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We investigate general soliton features of a scalar field theory in two dimensions with polynomial self-
interactions. The static solution and its linear fluctuations are discussed in general and detailed calculations
carried out for ¢° and ¢° models. For ¢° the linear fluctuations can be analyzed explicitly, enabling
quantum effects to be evaluated. As a result we are able to show that the first-order soliton mass correction

is finite.

1. INTRODUCTION

Solitonlike objects in a realistic space-time di-
mension are difficult to investigate because of the
complexity of the classical field equations which
determine their detailed properties. It seems
worthwhile therefore to investigate much simpler
models in two dimensions as fully as possible,
classically and quantum mechanically, to obtain
clues on soliton behavior. The sine-Gordon mod-
el has been particularly fruitful in this way, and
the ¢* model has also been useful. A range of
two-dimensional models with intermediate prop-
erties, much less investigated, is provided by
P(¢), i.e., a scalar field with a polynomial self-
interaction. Whereas the sine-Gordon and ¢*
models possess an infinite set of vacuums, and
two vacuums, respectively, P(¢) can be chosen
to have any given finite number of vacuums, which
will not in general be connected by some symmetry
transformation, as occurs for sine-Gordon and
»* models. In P(¢) we then have several distinct
meson sectors, corresponding to the separate
vacuums, between which the solitons interpolate.
Accordingly, there will also be several distinct
soliton sectors, characterized among other things
" by different soliton masses. ’

We consider Lagrangians of the form

£=130,00"¢ - V(p).

Let us repeat some well-known facts about solitons
in such a theory,! mainly to set the notation. V(¢)
must have at least two zeros for solitons to exist;
the time-independent soliton will interpolate
smoothly and monotonically between adjacent
zeros. The field equation is

V()

550 (1)

99,0+

and for static solutions with finite energy is solved
by
de/dx==[2V(e) /2. @)

The energy (mass) of the soliton is given by

20

E= f dx[-;—(ggi)zw(cp)]: f dol2v(p)H/2.
(3)

For a static solution ¢.(x) the field equation is
equivalent to a stationary energy,

SE(¢)/5¢=0

By regarding x as “time” we can picture the solution
as the motion of a“particle” inapotential ~V, pas-
sing from one maximum of -V to an adjacent max-
imum. This picture is particularly helpful when
V possesses several local minima between two ad-
jécent absolute minima, as occurs in polynomial
models. )

Stability of the soliton is ensured by the exis-
tence of the different vacuum values attained at
spatial infinity, since these values cannot be al-
tered under perturbation. Alternatively, we can
examine small perturbations around the classical
solution in the form

o, )= (x)+nlx, ). 4)
We find that 7 can be written

1(x,t)=e*“*n,x),

where 1,(x) are eigenfunctions of the Schrodinger
operator K:

Knylx)= wkzm(x) )
(5)

—d?
K= e + V”((bc(x)) .

Stability follows from the fact that w,”>=> 0.

The quantum theory can be investigated by per-
turbing around the classical solution which is valid
for weak coupling. Let us define the coupling con-
stant A such that V(¢p,A)=(1/)V(/ X, 1), then ¢,
is of order A~*/2 and contributes a large scale ef-
fect for small A. We shift the quantum field oper-
ator ¢(x,?) by the classical solution, as in Eq. (4),
to define a new field operator 7(x,¢), which is
treated perturbatively in powers of A. Although
we do not discuss it here, strictly one should take

3120 © 1979 The American Physical Society



into account the zero-mode problem.! Quantum
corrections of O()°) can be described in terms of
the eigenfunctions of the Schrodinger operator

K [Eq. (5)]. In general the Hamiltonian can be
separated into parts,!

H=E, +Hy+H,

where E_~O(1/1) is the classical contribution of
the soliton energy, H, is O()°), and H, the inter-
action Hamiltonian is O(X) and can be treated per-
turbatively to take account of higher-order effects.

1L POLYNOMIAL SELF-INTERACTIONS

Now consider the case where V(¢) is a poly-
nomial in ¢, We require that V(¢) be non-negative
and will sometimes assume V(¢)=P(¢)? for some
polynomial P(¢). In general we impose the sym-
metry V(p)=V(-¢). The simplest such example
is ¢*:

V() =r(¢? -v?)?. (6)

Other polynomial self-interactions have also been
considered,” including® the ¢° model with potential:

V(o) =2%(p% + &) (p* —v2f, €>0. )

However, as in most polynomial models, analytic
progress is difficult because first-order quantum
corrections are determined, in this case, by
Heun functions. The potential (7) admits a static
solution which has an energy density peaked in two
separate locations.® This model of a “bag” contain-
ing two “kinks” canbe generalized, by taking higher-
degree polynomials V(¢), so as to incorporate an
arbitrary number of kinks confined within a bag.
We will investigate in detail the ¢° model

V() =35 2%¢%(p? - v%)? (8)

which possesses three minima (Fig. 1). Analytic
progress is possible here because first-order
quantum fluctuations can be expressed in terms
of hypergeometric functions.

