
are the solutions to Eq. (4), i.e., they mark the inter-
section of & (E,l) and the lines I — (n +§). These dots
give the allowed values of the trajectories y (E) for the
given E values. (a) For the case g=8, These § curves
show two I =0 bound states and one =1 resonance. (b)
For the case g=10. These 6 curves show two =0 and
one =1 bound states (see text).

= (sinml)E**'/2 which, in general, is not zero and
so is inconsistent with the definition (3). How-
ever, if at the same moment that !/ is a half-in-
teger, the phase shift is an integral multiple of
7, then one has in (1) a zero times an infinite
quantity and the value of Y will depend upon the
exact way [ and & “pass through” the half-integer
angular momentum value. This is precisely what
happens with the y trajectory as can be seen in
(4) where y is a half-integer when /7 is an in-
teger. Thus, the y trajectory can pass through
half-integer angular momentum values. (For
further discussion of related limits see Ref. 4.)

To illustrate the y trajectory in the context of
nonrelativistic potential scattering, we use the
attractive Yukawa potential V(») = - ge™" /» with
strengths g=8, 10, and 17, plus, for special pur-
poses, g=8.6 and 9.6. Besides the usual reasons
for considering the Yukawa potential, the major
advantage for our purposes is that a direct com-
parison of the y trajectories for these potentials
can be made with « trajectories for the same po-
tentials as previously calculated.? In addition to
the computations with Yukawa potentials, selected
v trajectories are calculated for the very strong,
long-range exponential potential V() = — 43¢~¢/2-9
in order to show specific properties of the y tra-
jectory which do not arise so easily numerically
with the Yukawa potential.

B. Computation of y: £>0

Our method for the numerical calculation of y
trajectories uses Eq. (4) which directly connects
vy with the scattering phase shift 8. (The com-
putation of the phase shift is discussed in Appen-
dix A.) In the above-threshold (E >0) region the
phase shift is real for E and [l real and from (4),
as will be shown, vy is real. The properties of y
follow so closely from those of 6 that we first
mention briefly the relevant properties of 6 that
determine the character of v, in particular those
features which indicate bound states and reson-
ances. In Fig. 1 is shown the phase shift (divided
by ) as a function of ! for the fixed values of the
energy E=0.01, 0.04, 0.25, and 25 for Yukawa
potentials with strengths 8 and 10. The shoulders
and plateaus are a manifestation of Levinson’s
theorem; as the energy goes to zero from above,
the shoulders become very steep and the plateaus
have a height which is an integral number, the
number giving the number of bound states of that
angular momentum. Thus, e.g., from Fig. 1 one
sees that the strength 8 Yukawa potential has two
I =0 bound states, while the strength 10 potential
has two I =0 bound states and one [ =1 bound state.
In addition, inspection of Fig. 1(a) shows that the
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strength-8 potential has an /=1 resonance, since
the phase shift rises from zero through 7/2 as the
energy increases from zero to 0.25 (e.g.). This
resonance becomes the =1 bound state of Fig.
1(b) when the potential strength is increased from
8 to 10. We will see in Sec. III how these bound
states and resonances manifest themselves in the
y trajectory. Another property of 8(E, 1) that can
be seen in Fig. 1, and which directly affects y(E),
is that & vanishes as either E—~+« or [ -+, as

is expected, of course, on physical grounds.

To find y(E) for E>0 using graphs such as Fig.
1, we plot both sides of Eq. (4) as a function of I
for fixed E, and look for the points of intersec-
tion. That is, I - (r+3) and 6(E,1)/7 are plotted
versus I, and the points of intersection give the
allowed values of I =y(E). This is shown in Fig. 1
where the dark dots on the 6(E,1)/n curves mark
the intersections of 6(E,1)/m and I - (n+3). [The
sloping lines I — (n +%) are not shown.] Thus, the
dots of Fig. 1 give the y(E) values for the ener-
gies shown. For example, in Fig. 1(a) we see that
one y trajectory has on it the points: y=0.90 for
E=0.01, y=0.93 for £=0.04, y=1.02 for E=0.25,
and y=0.89 for E=25. In this manner the tra-
jectories y(E) can be traced out for E>0 once
6(E,1) is calculated. This graphic method of find-
ing v(E) has the advantage of visually connecting
the properties of y(E) with those of §(E,1); in
particular, it is possible to see clearly how re-
sonances are connected with y.

