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If a scattering potential is of a finite rank, say N, the exact solution of the problem can be obtained from
the Born series, if the potential strength is within the radius of convergence; the exact solution can be
obtained from the analytical continuation of the formal Born series outside the radius of convergence.
Beyond the first 2N terms of the Born series, an individual term of the Born series depends on the first 2N
terms, and the [N/N] Pade approximant and the exact solution agree with each other. The above-

mentioned features of a finite-rank problem are relevant to scattering theory in general, because most
scattering problems may be handled as an extension of the rank-N problem, in which the rank N tends to
infinity. The foregoing aspects of scattering theory will be studied in depth in the present paper, and in so
doing we proceed in the opposite direction. Namely, given a potential, we calculate the first 2N terms of the
Born series for the K matrix and the first N terms of the Born series for the wave function. Using these
data, a special rank-N potential is constructed in such a way that it reproduces the [X/N] Fade
approximant of the K matrix of the original scattering problem. One great advantage of obtaining such a
rank-N potential is that the wave function of the system may be approximated in the same spirit as done
for the K matrix; hence, we can introduce a new approximation method for dealing with an off-shell T
matrix. A part of the mathematical work is incomplete, but the physical aspects are thoroughly discussed.

I. INTRODUCTION

The method of Pade approximants has been ex-
tensively used in recent years in scattering theory
in various forms, e.g. , in combination with the
variational method. ' Also, serious studies have
been made to prove that the Pade approximant
converges to the exact result as its rank tends to
infinity, wherein the analytic property of the
exact result as a function of the variable used in
expansions is crucial. We may accept, under
certain conditions, that an interaction potential
may be approximated by a potential of finite
rank, such that the result based on the finite-rank
approximation converges to the exact result in
the limit as the rank tends to infinity. 3 Let us
denote the potential strength by X. We assume
that the interaction is spherically symmetric so
that each partial wave may be treated separately.
Accepting the statements discussed in Ref. 3, we
may assert that the partial-wave T matrix is a
meromorphic function of A. , having only simple
poles. Consequently the partial-wave K matrix
may be set in the form

K(E) = XQ X„s„/(X„—X) = Xgs„/(1 —Xr)„), (1.1)
n=i

where

(1.2)

The above equation shows that, when considered
as a function of X, the partial-wave E matrix has
a simple'pole at X= X„. Both. the position of the

pole y„= X„(E,I) and the residue parameter S„
= S„(E,I) are a function of energy E and angular
momentum / of the partial wave. As will be
discussed in Sec. II, q„ is an eigenvalue of the
rescattering operator [cf. (2.22) and (2.26)], and

8„ is obtained from the on-shell representation
of the corresponding eigenfunction [(2.39)]. The
integer n that labels an individual term is the
radial quantum number. It counts the number
of extra nodes of, the wave function that are
added to (or removed from) the wave function of
a free pa,rticle by the attractive (repulsive) po-
tential of strength X„.

Let us consider the formal Born expansion of
the K matrix

(1.3)

It is implied by Eq. (1.1) that the coefficient K„
in the Born series may be expressed in terms of
tl„and S„of (1.1). Hence, we have

(1.4)

Suppose that the parameters X„of (1.1) may be
ordered according to their magnitude so that

/x, [&/x, /
&/x,

f
& ~ ~ ~,

and that the magnitude of X, is the smallest. Using
the right-hand-side (RHS) member of Etl. (1.4),
one can readily show that the Born series (1.3)
converges within the radius of convergence de-
fined by
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I&I&I& I
~ (1.6)

K[///N j P /Q (1 7)

where both the numerator P„and denominator Q„
are certain polynomials of A. of order N. Let us
expand the RHS of (1.7) into a formal Born series

K[M /gj (2/&) g lnK[» /E3

The coefficients K["/"~ on the RHS of (1.8) are
equal to the corresponding ones on the RHS of
{1.3) from n=1 through n=2N

(1 8)

(1.9)

Both P„and Q„of (1.7) may be uniquely deter-
mined based on the conditions of (1.9).' If the
first few zeros of the denominator Q„are lo-
cated in a close neighborhood of the corres-
ponding iirst few X„'s of (1.1), the analytic pro-
perty as a function of X of the Pads approximant
E'"~"' may become close to that of the exact K
matrix K(E) of (1.1) in a certain domain of X that
includes A., in its inside. Then, with a suitably
large N, the [N/N] Pade approximant may serve
as a good approximation to the K matrix outside
the convergence radius of the Born series

(1.6a)

Therefore, assuming that the series of (1.1)
converges rapidly, we truncate the series after
the first N terms, denoting the truncated E ma-
trix by K„. Then, we should have

(1.10)K —KN,

and furthermore, the form of E„as a function of
X is similar to the [N/N] Pade approximant
K[N ///1 of {I7)

K„=N„/D„;

the denominator D„has properties similar to
those of Q„of (1.7) and is given by

D~ = 1 —Aq„ (1.12)

To obtain several results that are comparable
to the above, (1.10)—(1.12), let us consider a po-
tential of rank N

(1.13)

where f„(r), n = 1,. . . , N, are the form factors
that define the separable potentials. Let the E
matrix for the rank-N potential V'["', (1.13), be

Let us denote by K["/"' the [N/N] Pads approxi-
mant of the formal Born series, (1.3), S„' (1.14)

where g„' and S„' are the pole and residue para-
meters, respectively, for the rank-N potential
V'"'. Let the [N/N] Pads approximant for the
K'"' be presented in the form of P„'/Q„', in a
fashion similar to the RHS of (1.7). Since the
rank N is finite, the [N/N] Pade approximant
agrees with K'~~~, the exact K matrix for V'~"',

where the denominator Q„' is given by

Q„' = (1 —Xq„') . (1.16)

Furthermore, we may be able to choose a suitable
set of form factors f„(r), n = 1, . . . , N, in (1.13),
such that the parameters used in (1.14) become
close to the corresponding quantities used in
(l, l), or equivalently in (1.11),

g„' =g„and S„' = S„, 1 ~ n ~N. (1.17)

If these conditions are satisfied, the rank-N po-
tential V'["', (1.13), may be substituted for the
original potential V as its close approximation, a
suffic'ient procedure as far as a partial wave at a
fixed energy is concerned.

We have given a quick survey of three related
subjects: (i) the Mittag-Leffler expansion of the
partial-wave K matrix, (1.1), in which we con-
sider the E matrix as a function of potential
strength X; (ii) the [N/N] Pade approximant with
a suitably large N, sketched with the help of
(1.7)-(1.9); (iii) the rank-N approximation V' " "&

to be substituted for the original potential V,
briefly explained by (1.13)-(1.17). Our purpose
is to bring these three aspects of scattering theory
to an even stronger tie with each other, so to
speak, so that we may establish a unified and
transparent view of scattering theory as well as
develop a powerful method of approximation.
When the RHS's of (1.1), (1.7), and (1.14) are com-
pared with each other, after a suitably large rank
N and an adequate set of form factors (f„(r)] in
(1.13) are chosen so that the conditions of (1.17)
will be satisfied, we may be able to show

K(E) K[N /N j KI[N3 (1.18)

Our major result is that, once the interaction po-
tential P is given, one may obtain a special rank-
N potential

(1.19)

K""'. The K'"~ takes a form of the same type
as the N-term truncation of (1.1), i.e., K„of (1.11),
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which automatically reproduces the [N/N) Pade
approximant K~" ~"~ of Eqs. (1.7)-(1.9). When
limited to local potentials, the same result has
been independently derived by Garibotti and
Villani, whose starting point was to symmetrize
the kernel of the Lippmann-Schwinger equation
by using the square root of the absolute value of
the potential. '

In this paper, we emphasize the usefulness of
separable potentials, ' and tackle our problem
straightforwardly by using algebraic methods.
In Sec. II, we review the method of the finite-
rank-potential approximation, and discuss the
foundation that enables us to obtain the results
shown in (1.18). This review suggests how to
choose the form-factor set {$„(r))in (1.19). The
square root of the interaction potential is com-
pletely avoided, and hence our results may be
extended to relativistic scattering problems or to
few-body problems. For convenience in applica-
tion, all essentia1 results will be written out ex-
plicitly, rather than giving them in the form of
recurrence formulas.