A general class of models of some interest are
" those which approximate the sine-Gordon poten-
tial. This approximation can be achieved by trun-
cating the infinite-product formula for cos¢ to
obtain either of the following two polynomial po-

- ¢
FIG. 1. ¢° potential V with three minima.
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tentials:
V(")z}\‘") I'I [(bz—vz(k—%)z]z, (9)
k=1
V("):K(")d)z InI (¢2_k21)2)2. (10)
k=1

Here the first potential reduces to ¢* [Eq. (6)]
and the second to ¢°® [Eq. (8)] for n=1 and both
approach the sine-Gordon potential for n — «
(with appropriate » dependence in A"’). One is
adding more minima for higher » and, correspond-
ingly, more soliton sectors and only in the limit
n— « does the symmetry operation ¢ - ¢ +v ap-
pear to connect these sectors. As a result, these
polynomial theories are in general more difficult
to handle than sine-Gordon theory, although for
large # one would expect the soliton properties to
approach those of sine-Gordon solitons. Whether
the interacting solitons for potentials (9) and (10)
can, to any extent, be described by analytic for-
mulas as in sine-Gordon theory is a question
which we do not consider here. We will be satis-
fied to extract from the classical system the static
solution as given in Eq. (2) and investigate quan-
tum fluctuations around this solution.

To obtain the static solution qbc(x), we need
merely evaluate the integral [from Eq. (2)]

¢
i(x—xo):fm((b—)]l—,—z (11)

to obtain x=f(¢) for some function f. For poten-
tials of the form V(¢)=P(¢)* we can always ob-
tain f explicitly. Since f is monotonic we obtain
¢.(x) as a (generally implicit) smooth monotonic
function of x, ¢,=f"'(x). Different branches of
the inverse function ™! correspond to solitons of
different sectors. ¢, interpolates between adjacent
minima a,b of V(¢), i.e., ¢~ alx— —=) and ¢,

— b(x— «). The general shape of ¢,(x) can be de-
duced as explained in Sec. I. As an explicit exam-
ple consider the potential given by Eq. (10) with

AW = a/[2(n!)**], a=constant.
Using the identity

(m!)? 1 & 1 1 )
th(kZ-tZ) P e TR
=1

where

(*@!)?

M=k R’

we can evaluate the integral (11):

exp[i\/—&(x—xo)]=g)— fI (kz—g:—)nk. (12)

R=1

In the limit #— « we regain the sine-Gordon soli-
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ton,
xp[xValy —xy)] tan<¢ﬂ>.

For finite # Eq. (12) reduces to a polynomial
equation in ¢, which can be solved explicitly for
n=1 (Sec. III) and n=2, by solving a quartic
equation. Similarly for the potential given by Eq.
(9) we can obtain the explicit static solution for
n=1 (¢* and also n=2 (¢®) by solving a quartic.
Explicit solutions, although useful, are not neces-
sary and quantum fluctuations, for example, can
be studied to some extent with only implicit solu-
tions, as will be seen,

Let us remark on the soliton stability. The
vacuum structure of V(¢) distinguishes between
different soliton sectors according to the vacuum
values attained by ¢(x). The infinite energy re-
quired to alter these vacuum values prevents soli-
ton decay. This is evident from the following
argument,® rewriting Eq. (3):

E:f dx[%(%?—i 2V(¢)]"2>2¥%[ZV(M”Z]-

The second term of the integrand can be written
dF(¢)/dx, where

dr/dp=[2V(p)]'2, (13)

and can therefore be integrated to yield F(b) - F(a),
where a and b are the relevant adjacent vacuum
values. Any perturbation in ¢, which must pre-
serve asymptotic values, can only increase the
energy and therefore the soliton is stable. One
can, to some extent, also view stability as a con-
sequence of the identically conserved current j,
=¢€,,0"¢ and the corresponding conserved charge
Q= ¢(x) — p(->)=b —a, carried by each soliton.
However, we shall see (Sec. V) that in potentials
such as (9) and (10) solitons of different mass can
.carry the same charge @, but cannot decay the
heavier to the lighter, because each occupies a
different sector with different vacuum values. We
can take account of this phenomenon by defining
instead a conserved current

ju:euua"F((P), (14)

where F(¢) is defined by Eq. (13), and the soliton
charge is then proportional to its mass.