C. Reality of vy for E>C

Inspection of Fig. 1 shows that Yukawa vy tra-
jectories for E>0 found by the graphical method
outlined in the previous section are real. The
questions thus arises: Are all y trajectories real
for E>0? The answer to this question is yes, as
may be seen by examination of Eq. (4) keeping
in mind graphs like Fig. 1. In the set of straight
lines, I — (n+%), each line has a positive slope
of unity. In general, the curve &(E,I)/7 is a de-
creasing function of / and so will cross each line
I - (n+%) only once, thus resulting in a set of
unique, “noncolliding” y trajectories. However,
there are two situations which must be examined
more carefully. First, 86(E,1)/8l>-x for E>0
so that two different I — (2 + %) lines cannot inter-
sect 6(E,1)/n at the same I value. Thus, O(E,I)/n
cannot fall rapidly enough to cause two different
y trajectories to “collide.” (The only exception
to this statement is in the limit £ -0 through
positive E values.) A second, possible source of
trouble arises if the slope of 8(E,1)/n exceeds
unity. In this case 6(E,1)/7 could cross a given
1 - (n+3) line on the way up and then later, at a
higher I, cross the same [ — (z +3%) line on the way

down. This would result in two y trajectories
from the same ! — (+3) line. As the energy is
increased, and 6(E,l)/r falls, these two trajec-
tories would “collide” and become complex. This
possibility of collision is excluded, however, be-
cause of the general potential-scattering result
bounding the rate of increase of the phase shift®:
86/al<m/2. Thus, 6(E,l)/n cannot rise so rapidly
that two different y trajectories can collide. In
summary, for a given potential, there is a set of
real, noncolliding, y trajectories for energies
above threshold. This proof is not valid for en-
ergies below threshold, since there the bounds on
6(E,1) do not exist.

Another proof of the reality of y(E) for E>0
based on the radial Schrodinger equation is given
in Appendix B.

D. Computation of y: E<0

In the below-threshold (E<0), bound-state,
region the scattering phase shift is complex, and
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S/

S/m

FIG. 2. (a) and (b) The real (R) and imaginary (I)
parts of the phase shift 6 (E,7) as a function of angular
momentum [ for fixed, real energy E<0 for the Yukawa
potential V(7)=—ge~" /¥ with g=8. The sharp, down-
ward spikes in the imaginary part of § are bound states
(see text). The solid dots on the imaginary part of &
mark the solutions of Eqs. (4) and (5). These dots give
the allowed values of the trajectories ¥ (E) for the given
E values. The reason that there are three y solutions
in (a) and only one vy solution in (b) is because the two
lower vy solutions in (a) have collided and become com-
plex as the energy is decreased from E=-0.01 (a) to
E=-0.09 (b) (see text).



while we still use Eq. (4) to compute y(E), our
method differs slightly from the E>0, graphic
method. In Fig. 2 is shown the phase shift 6(E, 1)
(divided by 7) as a function of [ for E=-0.01 and
—0.09 for the attractive Yukawa potential of
strength g=8. The signature of a bound state is
that the real part of 6 falls abruptly through 7/2,
while the imaginary part goes to —o. Several
bound states are seen in the figure; these bound
states are unphysical in the sense that a physical
bound state must have [=0,1,2,.... Properties
of the bound states evident from Fig. 2 include (1)
the bound states are sharper and narrower in !/
for energies nearer threshold, i.e., e.g., the E
= ~0.01 bound states are sharper in ! than the E
=~0.09 bound states; (2) the bound states move in
1 as the energy is changed; (3) there is a corres-
pondence between the shoulders in 0 for £E>0 and
the bound states for E<O0 as can be seen by com-
paring Fig. 1(a) for E=0.01 and Fig. 2(a) for E
=-0.01. For example, the shoulder at7=0.90
for E=0.01 “becomes” the “bound state” at!
=0.88 for E=-0.01.

