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A generalized quantum field theory
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(Received 12 December 1978)

An expression in quantum-field-theoretic language of the four-space formulation (FSF), especially the FSF
group properties, is derived by generalizing Schwinger's formulation of Lagrangian quantum field theory
(LQFT). The resulting theoretical framework includes a mass operator in addition to the energy-momentum
and angular momentum operators. It also contains LQFT as a special case. Brdad conclusions regarding
conservation laws (of rest mass, energy-momentum, and angular momentum) are obtained from the general
formalism. Many mathematical details concerning the FSF group and FSF transformations are presented.

I

INTRODUCTION has the form

The most widely used formulation of Lagran-
gian quantum field theory (LQFT) is that by
Schwinger. ' His formulation began with the de-
finition of an action operator 8'~ in terms of a
function Zs of field operators y„(x) and their first
derivatives such that

x, 8~ x )dx.
Bg

The quantity As denotes an infinite four-volume
in space-time that is bounded by the spacelike
surfaces O.„cr, as in Fig. 1, and the invariant
measure dx is defined as

dr=—dx 'dx dx dh .

The notation used here is that of Roman, namely

su —8 /sx (3a)

s" =g"'s, = s/sx„,
where the nonzero elements of the fundamental

' metric tensor g„, are

(Sb)

(4)
I

t

By performing the variation 5$'~ and then postulat-
ing that 5W~ is equal to the difference between the
generators of canonical transformations E~ at
0, and 02, i.e. ,

c12
Icl L cl d~

y

~ cli

and Hamilton's principle requires that

(6a)

I5I„=0 (6b)

L„=J sd,
Rci

(7)

where A,,i is the appropriate four-volume;
The point of interest here is the similarity of

Eqs. (1) and (1). Schwinger's procedure is clas-
sically analogous to varying L, rather than I,,
This raises the question: What would QFT look
like if the action operator was redefined to more
closely parallel CFT? The answer to this ques-
tion will be obtained by defining an action operator
A analogous to I„., and then evaluating 5A. The re-
sulting formalism is aesthetically appealing for
two reasons: It closely parallels CFT; and it re-
tains all of LQFT as a special case. Beyond aes-
thetics, however, is a physically significant mo-
tivation for performing the ensuing derivation.

where both I„and Lc, are invariant scalars, and
the proper times v. „„v,» are kept fixed. In a rela-
tivistic CFT the quantity L „., becomes an integral
of a classical Lagrangian density Z„such that

Schwinger developed LQFT. A correspondence be-
tween LQFT and classical field theory (CFT) can
be drawn as follows.

Classically' the invariant parameter used to trace
the 'evolution of a system point in configuration
space is the proper time 7.„. Furthermore, the
Lagrangian L,&

used in a covariant formulation of
Hamilton's principle must satisfy certain speci-
fied transformation properties, e.g. , Lorentz in-
variance. The subsequent classical action integral

FIG. 1,. Schwinger 's infinite four-volume Bz. The
arrows denote unit four-vectors normal to the spacelike
surfaces 0, , 0&.
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In order to develop a quantum-field-theoretic
analog of the classical relativistic action integral

, I„, one must introduce the concept of a quantum-
mechanical proper time. The concept of a quan-
tum-mechanical proper time that depends on the
coordinates Ix }was first introduced by Fock' in
193'7, and later discussed by Stuckelberg, ' Nam-
bu, ' Schwinger, ' and Feynman. ' At the time the
usefulness of this concept was not established and
interest in it waned.

A revival of interest in the notion of quantum-
mechanical proper time, now independent of the
coordinates (x"}, began as early as 1968 with
Cooke's' work. In 1973 Horwitz and Piron" pos-
tulated a similar quantum-mechanical formalism
for spinless particles that was based on a corre-
spondence principle relating classical and quan-
tum mechanics. Horwitz, Piron, and Reuse" "later
extended Horwitz and Piron's'o work, called "re-
lativistic dynamics, " to spin- —,

' particles and an
interesting calculation was made" to justify their
formulation. All of this work' " included a mass-
operator concept in addition to the quantum-mech-
anical proper-time concept.