Alternatively, to demonstrate stability we can
examine perturbations around the classical solution
as shown in Eq. (4), and this entails a study of the
Schrédinger equation (5). Let us consider this
equation in detail as it arises also in the quantum
theory. We have

="+ Ul =, (15)
where n=17(), Ulx)= V"(p.(x)). Since ¢, is an

implicit function of x in general, it is convenient
to transform to ¢,= ¢ as the independent variable,

via Eq. (2). Define also g(¢)=[V(¢)]*/?n(¢), then
(15) becomes
2Vg"+3V'g’ + w?g=0, (16)

where V, g are functions of ¢, g'=dg/d¢, etc.
The boundary conditions on 7(x) are, as usual,
those of square integrability:

[ In@)[pax <. | (1)

The L, inner produce for functions 1(x) translates
to the inner product for solutions of (16):

(f,8)= f aolV(e)2f(9)2(®) - (18)
Define
L=-2Vd?/d¢* -3V'd/dp,

then we find

(f’Lf):wz(f;f)

b df
2 [, as ‘d¢
showing that always w?= 0, and stability.is guar-
anteed.

Equation (16) is a useful form of Eq. (15), with
all coefficients known explicitly. The nature of
Eq. (16) is determined by the singular points
which evidently occur at the zeros of V(¢>) real
or complex, Since the coefficient of g’ is V' these
singularities will be regular if the zeros of V are
distinct, but otherwise will, in general, be irregu-
lar. Let us take specifically the form V(¢)
:P((I))z, i.e.,

var [ (0 -a)?, (20)
1

‘varz(g)s 0, (19)

where the g; are real or complex, V is real, and

we can also impose V(¢)= V(-¢p). Then
2V
V'=
P -
and Eq. (16) becomes
3 w?
" ! — —
g +§;¢_a‘g+zvg—0- (21)

If the a; are distinct all singular points are regular,
and this is true for the point at infinity also. In
fact, for an arbitrary polynomial V() the point at
infinity is a regular singularity. To see this, put
¢—1/¢ and Eq. (16) becomes

" _]; 3V’(1/rl) ’Og
g +¢>(2 2¢>V(1/¢)> 207 V(1/¢,)—°» (22)




and ¢=0 is a regular singularity for V of degree
=2, For potentials such that V(¢)= V(-¢) the
number of regular singularities can be reduced by
the substitution Z= ¢?. For ¢* [Eq. (6)] and ¢°
[Eq. (8)] we then have equations with three regular
singularities, i.e., the hypergeometric equation or
a special case thereof. For some ¢® models and
for the ¢° potential (7) the equation will have four .
regular singularities (Heun’s equation) and exact
results are harder to obtain.

Returning to Eq. (21) for the case of regular
singularities, we can expand g(¢) near ¢=gq; ac-
cording to g~ (¢ —a,), where o, satisfies the in-
dicial equation

249 g 23)
0, +20,+—7—=
4 { V”(a‘) ) (
with
vi(a)=2x [] (a -q)?. (24)
1,4%# '

Hence for each ¢

w2 ]1/2
0‘=—1:E[1—W .

For ? <V”(a;) there are two real values of o,,
corresponding to two solutions in the vicinity

¢ ~a;, but only one solution is square integrable
since we require, from the definition (18), that
Ri(o;) > -1. The condition w? < V"(g;) corresponds
to the discrete spectrum, and for w?= V”(q;) we
expect w® to attain a continuum of values. This is
evident from an examination of the Schridinger
equation (15). For large x (positive or negative),
U(x) will attain a constant value V”(a,) since ¢_(x)
approaches the vacuum value g at infinity. For
w?> V"(a;) then we expect to obtain plane-wave
(continuum) solutions.

The situation can be understood from the quan-
tum-mechanical viewpoint. We regard ¢(x,¢) as
a quantum field operator which is shifted by the
classical solution ¢(x) to define a new quantum
field operator n(x,¢) [Eq. (4)]. This field  de-
scribes meson oscillations around the soliton,
as is apparent for large x when ¢, approaches
the vacuum value, and 1 represents the meson
states built on that vacuum. The mass m; of
mesons built on the vacuum with expectation value
(¢)=a, is given by, in lowest order,

V'(a)=m?. (25)

In general, adjacent vacuums will not be connected
by any symmetry transformation and the soliton
will interpolate between sectors with different
meson masses. The soliton presents a potential
U(x)=V"(¢.(x)) to incoming meson states and the
approximate soliton-meson scattering process can
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be inferred from the shape of U(x). I the mesons
of the adjoining vacuums are all massive, the
solution ¢ (x) will approach its vacuum values ex-
ponentially and consequently U(x) also approaches
its asymptotic values exponentially. For ¢°

(Sec. MI), U(x) has the shape shown in Fig. 2 and
this shape applies generally, except that the cen-
tral depression could contain various bumps. The
asymptotic values of U(x), m,? and m,?, need not
be equal. If one of the meson masses is zero,
¢,(x) and U(x) will approach their asymptotic val-
ues slowly, according to some power law, as
shown in Fig, 3 for ¢® (Sec. V).