Our method of calculating y(E) for E<O0 is to use
again Eq. (4). We expect, since y(E) is a zero
of the real analytic function Y, that y(E) is real
for E<O just as it is for E>0. (Exceptions to this
statement of reality are discussed below.) As-
suming for the moment that y(E) is real, we have
from (4), since 6 is now complex

Y(E) - (n+%) = 6R(E5 Y(E))/ﬂ' ’
0=61(E) Y(E))’

where R (I) means real (imaginary) part, and
where y(E) is understood to be real. Both of Egs.
(5) must be satisfied if y(E) is to be a zero of
Y(E,1) and real for E<0. Examples of y(E) which
satisfy Eqs. (5) are indicated in Fig. 2 by dark dots
on the 6,(E,1)/m curves. For example, there is a
solution to (5) in Fig. 2(a): y=0.88 for £=-0.01.
In Fig. 2(b) this solution has moved to y=0.79 for
E=-0.09. [These points are part of the below-
threshold continuation of the y trajectory repre-
sented by the four dots near [=0.9 to 1.0 in Fig.
1(a) for E>0.] Thus, for E<O0, our method of
finding the y(E) is to make a series of figures
like Figs. 2(a) and 2(b), and to locate the solutions
to (5) on these figures. The y(E) found in this
way can then be connected to those y(E) found for
E>0 by the method of Sec. IIB to give the com-
plete y trajectories.

The exception to the use of Egs. (5) for E<0
is when y trajectories collide and become com-
plex. In this case (4) still holds and can be used
to find ¥(E), but now both y and 8 are complex.
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Examples of such complex y are shown and dis-
cussed in Sec. III.

-0 5 10

FIG. 3. (a), (b), and (c) v trajectories for the Yukawa
potentials V(7)=—ge™ " /r with g=8, 10, and 17. The
single arrows mark the points where the vy (E) cause
resonances. The double arrows mark the locations of
collisions of two ¥ trajectories; at these points the
colliding trajectories become complex. (a) For g=8.
Note the I =1 resonance at E=0.19 (single arrow) caused
by the second vy trajectory (see text). The two lowest
trajectories (z and v) collide at y=0.37, E=~0.06
(double arrow) and bounce off into the complex I plane
(see text and Figs. 4 and 5). (b) For g=10. The second
v trajectory no longer causes a resonance as in the
g=8 case, but instead now causes a bound state (see
text). The lowest two trajectories collide (double ar-
row). (c) For g=17. Note thel=2, E=1.0 andl=1,
E=0.07 resonances caused by the first and a third y
trajectories, respectively (single arrows). The lowest
two trajectories collide (double arrow).
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III. ¥ TRAJECTORIES
A. Yukawa potential: g=8

In Fig. 3(a) y trajectories are shown for the
attractive Yukawa potential of strength 8. Details
of these y(E) around threshold are shown sepa-
rately in Fig. 4. In the following discussion we
label the individual y trajectories by their value
at threshold E=0; e.g., the second (from the top)
y trajectory is called the y(E=0)=v(0)=0.89 tra-
jectory. As mentioned in the previous section
this potential has two 7 =0 bound states (at E~~9
and = -0.11), and one [ =1 resonance (at E=0.19).
The 1 =0 bound state (E~-9) and the =1 reson-
ance are on the leading Regge trajectory, while
the other I =0 bound state is on a lower « tra-
jectory.®

Before discussing the individual y trajectories
we make some general observations. Figures
3(a) and 4 show four y trajectories with threshold
values: y(0)=1.5, 0.89, 0.5, and 0.17. The origin
of these y(E) in the phase shift 6(E,1) can be seen
in Figs. 1(a) and 2, where it can be noted that the
v(0)=1.5 and 0.5 trajectories start on the plateaus
of 6, while the y(0)=0.89 and 0.17 trajectories
start on the shoulders of 6. In addition to the y
trajectories shown in Fig. 3(a) and 4, there are
higher-lying y trajectories beginning at /=2,
<,2,...; these trajectories are very similar in
character to the y(0)=1.5 trajectory which we
discuss next. Comparison of the y trajectories
of Fig. 3(a) with the corresponding « trajectory
of Fig. 1 of Ref. 2 shows that y(0)=1.5 and higher-
lying y trajectories do not appear to have « tra-
jectory analogies, that the y(0)=0.89 trajectory
is the analog of the leading (first) « trajectory,
and that the lower-lying y trajectories are likely

-0l 0. 03

FIG. 4. An expanded view of the v trajectories of
the Yukawa potential V(7)=—ge™ 7" /» with g=8 [see also
Figs. 3(a) and 5]. Note thatl=1, E=0.19 resonance on
the second ¥ trajectory (single arrow), and the collision
of the lower two (« and v) v trajectories at y=0.37, E
=—0.06 (double arrow). The# and v trajectories are
shown in the complex I plane in Fig. 5 for energies near
their collision. All v trajectories move smoothly
through threshold E=0 (see text).

to be the analogs of lower-lying « trajectories.
Also shown in Figs. 3(a) and 4 is one resonance

of this Yukawa potential indicated by the single
arrow.