II. THE HOMOGENEOUS LIPPMANN-SCHWINGER
EQUATION AND EIGENFUNCTIONS USEFUL IN

THE T-MATRIX THEORY

Our task is to analyze the algebraic relations
that exist among functional-space elements ob-
tained by iterating a kernel of scattering-theory
integral equations. Even though we will limit
ourselves to nonrelativistic scattering in the pre-
sent paper, this will not harm the generality of
our results. As long as a kernel may be iterated
unambiguously to an arbitrarily high order, the
same algorithm as presented in this paper is ap-
plicable to any integral equation of similar type,
for instance, the Blankenbecler-Sugar or other
similar equations.

As usual, we set for the energy E of the system

E=k, (2.1)

G"'(r,r') =k 'u, (kr&)v, (kr&) . (2.2)

The standing-wave version of scattering theory
has a mathematical merit in that any variable
may be taken to be real; this is particularly con-
venient to envision the behavior of the wave func-
tion in a close-collision state. 4 On the other hand,

where k is the corresponding linear momentum.
The Riccati- Bessel and Hiccati-Neumann functions
will be denoted by u, (kr) and v, (kr), respectively, '
where l is the angular momentum of the partial
wave. We work on the standing-wave version of
the T-matrix theory and employ the standing-
wave Green's function G'0'(r, r'),

Qq(r) =u, (kr-) . (2.8)

I,et the potential in the ordinary sense be V. I.et
us denote the potential strength by X and, with
its use, we set

(rl vlr') =~(rlvlr') . (2.4)

Hereafter, v will be called the shape matrix.
If the potential V is local, the shape matrix takes
the form

(r lv„, l

r') = v(r)5(r- r'), (2.6)

where v(r) is the shape function of local potential.
Hereafter we limit ourselves to a particular

partial wave at a particular energy. We start
from the partial-wave Lippmann-Schwinger (LS)
equation

((r)=.A~(»+) ff dr d~ G "(r ~)'"'
x (r'

l
v

l

r")y(r"), (2.6)

where k and l have been suppressed and (2.3) has
been used. The asymptotic forms of the Riccati-
Bessel and Riccati-Neumann functions are

u, (kr) = sin(kr —~lw),

v, (kr) = -cos(kr ——,'lw),

(2.7a)

(2.7b)

respectively. ' It follows straightforwardly from
the definition of G~", (2.2), that the asymptotic
form of the RHS of (2.6) is

(l (r) = sin(kr ——,'lw) + tan5 cos(kr ——,'lw), (2.8)

where the tangent of the phase shift 5 is defined
by

(2 9)

Next, we go back to Eqs. (2.4) and (2.5) to dis-
cuss the sign of the potential. We call a shape
function v of a local potential simple if it is of a
single sign. We stipulate that, if v is simple,
the sign of v is negative; that is, we choose an
attractive potential as the standard form of a sim-
ple potential. With this sign convention for v,
a bound state produced by a simple potential is
associated with a certain positive value of X in

many aspects of physics of collision processes may
be described straightforwardly by the outgoing-
wave version; it will be discussed only briefly in
Appendix B of the present paper, and its relation
with the standing-wave version will be left for a.

future work.
To simplify the notation, the free-wave (inho-

mogeneous) term in the Lippmann-Schwinger
equation will be denoted by (I)z, instead of u, (kr),
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the inhomogeneous LS equation (2.12) below. If
v(r) is a composite system, consisting of two
parts of opposite signs, there are two sequences
of bound states, one associated with positive A.

and the other with negative A. . As the convention
for a composite potential, me choose the sign of
v(r) such that the first bound state at zero energy
(or zero-energy resonance for l=0) is asso-
ciated mith a positive X, i.e., X, &0. The sign of a
nonlocal shape matrix v may be discussed in
terms of the sign of the eigenvalue X„ in (2.12),
and the sign convention for a, nonlocal potential
is similar to the above-stated rule for a local po-
tential.

Consider the special values of the phase shift

5„=(n ——,') w, n = 1,2, . . . (2.10a)

5„=( +n-,')w, n=-1, -2, . . . . (2.10b)

- While no repulsive potential can produce any
bound state (E &0), we must examine the effect
of a repulsive potential on a scattering state
(E&0). Even if a potential is simple, the repul-
sion effect that occurs for real negative X may
become so large that one of the conditions of
(2.10b) becomes applicable. To see the last
point, let us examine the example of a square-
well potential. ' If a repulsive square barrier is
made infinitely high, namely, if X tends to nega-
tive infinity, it becomes a hard-core potential.
The hard-core phase shift remains between zero
and ——,'w until k becomes as large as w/2 divided
by the hard-core radius. This means that there
is no value of X with which the condition of (2.10b)
may be satisfied in the above range of k. How-
ever, there are a finite number of negative A.

These values are concerned mith the attraction
effect produced by a potential. First, let energy
E take some negative value. According to the
above-discussed sign convention of a. potential,
any potential has an attractive part. Hence, by
adjusting the magnitude of potential strength X,
we can find a series of bound states that are as-
sociated with the respective eigenvalue A.„of (2.12).
Subsequently, we vary the energy E from negative
to positive values, and continue each bound state
as a function of E. The attraction effect in scat-
tering is the continuation through positive E of
the same kind of effect as forms a bound state
when E is negative; and each X„behaves as a con-
tinuous function of E. Since the magnitude of the
phase shift grows with increasing magnitude of A, ,
we can find a suitably large magnitude of A. with
which the condition of (2.10a) may be satisfied
for each applicable valu'e of n.

Next, consider the special values of the phase
shift

values with which the condition of (2.10b) may be
satisfied, if k is larger than the limit given above.
If a potential. has a continuously decreasing tail,
tending to zero as x tends to infinity, the repul-
sion effect in scattering may start at zero energy.

Let the wave function be g„when one of the
conditions of (2.10a) or (2.10b) is satisfied. The
particular value of integer n is the radial quan-
tum number. The relative weight of the second
term on the RHS of (2.8) becomes infinitely
larger than the first term, if 5 takes a special
value given by (2.10a) or (2.10b). Now, we multi-
ply the free-wave term Qz of (2.6) by cos5 to
change the normalization of g, and consider the
resultant tlI as a continuous function of linear
momentum k. Such an analysis will establish that
the asymptoti. c form of g„ is

g„(r) =A„cos(kr —~lw), as r -~, (2.11)

where g„ is some constant. Hence, under the con-
ditions (2.10a) or (2.10b), the wave function g„
satisfies the homogeneous LS equation

X„= ~X„~ &0, n= 1,2, 3, . . . (2.13)

More specifically, each X„ is associated with the
respective value of the phase shift so that

when 5= (n —~)v. (2.14)

The conditions of (2.10b) are satisfied if A. takes
on one of the negative eigenvalues

(2.15)

or more specifically

when 5=-(m ——,')m and n=-m. (2.16)

Since the magnitude of the phase shift increases
with increasing magnitude of A. , the X eigenvalues
may be arranged in ascending order so that

(2.17)

In order to see the general trend for a compo-
site potential, let us examine, as an example, a

(2.12)

A solution of the homogeneous LS equation exists
if and only if A. becomes equal to A.„,which is as-
sociated with one of the conditions given either by
(2.10a) or (2.10b).