From the shape of U(x) we can infer the following
properties of the Schrodinger equation (15). The
central well could permit several discrete eigen-
values w?® corresponding to meson-soliton bound
states. Here, we ignore the eigenvalue w?=0,
with eigenvector 1(x)=d¢,/dx, or g(¢)= constant
in Eq. (16), which is merely a manifestation of
translation invariance. For m,?s w? <m,? we can
have incoming plane-wave continuum solutions
(mesons of mass m,) which are completely re-
flected from the central potential (the soliton).
For w®>m,’ we can have incoming meson states
which will be partly reflected and partly trans-
mitted, i.e., a meson of sufficiently high momen-
tum can pass through the soliton and appear on the
other side as a meson of different mass appro-
priate to that vacuum. This phenomenon will be
investigated in detail for ¢°® theory. For ¢* and
sine-Gordon theory there is essentially only one
meson sector, and mesons can pass through the
soliton without reﬂectibn, with only a phase
change.

III. ¢ MODEL
We take now for V,
1y2,2(,2 BV

V=3x¢\p -%) LyA>0, (26)
which has the shape shown in Fig. 1. There is a
central minimum at $=0, and meson states built
on this vacuum have mass u. There are also
minima at ¢=+(u/A)'/2 connected by (and spon-

2
My === ===~

ma—-\ x
A\

FIG. 2. The Schrodinger potential U(x) relevant to
meson-soliton scattering, involving mesons of mass
my, My.
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\J "
FIG. 3. The potential U(x) for the case of one mass-

less meson; U(x) approaches zero slowly for large
negative x.

taneously breaking) the symmetry operation ¢
— —¢. Meson states built on either of these
vacuums have mass 2u. In the absence of solitons
the separate meson sectors form distinct worlds,
but with the existence of solitons both meson types
will appear, always separated by solitons.

We obtain the static solution ¢(x) by integrating
Eq. (11): '

1/2
b (x)= [% (tanh px + 1)]

s ) - | e

The solution has the appearance shown in Fig. 4.
For large positive x, ¢,~(u/A)*/?+0(e %) and
for large negative x, ¢,~0(e"**) so that ¢, quickly
reaches vacuum values exponentially according to
the relevant meson mass.

We also obtain other solutions by putting x — —x
(antisolitons) and ¢,— —¢, in Eq. (27) to give four
possibilities, each interpolating between adjacent
vacuums. However, we know nothing about possi-
ble two-soliton solutions which must be time de-
pendent, and which, unlike ¢*, can exist for the
potential (26). The solution (27) can of course be
translated and Lorentz boosted. The soliton mass,
from Eq. (3), comes out to be

M=u/4x. (28)

Next, we try to find solutions in the linearized

X

FIG. 4. The static ¢° solution ¢, (x), interpolating
smoothly between vacuums ¢=0, (un/A)1/2.

approximation, i.e., solve Eq. (15). We find
Ux)=V"(¢.(x))

5“2 3“2

15u?
2 72

4 cosh®ux °

tanhux - (29)
U(x) has the shape shown in Fig. 2, with asymp-
totic values U(x)—~ 4u® (for x — «) and U(x) — u2
(x — =), The Schrddinger equation for this U(x)
has been studied in detail (Morse and Feshbach,
Ref. 5, p. 1651) and the solutions expressed in
terms of hypergeometric functions. The specific

_correspondence with Ref. 5 is found by putting

z— ux,

e —3,
(30)
v —

-
mlm

b

u2+

€

af=

For w? < u? there can be only discrete levels, and
for U(x) given by Eq. (29) there is just one such
level, €= L corresponding to w’=0. This is mere-
ly the translational mode with eigenfunction d¢,./
dx; there are no meson-soliton bound states in

this model. For p®< w?<4u? there is the follow-
ing continuum solution:

o-(Keribdux/2
=N ey
. .
<p(b-3 0+, K41 ), @D
where
k_:(‘:—:_l>llz, K+:<4-%;>1/2, b=3(K, -ik.),

and N is some normalization and F is the hyper-
geometric function. Asymptotically we have

n(x)—=~0 for x— «,

1(x) ~ N[ A(k)e! **-* + A*(R)e t#5-*], x—

b
(32)
where

LK, +1)[(-ik.)
Ale.)= ro-Hre+3) -

This solution represents incoming meson states of
mass i which are completely reflected from the
soliton and return to —~, The mesons cannot
penetrate the barrier U(x)~4u? encountered on the
right of the soliton.