Beginning with the top trajectory in Fig. 3(a) and
Fig. 4, the y(0)=1.5 trajectory, we see that it
starts at I =1.5 in Fig. 1(a) and thus is not associ-
ated with a shoulder of the phase shift 6. As the
energy increases for E>0 this y(E) rises a little
before settling back to 1.5 as E becomes large
and 6 goes to zero. The behavior of this y(E) near
threshold (Fig. 4) is unusual relative to the thres-
hold behavior of Regge trajectories and other y
trajectories in that it turns back up for E<0; more
typical threshold behavior, at least for the lower-
lying y and «a trajectories, is that displayed by
the y(0)=0.89 trajectory which does not turn back
up for E<0. We have investigated the smoothness
of the y(0)=1.5 y trajectory through threshold down
to energies | E| = 0.01 and find that the trajectory
passes through E =0 perfectly smoothly within
these numerical limitations.

There do not appear to be any resonances or
bound states associated with this y(0)=1.5 tra-
jectory so that it is not a particularly interesting
trajectory; this is also true of all the higher-lying
y trajectories for this strength potential. These
higher-lying y trajectories start at E=0 at the
half integers §,+%,%,..., and after rising a little
fall back to the same half-integer from which they
started as E—-+; they have the same general
character as the v(0)=1.5 trajectory.

Turning now to the second [y(0)=0.89] trajectory
in Figs. 3(a) and 4, we see from Fig. 1(a) that this
trajectory is associated with a shoulder of 6. In-
deed, this y trajectory “causes” the [ =1 resonance
at £=0.19 by passing through 1=1 at E=0.19; re-
call that y is real. This y trajectory is the analog
of the leading o trajectory for this potential.> The
leading o trajectory also causes this =1 reson-
ance, but o “misses” (i.e., does not pass through)
1=1 because a is complex for E>0. This example
is a numerical illustration of the related, but
different, ways the y and « trajectories cause
resonances: 7y passes through the resonance angu-
lar momentum, while o passes near the resonance
angular momentum; this phenomenon, central to
the y trajectory, is discussed in detail in TH.

Since this y(0) =0.89 trajectory is the analog
of the leading « trajectory for this potential, since
both these trajectories cause the =1, E=0.19
resonance, and since the I=0, E~-9 bound state
is on this leading « trajectory, it is reasonable
to assume that this y(0)=0.89 trajectory also
causes the I=0, E~-9 bound state. Unfortu-
nately, this bound state lies too low to be ac-
cessible to our numerical method of computing
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6(E,1) (see Appendix A) and so we cannot explore
this question. However, in the next section an
explicit illustration of the connection of y tra-
jectories and bound states is given.

We have examined this y(0)=0.89 trajectory
in the neighborhood of threshold to the limits of
the accuracy of the computational method for
8(E,l). We can approach E =0 with energies as
close as E <-0.0005 and E > 0.0005, and an ac-
curacy in the angular momentum [ .(and thus y)
of five to six significant figures. To this accuracy
we find y(E) perfectly smooth across E=0; this
result is consistent with the theory given in TH.

A last observation before leaving this y tra-
jectory is that inspection of Fig. 1(a) shows that
as E-+w, y(E)- 0.5 since 6 =0 in this limit.

