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Conformal conservation laws in action-at-a-distance theory
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As a consequence of invariance under the special conformal transformation, a new conserved four-vector

is derived for two massive charged point particles interacting through classical relativistic action-at-a-

distance scalar and vector potentials. This represents a generalization of-the conservation law discovered for

sourceless electromagnetic fields by Bessel-Hagen in 1921. The conserved four-vector is explicitly evaluated

for Schild s solution of the equation of motion, corresponding to uniform circular motion. All 15 of the

conserved quantities related to the 15-parameter conformal group are now known for Schild's solution

which has been extended to cover scalar as well as vector potentials.

I. INTRODUCTION

Recently, there have been many investigations
of the full conformal. group of transformations,
especially as applied in field theories. This 15-
parameter group transforms coordinates such
that the space-time interval is invariant to within
a coordinate-dependent factor. In particular, a
spherical surface expanding with speed c trans-
forms into a spherical surface again expanding
with speed c.' The familiar 10-parameter
Lorentz group is that subset which generates
translations and rotations of space and time co-
ordinates, and leads to conservation of the mo-
mentum four-vector and the angular momentum
tensor.

The one-parameter dilation transformation
changes the scale of the interval and leads to a
conserved dilation scalar D for the free electro-
magnetic field' and for a massless scalar field. '
U one takes D for a point particle in a field to have
the same form as that for the free field itself

D=S ~ P,
then D is "partially" conserved' in the limit as
m - 0. Here S=(r, ict) is the position of the par-
ticle and P = (p, &o/c) is its momentum. The inclu-
sion of a mass term"

formation is an inversion which has been variously
interpreted as a transformation from an inertial
frame to one with constant acceleration, 'o" or of
a generalized coordinate-dependent dilation. ' For
a free electromagnetic field, this transformation
leads to a conserved conformal four-vector4 g.
If one takes g for a point particle in a field to have
the same form as that for the free field itself

K=2SS.P-PS S, (1.3)

then & is also "partially" conserved' in the limit
as m-0.

Using action-at-a-distance scalar and vector
interactions without radiation reaction between
two point particles, we will show in Sec. II and
III that a conformal vector can be constructed
which is relativistically conserved for any non-
zero mass. As with all relativistically conserved
quantities, K includes both kinematic terms and
interaction terms with double integrals over the
world lines of the particles. " This is in accord
with the "no-interaction" theorems" which state
that if a conserved quantity is composed entirely
of kinematic terms, then only "trivial" constant
velocity motion is possible. In Sec. IV we calculate
the value of g for two point particles moving in
concentric circular orbits, and in Sec. V for one
particle in field-free linear motion.

D =S ~ P+~c'v' (1.2)

allows the dilation to be conserved for any mass
m. Here y is the proper time of the particle.
Using action-at-a-distance Wheeler- Feynman in-
teractions, Andersen and von Baeyer' have shown
that the conserved dilation for two interacting
point masses is of the form of Eq. (1.2) plus an
interaction term.

'The four-parameter special conformal trans-

II. SCALAR POTENTIAL

The momentum P; of a point particle moving
with four-velocity U, through a scalar potential
Q,. is

P~ =(~»+g 4~~c')~i (2.1)

where m, is the free-particle mass and g, is the
"strength" of the interaction of that particle with
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(2.2)dP;/d7'( = -g

where 7,. is its proper time and =—(V, B/ic8t).

the potential. For attractive interactions between
two particles, g,.&0. The equation of motion for
the particle is

Kr =2C 'gg,

x (S, S2 ~ S2 —S2 S, ~ S,), (2.7)

A. Time-symmetric interaction

The time-symmetric massless scalar potential
at particle one is half the sum of the advanced plus
retarded potentials arising from the positions of
particle two:

(2„2)=2- cd, f dc, c(('). (2.3)

Here g'=(t, —t, )' R'/c', -R=r, —r„R=~R~, and
the Dirac 6 function 6($') ensures that interactions
only occur on the past and future light cones for
particle one. at S, =(r„ict,). Similarly, the poten-
tial at particle two is

where the prime on the 5 function indicates differ-
entiation with respect to its argument. " The
proper times Ty T2 are arbitrary points on the
world lines of the two particles. This conformal
vector is conserved in the sense that dK/d~2 =0
and dEC/d7, = 0, as can be directly verified by
carrying out the differentiations.

The semi-infinite integrals in Eq. (2.6) appear
to cause problems at times T- -~. It will be shown
in Secs. IV and V that at least in some instances
these problems are spurious, as can be seen by
manipulating those terms which give rise to these
integrals in going from Eq. (2.5) to (2.6) so as to
obtain the identity

P, (2„2,)=-c 's, f «,2(2'). (2.4)
T ~

2m, c' 'd7', S,.