For w?>4p? we can have the following solutions
and asymptotic behavior:



e( i/2) (k=R )ux

(A) nx)=N O F oy

. P
XF<b"%, b+%9 l—Zk, eux+e-ux>7

(33a)
for which
1(x) =~ Nei#*+* = for x — e,
"7(75) — N[A(k_, k+)ei"‘k-"
+A(~k_,k,)et#8] ) for x—~ -, (33b)

ei /2(k =R )ux

B) n()=N Ty

et
eux+e-ux )

(34a)

xF(b—%, b+3, 1-ik.

for which
n(x) = New 5%,
n{x)—~ N[A(,, k.)e™ **+*
+A(-k,,k)et***], for x—e, _ (34b)

for x = =,

where
2 1/2 2 1/2 ;
() W i
k-z(ﬁz'_l) ) k+:<u_z_4> y b=-5(k+E),

B C(1 - ik,)D(=ik.)
T D(—3ik, —3ik. +3)T(—3ik, —3ik. —3) °

(35)

A(k.,R,)

We observe that (31) is obtained from (33) by put-
ting k,=iK,. Part (A) represents incoming mesons
(from the left, of mass u) which are partly re-
flected from the soliton, and partly transmitted.
Transmission can occur only for sufficiently en-
ergetic mesons (w?=> 4u®) and then the mesons re-
appear on the right side of the soliton with a heav-
ier mass 2y, appropriate to that vacuum sector.
Part (B) represents incoming mesons (from the
right, of mass 2u) which are partly reflected from
the soliton, but can also pass through at any ener-
gy to emerge on the left with mass pu.

The functions n(x) are used to calculate first-
order quantum corrections to the classical theory,
such as one-meson matrix elements and soliton
mass corrections.

IV. SOLITON MASS CORRECTION

We calculate here the quantum correction of
O(A°) to the classical soliton mass M= u?/4x,
due to quantum fluctuations around the classical
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solution. Using the explicit functions n(x) we can
show that the correction is finite, having sub-
tracted the vacuuim energy and renormalized. This
subtraction has to allow for the fact that two dis-
tinct vacuums are involved.

We substitute Eq. (4) into the expression (3) for
the total energy to obtain

E:“—2+lfdx[<a—">2+ K]+O(7t) (36)
o2 ot nan s
where K is given by Eq. (5). We diagonalize K by
expanding the operator 71(x,¢) in terms of eigen-
functions 7, of K, and the correction of 0O(1°) is
then merely a harmonic-oscillator term,' so that

w1
E=g+3 Zk:wk, (37)
where
wi=p2(R2+1)=p2(R2+4). (38)

[This expression is correct to O(1°) even when the
zero mode is properly considered.!] The correc-
tion

%U- E (2 +1)172
]

diverges quadratically but subtraction of the
vacuum energy should render this divergence
logarithmic, to be canceled in turn by renormal-
ization counterterms. To regulate the infrared
divergence we place the soliton in a large box of
length L, with periodic boundary conditions. In
order to evaluate the vacuum contribution, we
must consider the situation in which the soliton is
removed from the box. Faced with two unrelated
vacuums we must decide how to take account of
each vacuum in order to subtract properly the
vacuum energy. To O(X°) this vacuum energy will
be given by an expression similar to that of Eq.’
(36),

. .
E,=3 f dx{(g—tn) + nKon] s (39)

where K,= -d?/dx® + U,(x) is the Schrddinger oper -
ator in the absence of the soliton. The potential
U(x) is shown in Fig. 2; the soliton contributes

the central dip, on either side of which U(x) attains
constant asymptotic values. Without the soliton
U(x) is restricted to those asymptotic (vacuum)
values only, i.e.,

U,(x)=4u? for x>x,
=u? for x <x,. (40)

By translation we can choose x,=0. The mass
correction is then

1Y (-0 )=3iTrWVE-VE,) .
R
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The expression (40) for U,(x) is obtained in ef-
fect by shifting ¢(x,¢) as before [Eq. (4)], but
taking

b (0)=0(x)(u/A)'?, (41)

where 6(x)=1 for x >0 and 6(x)=0 for x <0. This
merely corresponds to taking the asymptotic
(vacuum) values of the soliton solution (27). The
“classical solution” (41) has adiscontinuity at x=0
separating the two vacuums and contributes a di-
vergent energy to the “soliton vacuum” of O(1/1).
This divergence may be ignored in evaluating E_,,
since there is no corresponding divergence in the
soliton solution to be’subtracted.