The usefulness of a mass operator has been rec-
ognized for years. For example, Feynman, Kis-
linger, and Bavndal" defined mass operators in
their efforts to derive observed mass spectra.
Despite the usefulness of mass operators, exist-
ing theories of elementary particles include mass
operators in an ad hoc manner only. This situa-
tion has recently changed.

A probabilistic foundation for a relativistic the-
ory of spinlt:ss particles which incorporates quan-
tum-mechanical proper time and mass operators
was recently provided by Fanchi and Collins. ""
This theory, referred to as the four-space for-
mulation(FSF), formalized the notion of a quan-
tum-mechanical proper time which does-not depend
on the coordinates fx"}, and also provided a solid
basis for the mass-operator concept applied to
spinless particles. The FSF is a consistent single-
particle theory of relativistic spinless particles
in the presence of an arbitrary four-vector poten-
tial. As mentioned in Ref. 16, the FSF is capable
of describing particles with nonzero spin and
nonelectromagnetic interactions, such as the
field equation for spin--,' particles postulated by
Reuse. ' A field-theoretic formulation of the FSF
concepts should enhance the progress of research
in this area by making it easier to design and
evaluate experimental tests of the FSF.

Three features are present in the FSF which
suggest that Schwinger's formulation of LQFT
should be extended. The first feature is the ap-
pearance of a fifth independent variable that has
properties analogous to v.„. This variable is

therefore identified as quantum-mechanical proper
time and denoted by the symbol 7. The quantity
7 can be introduced into a field theory by defining
an action integral. similar to I,, and letting the in-
tegrand be a function of v.

The second feature is the invariance of the FSF
with respect to a symmetry group which'is an 11-
parameter continuous group that includes the Poin-
care group as a subgroup. The 11-parameter
group is called the FSF group and is discussed
in Appendix B. Invariance of a field theory with
respect to the FSF group is achieved by requir-
ing that the integrand of the action integral, i.e. ,
the Lagrangian, be invariant with respect to the
FSF group. This procedure is developed in de-
tail below.

The third feature is perhaps the most important
physically. In particular, an eleventh operator
has appeared in the FSF which is interpreted as
a mass operator. By generalizing Schwinger's
formulation of LQFT as prescribed here, a field-
theoretic framework including a mass operator
is obtained. The result is a formalism which can
be used to describe particles with arbitrary spin
and the fundamental interactions. This claim is
substantiated by showing that LQFT is a special
case of the general formalism. Broad conclusions,
particularly with regard to conservation laws, are
obtained from the general formalism. Detailed
applications, other than the derivation of LQFT,
are deferred.

Before leaving this yection it should be stated
that another reason for presenting the ensuing der-
ivation is toexpress the FSF concepts in the
language of the mainstream of elementary-par-
ticle physicists, namely field theory. Consequently
this paper should make many of the concepts of
the FSF more readily accessible to a broad aud-
ience of research physicists.

FORMULATION OF THE VARIATIONAL INTEGRAL

, As usual the Heisenberg picture is assumed,
however, its meaning in the present context needs
to be made explicit. In particular, a state vector
is specified as the simultaneous eigenket of a com-
plete set of commuting observables in space-time
at a fixed value of an independent scalar identified
as the proper time 'and denoted by v. The quantity
v is a scalar invariant which is used to paiam-
etrize the evolution of a physical system'~ " (see
Fig. 2). Attributing a physical interpretation to
the scalar z is not required by the formalism de-
veloped below. The mathematics is unchanged if
v is simply thought of as an independent scalar that
parametrizes the fields. The quantity ~ is iden-
tified as the proper time here, however, because
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FIG. 2. Proper-time evolution of a physical system.

this identification is consistent with the interpret-
ation of r given in Befs. 15-17. Furthermore,
identifying v as proper time lets us parallel clas-
sical field theory by starting with an action inte-
gral that is analogous to Eq. (6a).