Combining the equations of motion with the cal-
culation of [m, c~(1 —p 2)2'2S t].

(2S(S( P( —P; S, ~ S, ) (2.6)
Tc

+m;c' dr((S, —u;t, +y, 'S;t(p; ~ p, ), (2.6)

and using the formalism developed in Ref. 14, we
find that the conserved conformal vector is

Tg

Z = (2S,S, ~ P, —P, S, ~ S,), +2m, c' dq ', S,

+(SS, S, P, —P 2, S ) +2m, c' f S, +d~2Cc

(2.6)
Jl

where U& =y; u; =y&(u, ic), y, = (1 —p, ') '", and

P,. =u, /c. The double integrals in the interaction
term &I give nonzero values only over finite
segments of the world-lines of the two particles.
This is shown explicitly in a convenient calcula-
tional form by integrating Eq. (2.7) first over the
world line of particle one, then over that of par-
ticle two:

~

~

S, S, -S, -S,S,-S, S, S, . S, -S,h, S,
Kg = (2c) g)g2 y,y (R+ft ~ t7, )(R +6 ~ P ),, y,y (R —n ~ P,)(R —n ~ tI )

+2, ] d S~ $2- S2 —S~ S~ ~ Sq' R+5 P, dt', , y[y(tc,
'

t,')-R. tt,]-
~

~2 I I ] d $y S2 S2 $2 Sy Sy

where t2 =t, +R/c.

8. Time-asymmetric interaction

(2.9)

Rudd and Hill" and Bruhns" obtained solutions for two particles interacting through time-asymmetric
vector potentials. Their integral-free conserved momentum vectors and angular momentum tensors were
evaluated for the particular choice of reference times t„ t, =t, -R/c. If these conserved quantitites are
evaluated for any arbitrary reference times t„ t, they will in general contain integrals of the world lines. '

Particle one interacts with the retarded massless scalar potential arising from particle two on its
past light cone,

2 ('») )=-22(2 c)=-S.f lc(2)IS,dc (2.10)
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and particle two interacts with the advanced potential arising from particle one on its future light cone,

e.(T„t.) =(.'(~., 4) = g-J, &~ &('()I)) (2.11)

where $ = t', —t, -8/c. Using the same procedure as before, we again obtain Eqs. (2.6) and (2.8) for K, but
now the interaction term is

&g=-~ 'am2
yD'2(t~ R Pi)(tt R ' P2) t, .t

r 1 d' R —R f, dt, yy, [c(),—t) —, R ,P.

The reference times t„t, can be chosen arbitrarily; note however that the integral in Kl will vanish
identically for the choice of t„t, =t, -R/ .c

III. VECTOR POTENTIAL

(2.12)

The equation of motion for a point particle with rest mass m,. moving with four-velocity U,- through a
massless vector (electromagnetic) potential A, without radiation reaction is

d(m( U;)/dr( =qq(, x A,.) ~ U,. (3.1)
or

dP, /d7'; = q((; A() U(,

where the generalized momentum is

P] =m; U; +q] A],

and the cross product for four-vectors is defined by the antisymmetric dyadic F x G =FG —G F. The
electric cha'rge of the particle is q, .

A. Time-symmetric interaction

The time-symmetric (Wheeler-Feynman) interaction is for potentials
f+ OO

A, (r„t,) = c 'kq, &' A, 5($')U, ,

(3.2)

(3.3)

(3.4)

A, (r„t )=c ')q, J d7', ()((')~U, (3.5)

where k = g, /4z for the MESA system of units. We again obtain a conserved conformal vector by combin-
ing the equations of motion in the form of Eq. (3.2) with the derivative Eq. (2.5) to again obtain Eqs. (2.6)
and (2.8), with the interaction term given by

T T1

I = c kQ'yq2 &g dory
— 472 dye 5 Uy x U2 ' Sy +82

00 T2
~ OQ

+2c '5 ($')U, U, (S,S, S, —S, S, ~ S,)]

T] T2
—C 'kq, q2 d7g d7, + d72 d&, 5 ' U, X U2 ~ S, —S, (3.6)

By integrating first over the world line of particle one then over that of particle two, K, can be expressed
as

U, U, (S,S, S, -S, S, S,) U, U, (S, S, S, -S, S, S,)
cy,y2(A+R ~ P,)(A+R ~ jf, ) ~, , (+ cy,y~(R —R ~ P,)(A —R ~ P, )

~ ~ ~

~

—2 dt,'
U, x U, (S, S,)-U,xU . (S,- S,)

' ra 8+8 ti)~ ,, =;-„. r v (& -)( ((),, =,, „*,. I
' (3 7)
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Unlike the scalar interaction, Kl for the vector interaction contains semi-infinite integrals. We will
show in Sec. IV that these integrals are well behaved for at least one bound state.