By placing the soliton in a box with suitable
boundary conditions we can render the continuum
modes countable and thereby follow them when the
soliton is removed. We obtain then, in principle,
the relation between the vacuum wave number q_
and the wave number k. with the soliton included,
enabling us to evaluate

0 Y 2+ 112 — (g 2+ 1)12],

In practice, this procedure is effective only for
situations in which the potential permits tranmis-
sion only, as in ¢* and the sine-Gordon model for
example., The reason for this can be seen upon
imposing periodic boundary conditions on the step
potential (40) to obtain a periodic potential, with
period L, as shown in Fig. 5. The continuum
wave solutions break into a countable number of
distinct bands within which ¢_ varies continuously. ®
Since the operator K| is invariant under transla-
tion by L, wave functions 7, satisfy

Molx + L) = e**9Ln (x) (42)

for some @ (the propagation constant). @ can be
quantized by identifying wave functions after N
periods, i.e., bending the line after N periods into
a circle of length NL. Each energy band then
splits into a finite number of levels, and we have

2un
Q:m, n=0,+1,.... (43)
Uo
_—
: pto
s : x
-L/2 0 L2

FIG. 5. The Schrddinger potential Uy(x) due to the
“soliton vacuum,” with period L. )

By matching wave functions and first derivatives
at all boundaries we obtain the condition which
forces the existence of the bands,®

(g. +g- y 1
cospuQL =~"—"" coslq. +q,)suL
ne 0.9, (@.+q)zu
(q; "Q-)z 1 y
-2 cos(q. -q)zuL. (44)
7.0, (g- -q)zu
The wave numbers ¢g_.and ¢, are defined by
(w0)2: “2(q_2+ 1)1/2: ,U.z(q,z +4)1/2 , (45)
where (w°)? is an eigenvalue of K,. Equation (44)

applies even if (w°)® <4u® by analytic continuation,
setting ¢, =1Q, where @, is real.

Similarly, for the more general case of poten-
tials for which the asymptotic behavior of the wave
functions is as given in Egs. (33) and (34), imposi-
tion of periodic boundary conditions produces solu-
tions with a band structure. Because of this, it is
difficult to determine exactly how the countable
levels change when the soliton is introduced into
the box since there will not be an equal shift for
each level. One obtains ¢! as a function of A"
in the form :

4P =KD+ y ), (46)

where the shift '™ depends explicitly on the level
n. Only for the situation of no reflection does the
band structure disappear, and with it the explicit
dependence of y on the nth level. For the potential
under .consideration this situation, in fact, arises
at high energies (large %_) when the back scatter -
ing disappears. This is evident from the coef-
ficient A(k_,%,) in Eq. (35). Writing

A(k_, k+):N(k_, k*)e“i( k_yRy) s (47)
we have

k,cosh?z7m(k,+k.)]

N, o f = k_sinhnk_sinhnk, (48)
Current conservation implies

N,k )? =N(=k_,k V=P /[k.. : (49)
For large k. =% we find

N(~k_,k,)=0("), (50)

Nk, =k, /k.+ 0(e2™) (51)

[setting 2, =% —3/2k+0(¥®]. Therefore, the co-
efficient of reflection falls off exponentially for
large k.

The mass correction for a reflectionless poten-
tial is*

dk d
2l | 5o 00) — (&2 +1)Y2, (52)



where 6(k) is the phase shift, and this applies in
our situation only for large k2. This is precisely
the region in which divergences appear and we can
check thatupon inclusion of renormalization counter-
]
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terms, the ultraviolet divergence cancels out.
The phase shift 5(k) for high energies is given by
the asymptotic value of 6(k_, %,) as defined in Eq.
(47). 6(k.,k,) is given by

i k_sinhnk_sinhnk, .
6k, k)=~ g In [k+ cosh’[37 (&, +k_)]] —* In[

To find the asymptotic value 5(%) we use known
asymptotic formulas for InI'(z),” essentially
Stirling’s formula. We find for example that
(for constants a)

ke k- Y AT i iam
lnf‘(— 5~ 3 +a>_k(z—2>+21n21r+4 -

+(a—%+2—2 —ik)lnk

1/i ia  id® 371)
+E(1_z“z'+T+'8“

+0(k2).

We obtain

15
=——+0(k?
5(k)= -z +O(K?), (54)
and so the integral (52) is logarithmically diver-
gent.

Now we must consider the effect of renormaliza-
tion. The Lagrangian £ will be renormalized by
a normal ordering of the polynomial self-interac-
tion. Since

b= 1%+ a:0* i +ay:0%:+a

P =1 159 ) 35 (55)

*=1¢*:+b:p% + b,
for coefficients q,;, b;, we must add ¢* and ¢*
counterterms to £. The counterterms of O()) are
required to cancel the one-loop diagrams (Fig. 6).
Taking into account combinatorial factors, we ob-
tain

£—-8 -§5u2¢2+§(>\/u)6p2¢4, (56)
where, to O(2),
3uxr dk
2_ YA —_—

B

FIG. 6. One-loop diagrams for ¢G, logarithbmically
divergent.