The above-mentioned special value of A. will be
referred to as the X eigenvalue hereafter. Let
us first examine the A. eigenvalue for a simple
potential more closely, and examine a composite
potential later. The conditions listed in (2.10a)
are satisfied when the associated A. eigenvalue is
positive,
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combination of two square potentials of opposite
signs. It is helpful to imagine that the results of
analyzing this problem will be presented in the
form of a graph that shows the behavior of each
X„as a continuous function of energy. We begin
with a system in which a square well with sub-
stantial depth is combined with a low square
barrier. We determine the X eigenvalues separ-
ately for the square well and the low square bar-
rier. Also, we determine each X„directly for the
composite potential, and compare it with the X

eigenvalues for the separate components. For
the separate barrier, X is the factor by which its
height must be multiplied in order that the condi-
tion of (1.10b), for the given negative integer m,
may be satisfied; the X thus determined is posi-
tive. Any X„determined for the composite poten-
tial follows closely the pattern shown by the A.

eigenvalue of the separate square well in most
parts of the graph. However, in the regions
where a curve representing X eigenvalue of a
square well crosses a curve representing an
eigenvalue of low square barrier, the X„ for the
composite potential produces a pattern of avoided
crossing. In the same manner, the A. , which
represents the repulsion effect of the composite
potential and is labeled by a negative integer,
follows closely the pattern shown by the I, eigen-
value, of the separate square barrier in most
parts of the graph, except that we exclude the
regions of avoided crossing pattern. For a
stronger barrier, we gradually increase its
height relative to a fixed depth of the square
well. The conclusion of the analysis of the above
kind is that the general rule regarding the X

eigenvalue, which has been described for a sim-
ple potential with the help of Eqs. (2.13)-(2.17),
will be found equally applicable to a composite
system consisting of two square potentials of
opposite signs. We may assume that the same
conclusion may be reached for any composite
potential.

It is crucially important to the T-matrix theory
that two eigenfunctions, ())„and g„, associated with
two different eigenvalues, X„and X, respectively,
are orthogonal in a functional space which is de-
fined by using the shape matrix v as the metric
operator

Since it is shorter, we propose to refer to the
7.' matrix of the standing-wave version as the C
matrix, where the letter C has been chosen to
remind us of close-collision states. Thus, the
partial-wave C matrix satisfies the T-matrix
equation

(r
I
c Ir') = (r

I vl r')

+A. dr"dhr v h" G"~ h",h

x(rIcIr') . (2.19)

tan5=-k ' Chdh'
&

r r C r' f r'

=-(~/2u)SC(E) . (2.21)

The T-matrix equation (2.19), considered to be a
linear integral equation for a fixed h', has an
asymmetric kernel

(r~d(r') fdr"(r=(v(r")G' '(r",r'). (2.22)

We call it the rescattering operator and denote it
by B, where the letter B has been chosen to re-
mind us that it raises the order in the Born ex-
pansion by one. The T-matrix equation (2.19)
may be rewritten formally as

C= y+ &BC. (2.23)

The solution C of the above equation may be set
in the form

c=(1—xa) 'y.
We now introduce a function g„,

v„(r) fdr'(r(v~r=')d„(r') .

(2.24)

(2.25)

By multiplying v on both sides of (2.12) we see
that

The partial-wave K matrix is the on-shell part of
the partial-wave C matrix

K(E) =(d/v) ff drdr'dr(r)(r~C(r')dr( ') . r
(2.20)

The partial-wave C matrix is related to the tan-
gent of the phase shift by

dkdr' *r r v r' „h' =0, if A. WA.„.
(2.18)

where

dh' h B h' O„h' =g„h, (2.26)

This result follows from the homogeneous Ls
equation (2.12). It is further discussed in Appen-
dix A for the standing-wave version of the T-
matrix theory, and in Appendix B for the outgoing-
wave version.

(1.2)

Therefore, 0„ is an eigenfunction of B associated
with the eigenvalue g„. By operating G' ' on both
sides of (2.25) and taking into account (2.12), we
obtain
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Cr'G"'(r, r')o„(r') =7)„tj„(r). (2.27)
&tj.,c.&=&v,t.&=5 ..

It follows from (2.27) and (2.33) that

(2.33)

For the sake of convenience of later discussions,
let us denote by E the kernel of the LS equation
(2.6)

(r[K[r )=I 'dr"G'~'(rr" |(r"/i [r'I . (2.28)

We call it the LS kernel. In terms of E, the ho-
mogeneous LS equation (2.12) may be rewritten
as

d~' x E. x' „x' =q„„x, (2.29)

hence, g„ is an eigenfunction of the LS kernel K
associated with the same eigenvalue j„. Both
kernels 9 and K are a product of the Green's
function Q' ' and the shape matrix v and asymme-
tric; however, they differ in the order in which
the two factors are multiplied.

It is convenient to normalize g„according to

dh dr' „* r x v x' „x' = sgn -q„', 2.30

(tj„,vg„) = sgn(-q„) . (2.30a)

By referring to (2.13) and (2.15), we see that the
RHS of (2.30a) is positive (negative) when we deal
with the repulsion (attraction) effect caused by v.
Also, it is convenient to define the adjoints g„and
v„, respectively, of g„and o„according to

where sgn denotes the signature. Hereafter, when
the complex conjugate g* of the wave function g
stands on the left-hand side, as is usual in quan-
tum mechanics, we employ the bracket notation
with use of a parentheses. Thus, we abbreviate
(2.30) as

&~„,d'&~„& =~„5.„. (2.34)

(r
i
v

i
r ') = g v„(r)o„(r') + (r

i

R'"'
i
r '), (2.36)

where R'"i is the residual term, which will be
discarded if we decide to use the rank-N approxi-
mation. In order to satisfy the homogeneous LS
equation (2.29) at any spectral point of X that is
included in the rank-N approximation, i.e.,

-L «n «+M, n+0,

the residual term R~"' of (2.36) must satisfy the
condition

We refer to (2.32a) as the tjt-space orthonormal
relation, reminding ourselves that the common
notation for the wave function in quantum mech-
anics is g. On the other hand, as is clear from
(2.38) below, the set of v„(r) will be available
as the basis of functional space, if we want to
analyze the matrix element (r

i
C

i
r') of the C ma-

trix as a function of x, for a fixed r'. Accordingly,
we refer to (2.34) as the C-space orthonormal
relation, whereas (2.33) will be referred to as
the space-crossing orthonormal relation. The
metric of the tj (C) space is v (G"~).

Suppose we include a number L of the repulsion
effect eigenfunctions (negative X and quantum num-
ber) and a number I of the attraction effect eigen-
functions (positive A, and quantum number) to de-
velop a finite-rank approximation. Let the sum
of LandMbeN,

(2.35)

We now set, for the shape matrix v,

tj„'(r) = sgn(-r)„) y„"(r) (2.31a) «'(rift'"'ir')&. (r') =0 -I--&-+& (2 37)~ ~

0„'(r) = sgn(-g„)o„*(r) . (2.31b)

d~dr' ~ ~ r v ~' „r' =5 „. (2.32)

Hereafter, when the adjoint gt of g stands on the
left side, we shall employ the bracket notation in
which we use angular brackets. Thus, we abbre-
viate (2.32) as

(2.32a)vg, &=5

Referring to (2.25) and (2.31a)-(2.31b), we ob-
tain from (2.32)

. Combining the orthogonality relation (2.18) and the
normalization condition (2.30), and expressing the
result in terms of the adjoint, we have

The above condition can be verified easily by
using the space-crossing orthonormal relation
(2.33). By using the form given by (2.36) for v
on the RHS of (2.24), we obtain for the C matrix

S.=(2/v)(4y o.) &v. 4g&. (2.39)

(riC ir') = ~ g (1-~q„)-'o„(r)o„'(r')
n="L

+( ip'"'I '), (2.38)

where p'"' is the residual part of the C matrix
that takes into account the effect caused by the
residual part P "~ of the potential. By combining
the results of (2.38) and (2.20), and comparing
with (1.1), we find that the residue parameter S„
of (1.1) is given by
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If the decomposition of the shape matrix y into
separable factors is continued indefinitely, we
should obtain

(r~R'"'~r') = Qo„(r)(r~(r')+go„(r) o'(r'&.
n&Nn&-L

(2.40)

Then, the condition of (2.37) may be easily proved
on the basis of the space-crossing orthonormal
relation (2.33). The rank Napp-roximation of the
C matrix, (2.38), clearly shows that, when the
matrix element (r~C~r') is considered to be a
function of r [r'], it may be expanded in a series
of o„(r) [o'„(r')].