B. Time-asymmetric interaction

The time-asymmetr'ic interaction is for vector potentials

A, (r„r,) -=A, (r„c,) =pq, f dr,' Irc((),/P, (3.8)

A ( „r))=-A;(r„))= q,pf dr,'p il(()/p . (3.9)

With the same K as before, &, is given by

U, U, (S, Sa ~ S, —S, S, ~ S,)
c)'(r2(R-& P()(R-R Pp) ,(;(=. ,(- ((/P~ ~

U, xU, . (S, —S,)
+2 . dt', r(Pr- ,((I)I,; —,; sI.I

The first integral, but not the second, will vanish for the choice of reference times t„ t, =t, —8jc.

(3.10)

IV. UNIFORM CIRCULAR MOTION

pre demonstrate that solutions for the conserved conformal vector K=(K, iK() do exist by considering
two point particles moving in concentric circles with uniform angular speed z in the X-F plane of an
inertial frame and interacting through time-symmetric scalar or vector potentials, as shown in Fig. 1.
Particle one interacts with the potentials arising from particle two in the retarded (-) and advanced (+)
positions, r, (t, ) =r, (t, + T), 'where T is the time required for the interaction to propagate the distance It
= pr, (t,) —r, (t,') ~

at the speed of light, and 8 =(dT. The energy, momentum, and angular momentum tensor
for such motion were calculated by Schild" for a vector potential, and by Andersen and von Baeyer" for a
scalar potential. ln both cases the conserved dilation is calculated to be D =O.

The semi-infinite integrals which appear in the spatial components K in Eqs. (2.6), (3.7), and (3.10) can
be evaluated for uniform circular trajectories by using convergence factors to calculate terms such as

dt'cosset =v 'sinvt. (4.1)

The semi-infinite integrals in the time components K, of Eqs. (3.7) and (3.10) are identically zero for uni-

form circular motion, while those appearing in Eq. (2.6) are readily evaluated by use of Eq. (2.8) to give

Tf
2m(c' drI S, =[m(c'(1 —p(')'/2S(t(j, , (4.2)

The evaluation of the remaining terms is straightforward, albeit tedious. The result for the scalar inter-
action is

K=O,

rr, =—,' ' . „22p, sroq —2qp p, cosq+ —', q'+ ' ' . q'(1+p p, cosq ——,'2'}),
&uy(y, (8+P» sin8)' 8+P,P, sin8

and for the vector interaction

(4.3)

(4.4)

c'k —8' —28P,P, sin8+ ' ' . (2P,P, sin8 —28P,P, cos8+—', 8')

p, p, sms I +p,p,

coop�))'

)

8+p,p, sin8 8+p,p, sin8 j

(4 6)

(4.6)
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V. ONE-BODY FIELD-FREE MOTION

Consider a particle moving in field-free space
with constant momentum P =(p, iw/c) along the
straight line

S = (ro + ut, i ct),

Its conserved dilation is

D =$.P+mc'7.

= ro ~ p.

(5.1)

(5.2)

(5.3)

'X

The conserved conformal vector is obtained by ex-
tending the method used to obtain Eq. (2.8) for a
constant velocity trajectory:

K = 2S S.P —P S S+mc'(1 —P')'"St +me'Soy

= (ror, p+ro x rrox pj, -icro ~ ro) .
(5.4)

(5.5)

FIG. 1. For time-symmetric interactions, particle
one interacts with, the potentials arising from particle
two in the retarded position r2(t2) and in the advanced
position r2(t2) .

The spatial vector K has components parallel to
and perpendicular to r„&=0 if and only if ro =6.
This is a more stringent condition than on the
dilation since D =0 for either r, =6 or for r, per-
pendicular to p.

L) =S P+mc'7 as a statement of the conservation
of the first moment of momentum, and the con-
formal vector, . written as

T

g= SS ~ P+Sx P S+mc' dv S,
VI. DISCUSSION

Relativistic action-at-a-distance dynamics for
particles with nonzero masses is invariant under
the full conformal group of transformations. This
implies the conservation of five quantities beyond
the well-known ten from Lorentz invariance. As
Bessel-Hagen4 put it in 1S21: To what extent they
will be useful to physicists, the future will have
to decide.

Dynamically, we can consider the angular mo-
mentum tensor L =Sx P and the dilation scalar

as a statement of the conservation of the second
moment of momentum.

It is intriguing to speculate about the physical
meanings of the mass terms in D and g. The
proper time y is related to the lifetime of ele-
mentary particles. %e must note, however, that
in quantum mechanics the lifetime is a quantity
independent of the history of an individual particle.
Only in a statistical sense do unstable particles rep-
resent clocks which measure the proper time
elapsed since their creation.

*On leave from Department of Physics, College of
William and Mary, Williamsburg, Virginia 23185.
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