By choosing the Heisenberg picture it is now

possible to describe the dynamical development
of the physical system in proper time. This is
achieved by determining the transformation law
that connects the observables at proper times 7 „
~2 separated by the interval

a7=72- V.,& 0. (8)

The quantity hv can be thought of as the invariant
interval during which a physical system is ob-
served. It is desired to describe the evolution of
the physical system in a space-time region R
during the interval Av.

Let &„g2 denote complete sets of commuting
operators at proper times v„v „respectively,
and denote the corresponding state vectors as
g(f,), g(f2) The .transformation law that connects
these state vectors and operators also expresses
the dynamical properties —the evolution —of the
physical system. This law may be written in

terms of the transformation matrix which trans-
forms the family of state vectors g(t, ) into the
family ((g,). The transformation matrix is just
the inner product of $(g,) and F(g,), i.e. ,

&r, lc,&
= &t(c,) I t(c.)&. (9)

The transformation matrix &f,~r„,& represents
one path of evolution of the system from v, to v2.
Alternative evolution paths are obtained by canon-
ically varying &P,~f,&. This variation is induced
by the infinitesimal canonical transformation dis-
cussed in Appendix A:

(10)

where dp is an operator and G is the generator of
the inf initesimal canonical transf ormation. The
new operators at v 2 can be written as &2+ 5&„
where

5~.=- ilG, ~.l.
The eigenvatues of the new operators are the same
as the eigenvalues of the old operators since the

variation is canonical, but the corresponding state
vector is changed by an amount

5k (K,) = iG(~,)&(K,)

A similar variation of the operators at 7, changes
the eigenvectors at v, by a similar amount:

5$(r~) =fG(7~)$(f~) .

The new transformation matrix corresponding to
the inner product of the new eigenvectors can be
written to first order in the variations as &g, (g,&

+5&/, ~l,&, where

5&g, lg, &
= z&g, lulg, & (14)

and the operator 5A has the form

K4. = G(72) —G(7,) . (15)

Equations (14) and (15) show the effect of the can-
onical transformation on the transformation ma-
trix and thus on the evolution path. This effect
is determined by evaluating 5A.

It is now assumed that there exists an invariant
scalar function L, subsequently called the La-
grangian, such that 5A can be obtained by varying
the action integral

2

A. = Ld7, (16)

where the points v.„~2are fixed and A is called
the action operator. Substituting Eq. (16) into
Eq. (15) yields the variational integral

2

@4=A Ld7. =G 7, -6 w, .

, e„, dx,
R

where B is an arbitrary four-volume that contains
the entire physical system and

~

( )
8$~(x r)

97

The field operators g„must be defined such that

In words, the variational integral asserts that the
variation of the action operator is equal to the dif-
ference between the generators of infinitesimal
canonical transformations at 7, and v2. An ex-
plicit evaluation of 6A and the generators depends
on the functional form of L which, in turn, de-
pends on the symmetry properties of the physical
system.

The field-theoretic specification of the function-
al form of L is in terms of field operators
g (x, ~) (n = 1, 2, . . . , N) which represent the N de-
grees of freedom of the physical system. Thus
define the Lagrangian operator L as a four-volume
integral of a Lagrangian density operator 2 such
that
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GENERALIZED QUANTUM FIELD THEORY

It was stressed in Ref. 16 that the symmetry
properties of the single-particle theory of rela-
tivistic spinless particles are those of the FSF
group (see Appendix B). These same symmetry
properties are assumed applicable to the gen-
eralized quantum field theory (GQFT} being de-
veloped here. Thus an equivalent description of
the physical system presently described in the
coordinate frame (x"] at the proper time 7 is
achieved by an infinitesimal transformation to a
nem frame at ~' given by

x'" =x" + ex"

v' = v'+5T,

(20)

(al)

and by making an infinitesimal transformation of
the field operators such that

y'( ~x) =y„(x, T)+5,q„(x,~). (22)

Equation (22} defines the total variation 5,(„(x,7)
Observe that the argument of g'„has the same nu-
merical value as the argument of ]j)„, therefore
g~ and g„refer to different physical points.