The finite-rank approximation of the C matrix,
shown above, may converge to the exact C ma-
trix in the limit as the rank N tends to infinity.
Under certain conditions that are approximately
sufficient to remove a strong singularity or a
long-range tail of the interaction potential, a con-
vergence proof was worked out in momentum
space in Ref. 3, based on %eierstrass's approxi-
mation theorem. " If we limit ourselves to a
simple local potential and to the zero-energy
limit of the S-wave scattering, 8= / =0, we may
discuss the basis for the finite-rank approxima-
tion in an appealing way. " The condition that a
local potential be free from a strong singularity
and from a long-range tail is that there exists an
integral~

drr~v(r)
~

&
0

(2.41)

Then, there exists a well-defined function s of x,

vlr) f~v'lv=(r')I'",
0

(2.42)

for any r, 0 ~ x ~ ~. In particular, as x tends to
infinity s(~) takes a finite value. As r varies
from zero to infinity, s(r) increases monotonically
and maps an infinite range of x into a finite range
of s. Therefore, one may obtain the Fourier
series representation of the 5 function of s(r)
—s(r'),

6(s(r) —s(r')) = [2/s(~&]gsin[nms(r)/s(~)J
n=i

&& sin[nvs(r')/s(~&] .
(2.43)

When we re-express the 5 function 5(r- r') on
the RHS of (2.5) with use of 6(s(r& —s(r')) of (2.43),
we obtain a series expansion of the shape matrix
of a simple local potential

f„(r) =a„(r), n»1. (2.45)

Qne can also exactly solve, for F.= l =0, three
examples:

~v(r)
~

= xep[-(r/a)], (a+r) 4, or (g 2+r'& '

where g is a certain range parameter, and one
can verify directly that the asymptotic statement
of (2.45) is true.

Summarizing, we have dealt with two asymme-
tric kernels, K of (2.28) andL3of (2.22). The
eigenfunctions of these two kernels are related to
each other, as shown in (2.25) and (2.27), but
each kind is more useful than the other for parti-
cular purposes. The physical meaning of the
eigenfunctions and the associated eigenvalues
may be readily understood for the kernel K,
and its details are discussed with the heIp of
Eqs. (2.10a)-(2.17). An eigenfunction of K is
referred to as a )I)-space eigenfunction, and if it
is normalized according to (2.30), the resultant
rank-N approximation of v takes the simple form
shown in (2.36). On the other hand, an eigenfunc-
tion of the kernel B, called the C-space eigen-
function, is directly useful to write down the C
matrix in the form given by (2.38). Eigenfunc-
tions of each type span a functional space which
is defined by using a metric of its kind, as shown
by (2.32) and (2.34). For certain calculations,
the space-crossing orthonormal relations (2.33)
are very useful. The fact that, as far as the T-
matrix theory is concerned, a discrete set (v„]
serves as a complete set for the eigenfunction
expansion of the C matrix (at each E and f) is a,

consequence of the condition that v is free from
a strong singularity or a long-range tail.

III. THE C-SPACE BASIS GENERATED BY ITERATION
OF THE LIPPMANN-SCHWINGER KERNEL

Let us start from the free-wave term of the LS
equation (2.6) and iterate the LS kernel K to gen-
erate a series of functional bases [Q„;n=1,2, . . .].
The (n+ 1)th member is related to the nth member
by a recurrence relation

where the nth member of the series is constructed
by using the form factor

f.(r) = [2/s(")]"'I v(r)
I

'"»n[n»(r&/s(")].

(2.44a)

The form factor f„(r) for large quantum number
n is close to the C-space eigenfunction, as may
be shown with the help of the &KB approxima-
tion, "

(r[v„,fr') = —
/
v(r)

[
5(r —r') = -gf„(r)f„(r'),

(2.44)
))„., )rl = Idr'(v /)V

I

v') 0„(r'), (3.1)
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A, (~) =
A, (~) .

The formal Born series of the solution g of the
LS equation (2.6) may be written as

(3.2)

(3.3)

The Born expansion of the tangent of phase shift
may be obtained by substituting the RHS of (3.3)in
place of g on the RHS of (2.9). Also, recall (2.21)
as well as (1.3). The obtained result reads

~r r v r ' r = 7t 2KE

where K is the LS kernel, (2.28). The first mem-
ber P, (r) is the free-wave term

N

y„=Q Q)b, „, n=1. , 2, . . . ,N. (3.9)

The coefficients b,.„should be chosen in such a
way that the conditions

to (3.8), the conclusion reached there gives, in
restatement, an affirmative answer to our main
problem

Since the (Q} set is not orthonormalized, we
first carry out the Schmidt orthogonalization and
normalization of the {Pfset. The functional nature
of the Q space is the same as the g space. Hence,
we employ the metric v in defining the orthonor-
mal relation, as instructed by (2.32). The new
basis obtained after the orthonormalization will
be denoted by y„, which is a linear combination
of P,.

where

(3.5)

drdr'g~ r r v r' g„r' = ~ „,

m, n =1,2, . . . ,X, (3.10)

Since we are dealing with the standing-wave ver-
sion, all &j&„'s as well as all K„'s are real. Note
that the general formula

(3.6)

may be satisfied among the members of the (y)
set.

We denote by A„a determinant"

holds for any n and m.
We also introduce a series of functions

(3.7)

K, K2 K„

K3 K„„

K„K„„K2„,

(3.11)

to expand the shape matrix v. Qur main problem
is to examine whether the functional basis
f9„;n =1,2, . . .) serves as a complete basis for
expanding the C matrix. As shown by (2.38), the
C matrix may be expanded in the C-space eigen-
functlons {x„and their adjolnts 0„. Also' we may
assume the convergence of the finite-rank approxi-
mation, and hence we may assume that, upon re-
placing N of (2.38) with M, the residual term p'"'
becomes small for a sufficiently large M. There-
fore, if the answer to our problem is going to be
affirmative, we ought to be able to show that the
first M C-space eigenfunctions o, m = 1,2, . . . , M,
may be closely approximated by a suitable linear
combination of the first N members, say of the
$0/ set, or

o (~) —g a„6„(~) «, m=1, 2, . . . , m,

For the first two special cases, we stipulate that

DO=1 (3.12a)

K] ~ (3.12b)

lK, K2'
2tO 2

~K, K,
(3.13a)

K, K2
2yl

I K, K4

(3.13b)

We denote by A„a related determinant, in which
a substitution K,. -K,.„, i.e. , the raising of order
in the Born expansion by one, is performed on all
elements of the last n rows. For example, for
n =2, we have

(3.8)

where e is a small parameter to set an error
bound and a„'s are suitable coefficients of linear
combination. Although the results obtained in
Sec. IV are not explicitly stated in a form similar

K2 K3
2 t2

K~ K4

(3.13c)

The pew bases Z (r) that satisfy the conditions
of (3.10) will be given by
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K, K,

K, K, (3.14)

K„ K„„
The determinant shown above is similar to 6„
shown in (3.11), but its nth column is replaced
with a column of ((t),.;i =1,2, . . . ,N} Th.e adjoint
y~ is defined by

By using the second member of (3.14}, (3.16a), and
(3.18a), we obtain the normalization of x„

&x., vx„&= 1. (3.19)

This concludes the proof that the new basis 1X„J,
defined by (3.14) and (3.15), satisfies the ortho-
normalization dictated by (3.10).