_ (1 -ik )T(-ik.)
I(-3ik, - 5ik_ +3)D(=5ik, - ik —%7] . (53)
—

The counterterms render finite the physical quan-
tities calculated in the meson sector based on the
vacuum ¢ =0, but also apply to the ¢p=(u/\)*/2
vacuum sector, by shifting the field suitably,
d— ¢ —(u/M)2. As we shall see, the same coun-
terterms also work for the soliton sector.

The counterterms contribute to the soliton mass
additional terms of O()\°):

iou2 f dl2dx — (51/81)6 p? fqbc‘dx, (58)

where ¢, is given by Eq. (27). (The divergent in-
tegrals are regulated by integrating over ]x]
< L/2.) The counterterms also contribute to the
vacuum an amount to be subtracted from (58).
This contribution can be calculated from (58) but
substituting instead ¢, as given by Eq. (41), the
vacuum contribution of the soliton solution. The
vacuum counterterm is then (—pL/16))5u®, and
when subtracted from the soliton counterterm (58)
gives a total additional term (5/161)5 4%, in which
we have let L — «,

The soliton mass, including only high-energy
fluctuations, is now

.
_W B [dkE k
E—4)\+2 27 5(k)(k2+1)172
15u dk
T f(k2+1)"2' (59)

The integrand of the counterterm is asympotically
15u/167k, which by Eq. (54) nicely cancels the
logarithmic divergence due to the function 6(),
and we conclude that the first-order soliton mass
correction is finite.

Before leaving ¢°, let us remark on the fact that
there are four static solutions [namely Eq. (27)]
and those obtained by putting x — -x, ¢, — -0,
and that quantum mechanically these can be dis-
tinguished. This is unlike ¢* where the operation
x— —x (to produce the antisoliton) is equivalent to
¢. = —d, and both solutions correspond to the same
quantum particle.? For ¢° the antisoliton is dif-
ferent because each side of the soliton is distin-
guished by the different meson mass allowed i.e.,
the operation x — —x cannot be reversed by putting
b, = —d,. The soliton differing from another by
the operation ¢,—~ —¢, can also be distinguished by
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adjoining to it another soliton, with the solutions
suitably patched together.® The soliton charge @
= f (d¢,/dx)dx will be either zero, or double that
of a single charge, and the two possibilities can
be distinguished. Here we are using the fact that
¢® allows double solitons.

V. ¢8 MODELS

Models with ¢® self-interactions offer a variety
of soliton phenomena, but exact calculations can-
not be carried far and only general statements are
possible. One new feature for ¢® is the possibility
of massless mesons. We consider potentials of
the form

V:A3((i)2 _,02)2(¢2 - a,UZ)Z , . ‘ (60)

as shown in Fig. 7 for a>1. Special cases occur
for <0, =0, and a=1, but consider first ¢
>1, There are four vacuums, two being con-
nected by the symmetry ¢ - —¢, and these support
mesons of mass given by

Vll(v): 8)&3’[)6((1 - 1)2= 'u2 s

(61)
V" (Vav) =8t a(a — 1P = ap?.

Two distinct soliton types are possible, one de-
noted S, interpolating between ¢ = -v and ¢p=v,
the other S, between ¢p=v and ¢p=va@wv. The soli-
ton masses, of O(1/)), are

5
M1=(2A3)”241—”5—(5a-1),
(62)
5
M= @)/ 2111;- Va-1a+3a+1),

and are equal only for @ —-3Va+1=0, i.e., @
~6,85. The static solutions are given by the for-
mula ‘

Eux __ v+é U\/E—(l) e
=) s

which can be explicitly solved for ¢ only in special
cases, for example, =4 and @=9 [the #=2 case
of the potential (9)].

The Schriédinger equation (15) describing linear
oscillations around the static solution can be con-
verted to Heun’s equation, for which little can be

¢

0 v Ja.v

FIG. 7. ¢® potential V with four minima. -

said. However, the general shape of U(x) is as
shown in Fig. 8 for the soliton S,. U(x) is sym-
metric and, for 1 <a <5, has local maxima on
either side of the central depression. One expects
that incoming plane waves will be partly scattered
and partly reflected. Similar statements can be
made for U(x) applicable to S,, except that U(x)
vill be asymmetric.