The last two y trajectories shown in Figs. 3(a)
and 4 are those starting at v(0)=0.5 and 0.17.
(These trajectories are labeled also « and v, re-
spectively.) As can be seen in Fig. 1(a) the lower
of these trajectories is associated at E=0 with a
shoulder of §, while the upper trajectory is as-
sociated with a plateau. While these two trajec-
tories appear to form a loop in Figs. 3(a) and 4,
this is not the case; what happens is that the u
and v trajectories “collide” at the point indicated
in the figures by the double arrow (y=0.37, E
=-0.06), and “bounce off” each other into the
complex [ plane as the energy is lowered further
than — 0.06. This collision of » and v is shown
in Fig. 5. The arrows on the # and v y trajec-
tories in this figure indicate the motion of the tra-
jectories as the energy is increased; the tra-
jectories shown are for energies starting at E
=-0.09 and increasing to E=0.00. In calculating

o2 1T I I T]
u

v
-02 - ] | |

02 0.3 04 0.5
Re £

FIG. 5. The complex ! plane. The solid curves are
the paths of v (E) for the two lowest v trajectories, u
and v, of the Yukawa potential V(7)=—ge™"/r with g
=8 [see Figs. 3(a) and 4 for other views of » and »].
The arrows indicate the direction of motion of the y (E)
as the energy increases; the figure is for energy in-
creasing from E=—0.09 to E=0.00. The trajectories
collide at approximately Yy=0.37, E=—0.06. The dis-
tance of closest approach is controlled by the imagin-
ary part of E which is approximately 0.0005.

the trajectories # and v in Fig. 5 using Eq. (4),
the energy is given a small imaginary piece (ap-
proximately 0.0005) which causes the trajectories
to “miss” or “bounce off” each other as shown.
In summary, the lower two y trajectories (x and
v) shown in Figs. 3(a) and 4 collide at y=0.37,
=-0.06 (see double arrow) and move off into

‘the complex ! plane as shown in Fig. 5.

There is an /=0, E=-0.11 bound state of this
Yukawa potential. Presumably this bound state
is associated with one or both of the trajectories
u and v although the mechanism.is not as clear
as that when trajectories do not collide and become
complex (see next section). There are no other
bound states or resonances associated with the u
and v y trajectories.

Inspection of Fig. 1(a) shows that the u y tra-
jectory goes to - 0.5 as E—~+«, while the v y tra-
jectory goes (presumably) to — 1.5 in the same
limit (we do not calculate & for [ <—0.5).

T T T
(a)
L= I
I=|
Y\d state
ok . .
g=96
| 1 !
‘ 1 T T
(b)
10 I~ -
£=|
resonance
o9t .
g=86
08 -1
1 1 1
-0l 0.0 Ol

FIG. 6. 7y trajectories in the region of y=1 and
threshold E=0 for the Yukawa potentials V(7)=—ge™" /¥
with g=9.6 (a) and 8.6 (b). (a) For g=9.6. The y tra-
jectory causes the bound state atl=1, E=~ 0.1 by pass-
ing near, but not through, the state angular momentum
at the state energy (unlike the Regge trajectory a). (b)
For g=8.6. The y trajectory causes thel=1, E
=0.065 resonance by passing through the resonance
angular momentum at the resonance energy (unlike ).
(a) and (b) The resonance for g=8.6 becomes the bound
state as the potential strength is increased to g=9.6;
the v trajectory “follows” the state as g is increased.
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B. Yukawa potentials: g=8.6, 9.6; bound states, resonances

In Figs. 6(a) and 6(b) is shown one y trajectory
in the neighborhood of 1 =1 and threshold E=0
for the two attractive Yukawa potential of strengths
£=9.6 and 8.6, respectively. In Fig. 6(b) is indi-
cated anl=1, E=0.065 resonance of the strength
8.6 potential. As the potential strength is in-
creased from 8.6 to 9.6 the resonance atl=1,
E=0.065 becomes the bound state at =1, E=-0.1
as indicated in Fig. 6(a). In addition to the re-
sonance moving below threshold and becoming
a bound state as the potential strength is increased,
inspection of Figs. 6(a) and 6(b) shows that the y
trajectory has also moved. In Fig. 6(b) the y tra-
jectory “causes” the I=1, E=0.065 resonance by
passing through [ =1 at the resonance energy. As
mentioned earlier, this behavior is in contrast
to that of the a trajectory which passes close to,
but not through, 1 =1 at the resonance energy be-
cause ¢ is complex for £>0. For the stronger
potential (g=9.6) shown in Fig. 6(a), however,
we see that the y trajectory has moved upward
as the potential strength has increased from 8.6
to 9.6, and that y(E) now causes, instead of the
resonance, a bound state at/=1, E=-0.1. Un-
like the « trajectory however, the y trajectory
“misses” the bound state by passing a little below
it at the bound-state energy. In other words, the
a trajectory has the bound-state [ value at the
bound-state energy, while the y trajectory is be-
low the bound-state I value at the bound-state en-
ergy, or alternately, has the bound-state ! value
at an energy above the bound-state energy.