Next, we will examine how useful the rank-N
approximation of the shape matrix v based on the
{X„]set is. The formulas (2.25) and (2.36) suggest
that we should build separable potentials with use
of the form factors $„(r}and their adjoints tt(r),
which are defined by

X'.(r) = sgn(a„~, ) X.(r) . (3.15) ((r) = f ar (r
(
v (r ) V (r ) (3.20)

The proof of (3.14) and (3.15) proceeds as fol-
lows. By using (3.6) and the second member of
(3.14), and letting m run from 1 through n —1, we
obtain (v(r)=fdr X„(rt'l(r''(v(r). (3.21)

((j),v x „)=
I
a„h„,

I

"'g (- )' 'h„. . .K,„, Employing the notations of (3.'I}, (3.14), and
(3.15), the above quantities may be written as

K, K~ Kn,

K3 . K„K,l
(3.22)

=0, m =1,2, . . . , n —1.
' K2n-2 Km, n-l

(3.16)

and

('„(r)=sgn(a„~, )$„(r). (3.23)

&X.„,vX, „&=0, n) m, (3.1'7)

which has been written in the notation of (2.32)
and (2.32a). Similarly, in analogy to (3.16) one
easily obtains

(

(X„,v (t) ) = 0, m = 1,2, . . . ,n —1 . (3.16a)

By using (3.6), the second member of (3.14},
(3.15), and (3.16a), it follows that

(X„,vX„)=0, n) m (3.1Va)

Hence, by combining (3.17) and (3.17a) it follows
that the orthogonality relation in (3.10) holds for
any m which is not equal to n. If m in (3.16) be-
comes equal to n we obtain

(4., vx.) = sgn(&. ) I r.«. (3.18)

Analogously, if m in (3.16a) becomes equal to n
we obtain

(x„,v(j)g = sgn(a„, )
I
a„/a„, I"'. (3.18a)

In (3.16), m is less than n, and according to
(3.14) and (3.15), any X' for which m is less than
n is a linear combination of (t)~, where k is less
than n. Thus, we obtain the following orthogonality
relation, for any m less than n,

The simplest shape matrix of rank N which we
can build with the use of these form factors is

(r III()((l)(() Ir )
—g t (r)~t(r ) (3.24)

We will show in the next section that the above
shape matrix reproduces the [N/N] Pads approxi-
mant.

IV. CALCULATION OF THE E MATRIX FOR THE
RANK-% POTENTIAL, (1.19)

M[N) (t G(o)tg 1 & m n (N (4.2)

When (3.24) and (4.1) are used for expressing v

and C in (2.23), we obtain a matrix equation that
involves Z'&~~

We will first determine the C matrix for the
rank-N potential (1.19) Ior (3.24)] and subsequently
the K matrix. The C matrix, denoted by C'"',
may assume the form

(rlc'"'Ir')= g t (r)1'L"'t'„(r'). (4.1)
mgn=l

To help with the calculation of the matrix r '~'

introduced above, we define a matrix M'"', whose
matrix elements are
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(I —xM["j)i [ '=xi

Solving (4.3) for I'"', we obtain

I-[ ) x(1 xM[N))

(4.3)

(4.4)

It follows from (3.14), (3.15), and (3.1) that

d~'y' x' ~' K' ~ =sgn s 6

By using (4.4) and (4.1), the full expression for
the C matrix matrix becomes

() Ic[N)Ir')=X/ $ (r)(1 —AM[N)) ' „$t(r').
m, n= 1

(4.5)

The K matrix, denoted by K'"' to conform to the
notation used in (1.14), will be given, according
to (2.20), by

K'N' = (2)[/)[) Q ([t)~, $ )(1 —XM[N )) ' „($„,[t)~) .

xQ (-1)' 'n, ),p, () ) .

(4.14)

Thus, the RHS of (4.14) is a linear combination of

Q, , where j runs from 2 through m+1. Therefore,
recalling (3.16), we may conclude that

(4.15)

Similarly, we have

(4.6)

The formal Born series of K'"', (4.6), may take
a form Recalling (3.16a), we may then conclude that

Kr [N) (2/v) g XRKi [N) (4 7) I'~„'=0, if m &n+1.m, n (4.17)

By comparing the RHS of (4.7) with that of (4.6), the
coefficients used in the Born expansion will be de-
termined as M[)=0 )f Im-nI». (4.18)

By combining the results of (4.15) and (4.17), we
conclude thS

K„' '= g (4„,(.)(M'"')" '.„(t„,y,).
rn, n=l

Note that, as an immediate consequence of
(3.20), we have

(4.8)
In other words, a matrix element M'~„' may not
vanish only on the diagonal m =n, or right next to
the diagonal m =n +1.

To calculate the matrix element for m =n —1,
note that

(4.9)

(g„y,) =IK, I"'. (4.10a)

For any value of m or n other than unity, all
quantities of the above type that are used on the
RHS of (4.8) vanish, according to (3.16). Hence,
the RHS of (4.8) may be simplified to

Kt [N) —K (M[N))k-) (4.11)

Next, we examine the details of the matrix M'"'
defined by (4.2). Recalling (3.20) and (3.21), we
may rewrite the RHS of (4.2) as

(4„$.) =(4, vx.)

and that the RHS of (4.9) has been evaluated in
(3.16). From (3.18), (3.12a), and (3.12b), we have

(y„(,) = sgn(K, ) IK, I"', (4.10)

while from (3.18a), (3.12a), and (3.12b) we obtain M[N) —sgn(n ) I
g g

I

)/2~ -) (4.20)

Similarly, using (4.16), the last member of (4.12),
(3.16a), and (3.18a), we obtain

M „'"„',= sgn()) „,) I
n.„r).„,I

"'))„,'. (4.21)

By inspection of the determinant shown in (3.16),
after setting m =n+1, we see that

(y„„,vx„) =In.„r„„I"')).„,. (4.22)

With regards to the diagonal element M„'"„', it fol-
lows from the second member of (4.12) and (4.14)
that

M!",",.=sgn(~. - )
I
&.-.«.-

I
"'(&. vX.» (4'9)

which follows from the second member of (4.12),
(4.14), and (3.16). Hence, recalling (3.18), we
obtain

M.',.'= (X., K'vX.) = (X. vKX.), (4.12) M[N„'=sgn(Z„n„, )
I
r „n.„,I

"'
where K is the LS kernel (2.28) and K" is its ad-
joint

(r
I

Kt
I
r') = Jt dr" (r

I
v

I
r")G [')(r",)"') = (rI B

I
r') .