We can show that for « large enough mesons can
form bound states with S,, i.e., there can be dis-
crete levels in addition to w?*=0, We take the
eigenvalue equation in the form Eq. (16). An up-
per bound on a second discrete eigenvalue w,® is
given by

oo o L)

wy . (64)
where
2
L:—ZV:;—¢2— —SV,Zi%’

the inner product(,) is defined by Eq. (18) and f
is a trial function orthogonal to f,= constant, the
eigenfunction of the lowest eigenvalue w,>=0. A
suitable trial function is found by noting that for
a— o the potential (60) (with suitable dependence
of A on @) approaches the ¢* potential (6) for which
the exact eigenfunction of the second discrete
eigenvalue w,?/p’= % is' f(¢)= ¢(v* - ¢?)*/2.
Using this as a trial function and with the result
(19) we find

w?_ o_?+ia-l

Wi 1PGasd) )
which must be <1 for a discrete eigenvalue w, to
exist, since the continuum begins at w,*=u®. We
find that for @ > ~6.35, at least one discrete level
will exist besides w®*=0, i.e., a meson-soliton
bound state can form.

If the soliton charge is defined by @ = f do,/
dx)dx, then the ratio of charges for S, to S, is
2/(W a@-1), and we note that this need not be ra-
tional. For «=9 the charges are equal but, al-
though S, is heavier than S;, no decay can take
place because each soliton occupies a different

X

FIG. 8. Approximate potential U(x) for ¢® soliton
interpolating between related vacuums supporting mesons
of mass pu.



sector of the solution space, with distinct vacuum
values. Let us also point out that S, but not S,,
is self-conjugate in the sense that the symmetry
.~ —¢, is equivalent to x —~ —x, as for ¢*.?

Finally, let us consider the potential (60) with «
=0 ’

V(¢>)f= ABopt(p? - 7). (66)

V is similar to the ¢°® potential (Fig. 1) with three
minima, but the mesons built on the vacuum ¢=0
are now massless, leading to long-range interac-
tions. Meson states built on the vacuums ¢2 =12
have mass

p=(22%)"220%,

There is one soliton (together with those obtained
by symmetry) with mass M= (23)!/2205/15. The
static ‘solutions are given by
v v+ ¢

MX——$+lnm, (67)
and have an appearance similar to the ¢® solutions
(Fig. 4), except that the falloff on the side with
massless mesons is very slow: ¢~v/u|x| for x
large and negative. The soliton charge density
d¢,/dx similarly has a slow falloff and the soliton
might therefore be expected to have long-range
interactions, like a one-dimensional “magnetic”
monopole. The long-range interaction is indeed
apparent from the shape of U(x) (Fig. 3), since for
" x large and negative U(x)~6/x2. Massless mesons
will therefore experience a repulsive force at long
range, but can penetrate the soliton at energies
such that w® > p2, and acquire a mass i on the
right. The equation determining the scattering
[Eq. (16)] can be converted to the following by
substituting Z = v?/$?: '

4Z (2 -1)g"(2) -6(Z - 1)(Z - 3)g"(2) +%:Zzg(2)
=0. (68)

This equation has regular singularities at Z=0,1
and an irregular singularity at Z =, but cannot be
identified with any well-known equation. For large
negative x, U(x) ~6/x? and we find

h(x):ei«"‘( 3.3 -1) , (69)

W?x® T wx

which, together with n*(x), represents incoming
and outgoing plane waves (massless mesons).
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Meson-soliton bound states (“dyons”) cannot form
because the continuum begins at w®>0.

For the potential (60) with =1 there are also
massless mesons, but in this case no massive
mesons at all, yet the soliton will nevertheless
have a mass of O(1/x). Again, the soliton has
long-range interactions.

VI. CONCLUSION

We have examined P(¢), models and seen that
they can support a rich variety of soliton phe-
nomena. The possibility of many minima of the
potential allows for many meson and soliton sec-
tors, which need not be connected by any symme-
try, so that both meson and soliton masses will
differ from sector to sector. For a potential with
7 minima there will be #n® sectors of the solution
space, between which transitions cannot occur.
Although we have been able to say nothing about
multisoliton solutions, we have investigated linear
oscillations around the static soliton and so de-
scribed meson-soliton scattering at least approxi-
mately. The exact solution obtained for ¢° theory
has enabled the soliton mass correction due to
these oscillations to be studied; the finite correc-
tion which eventuates confirms that, as for ¢*
and sine-Gordon models, renormalizability of the
theory is not affected by the shift to a different
sector, be it a meson or soliton sector. The sub-
traction of the vacuum energy involving disparate
vacuums leads to complicated expressions, but
this will be the general situation.

Many of the results for P(¢), are very special
to two dimensions, although the quantization pro-
cedure and the renormalization properties are
general. One restrictive feature in one space di-
mension is the patching procedure, which requires
that adjacent solitons must correspond to smoothly
joined solutions. This means that, like mesons
of different sectors, the solitons of different sec-
tors can interact only via adjoining solitons.
Therefore, although the theory may be very rich
in particle content, the possible interactions of
these particles are highly restricted.
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