These bound-state/resonance behaviors of the
Y and « trajectories, illustrated in Figs. 6(a) and
6(b), are numerical examples of the contrasting
means by which y and « trajectories cause bound
states and resonances: the y trajectory passes
through the resonance angular momentum at the
resonance energy, while the «a trajectory misses
the resonance angular momentum at the resonance
energy because it is complex. Below threshold,
in the bound-state region, the reverse is true:
Now the « trajectory passes through the bound-
state angular momentum at the bound-state energy,
while the y trajectory misses the bound-state angu-
lar momentum at the bound-state energy in spite
of being real. One could say that the y trajectory
causes resonances very much like the «a trajec-
tory causes bound states (by passing through the
state), and vice versa, that the y trajectory causes
bound states very much like the o trajectory
causes resonances (by passing near the state). In
this sense the vy and « trajectories are comple-
ments of one another. (See TH for additional
discussion.)

Finally, it can be noted, by comparing the y
trajectories in Figs. 6(a) and 6(b), that the v tra-
jectory rises as the potential strength is increased.
In effect, the y trajectory “chases” or is “dragged
along by” the resonance/bound state so that it
must rise as the potential strength is increased.
This rising with potential strength is a general
phenomenon which we see again in following sec-
tions.

C. Yukawa potential: g=10

In Fig. 3(b) is shown the low-lying y trajectories
of the attractive Yukawa potential of strength 10.
These trajectories differ subtly from those of the
strength 8 Yukawa potential shown Figs. 3(a), 4,
and 5 and discussed previously. Comparing Figs.
3(a) and 3(b) one sees that y(0)=1.5 for the highest
trajectory shown for both g=8 and 10, that y(0)
increases from 0.89 to 1.09 for the second tra-
jectory as g increases from 8 to 10, and that for
the bottom two trajectories the threshold value
of the upper one is y(0) =0.5 for both g=8 and 10,
while the threshold value of the lower one in-
creases from 0.17 to 0.36 as g increases from 8
to 10; thus, some of the y(0) values increase as g
increases from 8 to 10, while others remained
unchanged. This phenomenon is easily understood
by inspecting Figs. 1(a) and 1(b). As the potential
strength is increased from 8 to 10 the shoulders
in Fig. 1(a) move to the right until they reach the
position in Fig. 1(b). y(0) values which are half-
integer come from the plateaus of 6(E,1); if the
potential strength is increased only a modest
amount, y(0) is still determined by the same pla-"
teau, and so is unchanged. In Figs. 1(a) and 1(b)
this is seen to be true for the y(0)=0.5 and 1.5
trajectories for both g=8 and 10. On the other
hand, the other y(0) values come from the shoul-
ders of 6(E,l); since these shoulders move as
g increases, these y(0) move also. This explains
the y(0) structure of Figs. 3(a) and 3(b).

A second observation about the g=10 y trajec-
tories is that the y(0)=0.89 trajectory which
causes the /=1, E=0.19 resonance for g=8 [Figs.
3(a) and 4] has moved upward to become the y(0)
=1.09 trajectory for g=10 [Fig. 3(b)]. This tra-
jectory no longer causes a resonance, but instead
now causes a bound state atl=1, E~-0.5. This
situation is entirely parallel to the discussion of
the previous section of the g=8.6 and 9.6 Yukawa
potentials where increasing the potential strength
turns a resonance into a bound state.

Aside from the above remarks the g=10 y tra-
jectories are similar to the g=8 trajectories in
all respects. Corresponding trajectories for the
two potentials have the same high-energy limits,



e.g., and other properties are similar, including
the collision of the two lowest trajectories below
threshold (see double arrow).