(4.13)

[&„,(4„„,vX„)—&„...(Q„,vX„)] . (4.23)

Using (4.22) and (3.18), we then obtain

M["„j= (n.„,/n. „)—([)„,,/n. „,) . (4.24)

We have thus determined all matrix elements
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of M'"' for any N. As sketched in (1.9) of the In-
troduction, and as shown on the RHS of (4.11), our
next step might be to determine, for any N, the
(1,1) matrix element of the kth power (M'"')» for
all k less than 2N, 1 ( 0 ( 2N - 1. It appears quite
possible to determine the general form of
(M'~')», by the mathematical induction. However,
a part of the algebraic work to do so is not yet
complete. Hence, we will turn to the special
cases N =1,2, and 3 to demonstrate that the spec-
ial rank-N potential (1.19) [or (3.24)], reproduces
the [N/N] Pads approximant. The general case,
as much as has been completed, will be discussed
subsequently.

x', (~) = sgn(K, ) IK, I
"'A&(~) (4.25a)

which have been given in implicit form by (3.12a),
(3.12b), and (3.14). It is easy to calculate the ma-
trix element

(4.26)

Having the rank equal to one, the matrix Mtl3

reduces to a single number, (4.26). Substituting
this result for M'~' on the RHS of (4.11)we obtain

Ki D] —K»-&KB-» (4.27)

By using (4.27) on the RHS of (4.7), the Born series
for the rank-one K matrix K'"' may be straight-
forwardly summed, to give the well-known form
of the [1/1] Pads approximant of the original K
matrix (3.4),

{2~/~)K [1 ~(K /K )]-' Kw

B. Rank-two approximation

The (1,1) matrix element M,",' of M"' is the
same as the result obtained for N=1 in (4.26).
Other elements may be obtained from (4.20),
(4.21), and (4.24), by setting n =2 in these form-
ulas. We also need the matrix elements of the
second and third powers of I"'. In writing them
down, we suppress the superscript [2], and the
list of these matrix elements includes:

(4.29a)

M', , = sgn(~)M'. ..
(4.29b)

(4.29c)

A. Rank-one approximation

If N =. 1, there is only one member of the fg} set
available for building the separable potential given
in (3.24), that is,

(4.25)

and its adjoint

(4.30a)

Let us then introduce a new formul. a for K"~'.
By using (4.9), (4.10), and(4. 10a) the RHSof (4.6)
may be rewritten as

K' " = (2~/~)K [(l. —&M'"') '] (4.31)

The specific form, which the above general form-
ula takes for N=2, is

K'"' =P,(X)/q, (Z), (4.32)

KI(23 Kf 2/2) (4.33)

C. Rank-three approximation

For the rank-three approximation, we have to
compute a larger number of matrix elements as
well as higher powers of M"~ than before. To
write down the result for such an extended part of
the list of matrix elements, we introduce an addi-
tional notation for determinants. Let 6„«& de-
note a determinant which is related to b,„of (3.11)
but differs from it in that a substitution K, -K„,
i.e., the raising of order in the Born expansion by
n, is carried out on each element of the last row.
For example, for n=2 we have

+2, 1(~)—
K) K2

Kg, K3,~
(4.34)

Among the matrix elements of the second and
third powers of M'3~, some with small subscripts ~

(n, yn) remain the same in form as those listed in
the preceding Sec. IV B. We o'mit the superscript
[3] again and list the following matrix elements
of the second power M' as the addition to the list
given by (4.29a) —(4.29c):

where the numerator and the denominator are,
respectively,

P, (~) = (2~/v)K, (I —~, ,)

= (2x/v)K, (1 - ».[(n, ,n, ) —(K,/K, )]]

(4.32a)

and

q (y) = det(I ~&2&)

= (n, —xg, + x'n, ,)/n, . (4.32b)

The RHS of (4.32) is identical with the [2/2] Pads
approximant of the original K matrix (3.4) ex-
pressed as a quotient of two second-order rational.
functions of X.
Therefore, the K matrix K' ~ for the rank-two
potential II~' 2~, (3,24), is equal to the [2/2] Padh
approximant of the original K matrix

)I ~3/(Ki62) (4.29d)



3142 SMIO TANI 20

(4.29e)

(4.29f)

M 3 &

——sgn{K()2,262}M & 2,
2 2

M 2, 2 ( 2, 1(2)/ 2} [(K2+2, 1)/(K)+2)]

M', , =sg (K»(~2IK, ~3I'"} '(K,~2, -K2~,),

g r l3]— (2)(/)()K,

X(K /K )

~(~,/K~, )

(4.29g)

M3» = sgn(K, &3)M33 3

/or the third power M' we list in addition to
(4.SOa}

(4.29h)

13=( 1I 3 I
} 31&3»

M', , =sgn(~, )M3, „
M', , =sg (K,) IK,r,~, I-'~'~. ..
M', , = sgn(K, 22,,~,)M3. ..

2, 3 ( 2, 1 (3 )/ 2) [( 2:. 3, 1 (2) )/(K1 3)] '

(4.sob)

(4.SOc)

(4.30d)

(4.3Oe)

(4.30f)

The list of the matrix elements of the fourth
power M, , calculated with the use of (4.30a)-
(4.30f), includes

M 1 1=K6/K1,

M'1, 3 = (K. I~3 I' "}~3..&3»

M', , = sgn(~3}M6, ,

(4.S5a)

(4.35b)

(4.35c)

We can calculate the (1,1}element of the fifth
power M.', with the use of (4.35a)-(4.35c), which
gives

11 K6/ 1'
The results shown in (4.26), (4.29a), (4.30a),

(4.35a), and (4.36) have established that for each
power of k that runs from 1 through 5, the (1, 1)
element of M" is given by

M, , —K~, /K1, 0 ~ 5.
Using the above result on the RHS of (4.11)
we obtain

(4.36)

(4.sv)

K""=(2~/v)K, (1+) b3+) 3b3)/(1+) ~ +) 'a, +), &,)

=&,'()&)/0,'()&) . (4.s9)

(4.38)

for the coefficients o'f the Born expansion of the
E matrix E' "for the rank-three shape matrix
II" ", (3.24). On the other hand, the formula
(4.6) or (4.31) implies that K'" must be a quo-
tient of two third-order polynomials of X,

g ~f3 3 g f3/3) (4 41)

Incidentally, the continued fraction form of the
Pade approximant has an advantage in that the
coefficients determined in a lower-rank calcula-
tion remain unchanged in higher-order calcula-
tions. The general form of the coefficient may
be determined by inspection of coefficients used
in (4.40). According to (3.12a)-(3.13c), we have

for the special cases of low-rank determinants.
The general form of the coefficient placed at an
even-numbered position is

(4.42a)

To use (4.42a) with n =1, one should refer to the
list given in (3.13d). The coefficient placed at the
next position (odd numbered} is

(13.+1= (&„„„., /&„., &„„)12„. (4.42b)

To use (4.42b) with n = 0, 1, one should refer to the

,list given in (3.13d). The type of formula adopted
for (4.42a) and (4.42b) has been deliberately
chosen in order to let each factor, a deter-
minant of the type of & or &, flow through the
four positions in the formula from left to right,
as the subscript for the coefficient e is raised
successively [shown by an arrow in front of Eq.
(4.42b)]; the coefficient n is a quotient of two
different combinations of determinants, and the
f irst and fourth positions in the formula are for
writing down the numerator, the second and third
being for writing down the denominator. " Such a
"flow pattern" may serve as a useful mnemonic
aid.

)([(~, ,/~~, )K,]

z[(a,/s, „,a, )K,]
1 —z[(a, .,/a, a, ,,)a,] .

(4.40)

The RHS of (4.40) agrees exactly with the [3/3]
Pade approximant of the original K matrix, as
suggested by (1.9) while reviewing the subject
in the Introduction. Thus, we have proved that

The undetermined coefficients, a,.'s and b&'s, in
the second member of (4.39) may be determined
uniquely by the conditions given by (4.38). The
result may be presented in the form of a con-
tinued fraction

D. Discussion on the general case

In order to extend the same type of approach
as given in the preceding subsection to ranks
higher than three, we may try to prove a result
of the form of (4.37) for the general case by
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mathematical induction. We shall now discuss
the prospect of such an undertaking.

We have noticed that the (1,1) element of the
second power, (M'"')', „was determined in the
rank-two calculation, (4.29a), but its form re-
mained unchanged in any higher-rank calculation,
N&2. With that example in mind, let us consider
the general case. Our problem is to examine the
(m, n) matrix element of the kth power (M'"')'
1&m, n &N, of the rank-N matrix M'"'. Since the
matrix M' ' is truncated with a size of N &&N, as
experienced in the rank-three calculation, the
effect of truncating M starts to appear as we keep
raising the power k. Quantitatively, (M'"')»„„
depends one'if m, n, k, andN satisfy the in-
equality

m+n&2N+1 —k. (4.43)

It is implied by (4.43) that a matrix element of
the N-dependent category starts to appear at.the
lower right-hand corner, and the N-dependent
category occupies a larger portion of (M'"')" if k

becomes larger. In contrast, if nz, n, and k are
fixed, and if N grows in such a way as to reverse
the direction of the above inequality, the (m, n)
matrix element of the kth power remains un-
changed for any larger value of the rank N, a
situation described at the onset of this paragraph
in a particular example. 'This N-independent form
will be referred to as the universal large-rank
form and will be denoted by (M( ')» „hereafter.
Qualitatively, we have

(M'"')" =(M("&)k . V m+n~XV+1 k.
(4.43a)

Based on (4.26), (4.29a), (4.30a), (4.35a), and
(4.36), we conjecture that the universal large-rank
form of the (1, 1) matrix element is

with k=2l-1, 2l —2, N~ l+1. Taking some re-
sults of the rank-four calculation into account,
the above list of the conjectured universal large-
rank form of matrix elements may be extended.
We conjecture that the following are true:

(M("))", , =sgn(~, ) ~n.,~,~, ~-«2n. , „„„(4.44d)

(ME~ &)i& sgn(~ (& ~ )(M(oo ))I&

(M'" ')", , = sgn(a, )(n., ~
a,a, ~'")-'

(4.44e)

1 3,1 (k-1 ) 1,1 3,1 (k-2 ))'I ( '44g)

(M'"')', , =sgn(~, ~,)(M("))k. .. (4.44h)

3,3 ( 2 3) ( 2 3, 1(k& 2, 1 3,1(l-l )

(4.44i)+ 2, 2 3,1(k-2)) '

Any formula among (4.44d), (4.44e), and (4.44g)-
(4.44i) is valid under the condition

k=2l —3, 2l —4, N)l+1.
It is quite possible to make a further extension of
the list. For example, (4.44a), (4.44f), and
(4.44i) suggest that the general form of the uni-
versal large-rank (n, n) matrix element is

However, we shall not pursue this subject any
further, but leave the rest for a future work.

With the use of (4.44a)-(4.44i), we may carry
out an algebraic work of the premultiplication by
M)

k =2l or 2l —1, N ~ l+ 1 .
Based on (4.29f) and (4.30f), we conjecture that

(M ) 2, 2 ( 1 2) ( 1 2, 1(») 1,1 2,1(k-l)) Pl

(4.44f)

(M' ')', , =&k.,l&, =&1,1(»&/&1, (4.44a) M(M'-')'= (M'" ')"', (4.46a)
with k=2l+1 or 2l, and N~ l+1. As is done in
writing down the RHS member of the equality
in (4.44a), the notations listed in (3.13d) [given
right above (4.42a)] and their generalization
will be used whenever it is convenient to do
so. The purpose of using such a riotation is to
help with our guessing at the general form for an
arbitrary k. Based on (4.29b) and (4.30b), as well
as on (4.29c) and (4.30c), we conjecture that

, 2 (+1 ~+
~

) +2,1&»-1& (4.44b)

(M(" ))»2, = sgn(n 2)(M(" ))k (4.44c)

where both (4.44b) and (4.44c) hold under the condi-
tion

or the postmultiplication by M,

(M" ) M =(M" )"' (4.46b)

Such a calculation carried out with respect to the
(1,1), (1,2), (2, 1), or (2, 2) matrix element will
enable us to verify that, when the power is raised
from k to 0+1, the same type of formula as listed
in (4.44a)-(4.44c) and (4.44f) applies. The cal-
culation is particularly simple for the (1,1) matrix
element. Thus, the general proof for the uni-
versal large-rank form may be completed by
mathematical induction, as far as these matrix
elements are concerned. The extension of the
mathematical induction proof to other matrix
elements must be left for a future work.

Once the formula (4.44a) is established, that
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result may be combined with (4.11) enabling us to
obtain

Z'~ '=E 1&k&2M (4.4V)

which is the general result applicable -to an arbi-
trary rank N, whereas (4.38) was obtained speci-
fically in the case of rank three. 'She conditions
(4.4V) for the Born expansion coefficients of the
rank-N E matrix K'~"' are exactly of the same
type as the analogous conditions (1.9) for the Born
expansion coefficients of the [N/N] Pade approxi-
mant. Hence, we obtain

~pfN] @gNgNg (4.48)

which is an affirmative answer to the earlier pos-
ed question, stated in Sec. III with the help of
(3 .8).

Z;~~~= (q )' 'S =X, 1- u--2N.
n n (5.1)

The above conditions are the same as those of
(4.47), but they are written down here in terms of
S„' and q„'. Clearly, the conditions of (5.1) are
sufficient to guarantee the result of (4.48). In

Ref. 5, however, the concrete form of the rank-N
potential that produces the desired results, (5.1),
was not shown. We have completed our investi-
gation in this paper by explicitly showing the N
form factors $„(x), (3.22).

Once the rank-N shape matrix II'"'"', (3.24), is
specified, any result follows, directly or in-
directly, from the properties of the matrix M de-
fined by (4.2}. Our approach is based on the set
of formulas (4.1)-(4.6), and straightforward. All
matrix elements of M have been determined by
(4.18)-(4.24). In Sec. IVD, some general dis-
cussions have been given of the 0th power, M'.
Three kinds of determinants have been used in

V. CONCLUSIONS AND DISCUSSIONS

We have shown that one obtains the [N/N] Pads
approximant for the K matrix if the shape matrix
g, (2.4), is replaced by II'"~:"', (3.24). That is,
the approximation procedure of using the [N/N]
Pade approximant for the R matrix is equivalent
to that of replacing the original shape matrix z by
the rank-N shape matrix II'" "'. The possibility
of obtaining this result was already discussed in
1965 by the present author. ' In Ref. 5, we first
observed that the R matrix in a rank-N problem
takes the form K" ', (1.14), in which one may
vary 2N parameters S„' and q„', (n =1, . . . ,N), by
changing the functional forms of N form factors
f„(r), (n= 1,. . . , N). If we successfully adjust these
form factors, those 2X parameters may satisfy
the 2N conditions

~N MN+1 N NN+1 N N+1 NN ' (5.6)

The initial conditions for the above three-term
recurrence formula are

q, (~) =I, q, (~) =I ~(Z, /X, ). (5.4a)

The three-term recurrence formula for the Pade
numerator P„(X) is the same as for the denomi-

writing down our results: &„introduced by (3.11),
explained with the help of (3.13a)-(3.13c), and

&„«,&
by (4.34). All results have been written

down explicitly in terms of these kinds of deter-
minants, thinking of convenience in application.
Most parts of our algebraic work are simple; the
calculations that were done to obtain the result of'

(3.16) are typical of such simple algebraic work.
The list of notation may have to be expanded in the
future. For complete determination of the kth
power of the universal large-rank matrix (M~" ')",
discussed in Sec. IVD, we may need a determi-
nant of some new type in'intermediate calcula-
tions.