D. Yukawa potential: g=17

The attractive Yukawa potential with strength
£=17T has three /=0 and one [ =1 bound states and
several resonances. The low-lying y trajectories
for this potential are shown in Fig. 3(c), and one
notes their similarities to the strength 8 and 10
v trajectories. One should not conclude, however,
e.g., that the y(0)=0.95, g=17 trajectory that
causes the =1, E=0.07 resonance (see arrow)
is the same trajectory as the y(0)=0.89, g=8 tra-
jectory that causes the [=1, E=0.19 resonance
for that potential. These two trajectories, while
similar in effect and in appearance, are solutions
of Eq. (4) with different values of the integer »n
and so, e.g., have different high-energy limits.
These and other differences between the g=8, 10
v trajectories and the g=17 y trajectories are due
to fact that 6(E, 1) for g=17 (not shown) has shifted
to higher-I values relative to the 6’s for g=8 and
10 shown in Fig. 1. 'Nevertheless, in spite of dif-
ferences of detail, changing the strength of the
Yukawa potential does not change the basic char-
acter of the y trajectories; this fact is also true
of the « trajectories.?

Starting from the top of Fig. 3(c) we see that
the y(0) = 1.65 trajectory causes an [ =2 resonance
at E=1.0 (see arrow). This y trajectory corres-
ponds to the leading « trajectory which causes
the same resonance and is associated also with
two low-lying bound states (one /=1 and one 1=0).?

13 T

1
] 5 10
E

FIG. 7. Twovy trajectories of the exponential potential
V)= —43exp(-¥/2.5). Theupper trajectory causes an
1 =12 resonance (see arrow) and passes through the
half-integer '225‘, while the lower trajectory causes
=11 and 7 =12 resonances (see arrows) and passes
through the half-integer 2421 .
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The next y trajectory shown, y(0)=1.5, does not
cause resonances. The third y trajectory shown,
¥(0)=0.95, causes an /=1 resonances at E =0.07
(see arrow). The bottom two y trajectories shown
collide (see double arrow) as in the g=8 and 10
cases; the threshold intercepts are y(0)=0.5 and
0.20.

The high-energy limits of these g=17 y tra-
jectories are, respectively (starting with the top
trajectory shown): 2, %, —%, -, and -%. These
limits are lower than those of the g=8 y trajec-
tories, and comparison of Figs. 3(a) and 3(c)
‘shows that the g=1T7 trajectories fall more rapidly
with increasing energy than do the g=8 trajec-
tories, if trajectories with similar y(0) values
are compared. For example, if the g=8 and g
=17 trajectories which cause [ =1 resonances
are compared, it is seen that the g=17 trajectory
falls more rapidly with increasing energy.

E. Exponential potential

In Fig. 7 is shown two high-lying y trajectories
of the exponential potential V = — 43 exp(-#/2.5).
This is a powerful, long-range potential which has
many bound states and resonances. Although the
general character of y trajectories has already
been illustrated using various strength Yukawa
potentials, there are two properties of y trajec-
tories most easily shown using a strong exponen-
tial potential. First, both of the y trajectories
shown pass through half-integer angular momen-
tum values: the higher trajectory passes through
y=12.5, while the lower trajectory passes through
11.5. This numerical example of y trajectories
going through half-integer values is an illustra-
tion of the special limiting process described in
Sec. IIA. Second, the lower-lying y trajectory
in Fig. 7 causes two resonances; these states are

"atl=11, £E=0.56 and [ =12, E=2.25 (see arrows).

The upper vy trajectory in Fig. 7 causes one re-
sonance at 1=12, E=0.90, and almost causes a
second resonance with [ =13. In principle, there
is no reason why a single y trajectory cannot
cause a series of resonant states. Such a y tra-
jectory, of course, would at the same time pass
through a series of half-integer angular momen-
tum values.

IV. CONCLUSIONS |

The main features of v trajectories which are
illustrated numerically in Sec. III, using various
attractive Yukawa and exponential potentials are
(1) y trajectories are real for positive energies
and for certain negative energies. (2) y trajec-
tories causes resonances and bound states much
as do a (Regge) trajectories with the differences
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that y “passes through” resonances while a does
not, and « “passes through” bound states while y
does not. (3) y trajectories move through thres-
hold smoothly. (4) some y trajectories have the
value of a half-integer at threshold, while other
y trajectories do not. (5) y trajectories can collide
below threshold and become complex. (6) y tra-
jectories can cause one or more resonances, and
can pass through half-integer values of angular
momentum. (7) As the energy becomes positive
infinite the y trajectories tend to half-integers.