The simplicity of the algebra required to deter-
mine the properties of M, in turn, is a conse-
quence of the fact that the functional basis has
been Schmidt orthonormalized in the P space at
the beginning of calculation. The same result as
obtained in this paper was obtained independently
by Garibotti and Villani for a local potential.
They symmetrized the Lippmann-Schwinger ker-
nel, (2.28), by premultiplication and postdivis ion

by the square root of the absolute value of the
shape function ~v(x} ~'~', and subsequently they
used the minimal iteraction method, which is
equivalent to the Schmidt orthogonalization of the
basis set." Their main results were given by
using a certain three-term recurrence formula.
To compare their results with ours, let us start
from (4.31). Comparing the RHS of (4.31) with the
Pads formula, (1.V}, we see that the Pads numera-
tor in the [N/N] calculation should be

P„(X)=(2X/m)E, min„»[det(1 —XM'"')], (5.2)

where min&, » denotes the (1,1) minor deter-
minant; similarly, the [N/N] Pade denominator
is

q„(~)= det(1 —~M'"') . (5.3)

By inspection of the form of M'"', determined by
(4.18)-(4.24), we find that the three-term re-
currence formula for q„ is

(5.4)

where

&~™n.i,~"-(+a.i, i/~N. i}-(r'n, x/r'N) (5.5)

and
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nator

P„„(X)= (1 —)).o.„)P„()).) —X'P~P„,(X), (5.V)

whereas the initial conditions are different, given
by

P,(x) =0, P,(x) =(2x/w)E, . (5.Va)

Thus, the results obtained by Garibotti and Villani
may be rederived by using our alternative ap-

. proach. For the special case of rank two, the
results were shown in (4.32a) and (4.32b). Before
passing, one may note that these results, (4.32a)
and (4.32b), suggest that the explicit general
formulas for g„(x) and P„(x) are

(5.8)

and

P„(~)=(2&/w)E,

" 1+
m=1

(5.9)

which are well known but written down here in our
notation. "

As for the theoretical foundation of our results,
we have completely avoided the square root of the
absolute value of local potential. Furthermore,
instead of symmetrizing the kernel, we have dealt .

with the two asymmetric kernels, 8 of (2.22) and
E of (2.28). We have used two kinds of eigen-
functions, one for each type of kernel, the C-space
eigenfunctions of (2.26) and the (I)-space eigenfunc-
tions of (2.29). As mentioned at the end of Sec.
II, it is in general convenient to deal with the $-
space eigenfunction to clarify the physical mean-
ing of the formulas, whereas the C-space eigen-
functions are directly useful in the development
of the &-matrix theory. Our approach has merit
in that any interaction potential, local or non-
local, may be dealt with as long as the kernels
may be iterated to an arbitrarily higher order.

A great advantage of dealing with a finite-rank
potential is that the exact wave function of the
system can be obtained with little difficulty. It
is easy to write down all matrix elements I'~"„',
in (4.5), for any small value of N, such as N =1,
2, or 3. Hence, the off-shell T matrix may be
approximated in the same spirit as the [N/NJ
Pade approximant of the E matrix. The present
method is, therefore, very useful in studying the
half-shell or off-shell & matrix. "

An interaction potential without a long-range
tail or a strong singularity has been defined in
Ref. 3 in momentum space in a particular fashion.
The convergence of the [N/N] Pade approximant
in the limit of infinite & to the exact result

has also been discussed. The results of the pre-
sent paper have established that, besides the se-
quence of finite-rank potentials based on the C-
space eigenfunction (2.36), there is a second se-
quence of finite-rank potentials based on the Born
expansion. The two sequences should become
equivalent to each other, as a set, in the limit of
infinite rank, but individual members are diffe-
rent between the two sets. At low energies, the
quantum-mechanical feature Of the system
dominates, unless X is large. Hence, one obtains
a good approximation by retaining a relatively
small number of terms in (2.36). With a rank
of suitably large magnitude, one should get a good
result also by employing the Fade approach pre-
sented in this paper. At high energies of the
Schr'odinger theory, on the other hand, each
eigenfunction cr„makes a relatively small contri-
bution to the sum, and a large number of terms
must be summed in (1.1). At the same time, all
eigenvalues q„become small in (1.1), making the
Born series converge more rapidly than at lower
energies. In fac't, the Born series always con-
verges in the high-energy limit of the Schrodinger
theory. Thus, the finite- rank approximation
based on the Pade approach of the present paper
should be very useful at high and intermediate
energies, whereas the finite-rank approximation
based on the C-space eigenfunction may be mean-
ingful only theoretically at high energies.

Finally, let us note that the high-energy limit
is substantially different in the relativistic theory
from the high-energy limit based on the Schro-
dinger theory. Hence, a careful examination of
the relativistic two-body problem should be en-
couraged, keeping the results of the present paper
in mind. Also, a detailed investigation into a
system consisting of more than two particles
should be undertaken, to extend the spirit of the
present paper to areas where an improvement of
the approximation method is highly desirable.

APPENDIX A: ORTHOGONALITY OF THE Q-SPACE
EIGENFUNCTION, (2.18)

Take the Hermitian conjugate of the homogen-
eous LS e(luation (2.12), after replacing the
eigenvalue and eigenfunction by X and (I), res-
pectively. Remember in the course of calcula-
tion that the shape matrix v is Hermitian and all
other quantities are real. Then, we obtain

8*(~)= 0 (~)

d'r'dr" r" r" v r' G' ' r', r .
(2.12a)

Operating v and g„ from the right in succession
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and integrating, we obtain

(0,v0„)=) (0,v G""vt„).

By operating v and (t* in succession from the left
on both sides of (2.12) and integrating, we obtain

we may write'down the homogeneous Lippmann-
Schwinger equation of the ingoing-wave version

d "(r)=V"f f dr dr 'G' "'lr r')(r'~v ~r")d' '(r")

(BS)
(P & vg„) =X„(g &

v G' 'v g„) .
By combining (Al) with (A2), we see that

(A2) wherein we have assumed that the potential is real,
i.e.,

()( -X„)((j),v G(G&v y„)=0. (AS')

APPENDIX B: ORTHOGONALITY OF THE P-SPACE
EIGENFUNCTION IN THE OUTGOING AND INGOING-

%(AVE VERSIONS

%hen the outgoing-wave Green. 's function
G("(y, r') is used, the homogeneous Lippmann-
Schwinger e(luation (2.12) becomes

d';'(r)=v„f f dr'dr"G''(rr )(r )v ,~r"')d''„'(r"),

(»)
where both the eigenvalue X„and the eigenfunction
g„are complex. Remember that the complex con-
jugate of G" is the ingoing-wave Green's function

(B2)G(v)(+ &r)v& G(-&(& +v)

Replacing the radial (luantum number n in (B1}
with m, and examining the complex conjugate,

It follows then that if two eigenvalues are not equal,

((t)„,vG"'vy„)=0, if X wx„. (2.18a)

The result (2.18) follows from (Al) and (21.8a).

((I)' ', v $„'') =&(„(P' ', vG''v (t)„'') .
By operating v and g('& in succession from the
right of (B5), we obtain

(B6)

(y(-& v y(v &) —)„(~p(-) v G(+ &vy(v ))

By combining the results of (B6) and (BV), we ob-
tain the biorthogonality &elation that holds when
two eigenvalues are not equal

(Bv)

(ib(- &, v )I)(' ') = 0, if )(. (B8)

If we try to extend the method of eigenfunction
expansion to the T-matrix theory of the outgoing
wave version, the orthogonality relation of (2.18)
should be replaced by the biorthogonality rela-
tion of (B8).

(~')v ~~")*=() '~v ~~") .
The Hermitian conjugate of (BS) reads

d„'-'(r) =V„f"fdr dr d''("r ')„(r"("v~r")G"''(r r)',
(B6)

By operating v snd (j)' '* in succession from the
left of (B1},we obtain
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