Since the y trajectory is real both above thres-
hold and for certain regions below threshold,
while the o trajectory is complex above and real
below threshold, it might be concluded that the y
trajectory is “simpler” than the o trajectory.
Indeed, above threshold the y trajectory does ap-
pear to be more economical than the « trajectory,
since y causes resonances by passing directly
through the resonance angular momentum. How-
ever, below threshold it is the o trajectory which
is the more economical, since there o passes
through the bound-state angular momentum at
the bound-state energy. Thus, the y and « tra-
jectories appear to be complements of one
another; they appear to have exchanged above-
threshold and below-threshold behaviors.

As shown in TH, the y trajectory can be used
to analyze,” e.g., pion-nucleon scattering data
in the direct channel. Quite simple models of
y(E) give excellent fits to the experimental pion-
nucleon partial-wave amplitudes. However, it
appears likely that the main interest of the y tra-
jectory is that it demonstrates that there exist
other useful angular momentum trajectories be-
sides the Regge trajectory a.
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APPENDIX A: PHASE SHIFT

The phase-function method is used to calculate
the elastic scattering phase shift 6(E,1) in both
the bound-state (E <0) and resonance (E > 0)
regions.” For E>0 the phase-function differential

equation for y,(r), the total phase function, is
used. This differential equation is integrated by
the standard Runge-Kutta fourth-order technique.
In order to extract the phase shift 6(E,!) from
the phase function 7,(r), the Ricatti-Bessel func-
tions of complex argument and complex order are
calculated using a program for Bessel functions
based upon an asymptotic approximation.? The
reason the v, (r) phase-function differential equa-
tion is used instead of the 6,(r) phase-function
differential equation is because integrating the
8,(r) equation requires the evaluation of the Ri-
catti-Bessel functions many times for each step
of the integration, and this is much too slow a
procedure. Each computation of 6(E,1) for given
E,!l requires about eight seconds on a PDP11 using
the y,(r) technique.

For E <0 the phase-function differential equation
for tany,(r) is used. Again this equation was
chosen over the corresponding §,(r) equation for
reasons of computational speed. Since the va-
lidity of the tany,(r) differential equation had not
been established previously for the E<0 region,
a study of the tany,(r) equation was performed;
the result is that the tany,;(») method is valid for
E<0.° Again, 8(E,1) is extracted from tany, ().
An important limitation of the phase-function
technique for the calculation of 6(E, !) below thres-
hold is that the energies accessable are confined
to k <1/2r,, where k is related to the energy by
E=-k? and where 7, is the range of the poten-
tial.”®

APPENDIX B: REALITY OF vy

In Sec. IIC a proof that y(E) is real for E >0 was
presented; that proof is based upon the. proper-
ties of the phase shift 6(E,1). Another proof that
v(E) is real above threshold follows from the
radial Schrodinger equation and the properties
of the radial wave function for angular momen-

. tum l=y(E). This proof, whichis given here, is

the analog of the proof that the Regge trajectory
a(E) is real below threshold (see, e.g., Ref. 4,
pages 106, 107).

First, writing the radial Schrddinger equation
as (prime means d/dr)

w"+[R2=Vr)-11+1)/r*lu=0,
one obtains
W ) = 2l (2 + 1) f arlulz/ri=0,
- 0

(B1)

where the angular momentum is written I =13 +4l;.
Second, to use (Bl) we need to evaluate the terms
in it at the angular momentum [ =y(E). Using Eq.
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(4), 8(E,y)/m =y — (u+3), onecanfind theS matrix
and Jost functions at I =y; thus, for » -, one
has

u=~C(e’™ et 4 g~ i) (B2)

where C is independent of ». Third, use of (B2)
in (B1) yields

1 w
Bl —e™2""1) +y;(2yg + 1) _IETZ—-[ ‘d1’|u12/72=() , (B3)
0

where k is real and >0 and Y=y, +iy;. The inte-
gral is finite because of the oscillatory character
of u, and because we require y; >—% as in the
discussion of the Regge trajectory a(E). Equation
(B3) implies that the imaginary part of y(E) is
zero; this completes the proof that y is real above
threshold. The fact that this proof is so parallel
to the proof that « is realbelow threshold enhances
the interpretation of y and o as complements of
one another.
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