The total variation of the field operator g (x, 7}
due to 5A is given by Eq. (All), namely

6,y.(x, ~) = f[ak, y„(x, ~}], (23)

where x must be a point in the regions since the
generator 5A depends on R. It mill be shown belom
that 5A is the generator of the infinitesimal can-

2 is integrable. Furthermore, the neglect of
higher-order derivatives of g in 2 is an arbitrary
assumption designed to simplify the subsequent
mathematical manipulations. It should also be
emphasized that the invariant scalar v and all of
the components of the four-position x are indepen-
dent variables as in Refs. 15-17.

An important conclusion can be drawn based
upon a comparison of Eqs. (16)-(18). In particular, .

the operators I and 8 must be self-adjoint since
the generators G are self-adjoint (see Appendix
A). This is a significant restriction on the form
the operators L and may take. Additional re-
strictions are imposed by the symmetry proper-
ties of the physical system.

onical transformation Eqs. (20)-(22). With the
symmetry properties of the physical system speci-
fied, the explicit evaluation of 5A can be made.

The form of the initial action operator A, is

mhere

2

@ x, 7 dxd7-,
l (24)

2

A~ = 2' x', r' dx'd7,
R'

mhere

(25)

2'(x', ~') -=2 (y' (x', T'), s „y' (x', ~'), j '„(x', ~')),

(25a)

and the change in the boundaries of R due to Eq.
(20) is 'denoted by R'. Notice that dv. is unchanged
because the y end points are fixed and dv' = d~.
The variation M. is just the difference between

A& andA;, i.e. ,

or

5A =Ay -A],

2
8' (x', v')dx'dT

1%I 2

~ x, v dxdv. .
. ~l R

(26)

(26a)

Equation (26a) is evaluated by first expressing
Az in the unprimed system. The folloming pro-
cedure is analogous to that used in evaluating
ggr l, 18

8 ~

The four-volume element dx' is related to dx by
the Jacobian s(x')/B(x) of the coordinate trans-
formation, namely

s(x )„,s(5x")
dx =

~ dx 1 + p dx,e(x) sx (27).

where only terms up to first order in the varia-
tions are kept. The quantity 8'(x', T') is written
in the unprimed system by using Eqs. (20)-(22)
and Taylor's ser. ies, thus

&(x, 7)=&(g (x, T), & ]y (x, 1), y (x, T)). (24a)

The canonical transformation induces a change in
A, The form of the final, canonically transformed
action operator Az is

8'(x', v') =2'(x, r)+ '„' 6x" + '
6g

Bx ' 97

=2(|:,v)+il)l(x, 7)+I „[)l(x,|)+())l(x,r)]Iilx" +I [l( , )+ )l|(x,7)]Iii)l, 7i|
where

8'(x, 7) =—S(g'„(x,r), s„g' (x, T), p' (x, ~))

(28}

(28a)
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82(x, T) 82(x, 7) 82
54(x, 7) = ' 5,q„+ ' 5,(8„y.)+ (28b)

Again dropping terms that are second order in the variations lets us simplify Eq. (26):

2' (x', ~') = 2 (x, 7) + 52 (x, g ) +
8& x, ~) „8Z(x,7)

Substituting Eqs. (27) and (29) into Eq. (26a) yields

Z(x, 7)+52(x, T)+ t,
' 5x + - ' 57' 1+ q dxd7 — Z(x, v)dxdT.

8/(x, r) 8Z(x, r) 8(5x~)
Bx 87 Bx

Expanding and dropping terms that are second order in the variation gives

5Z(x, v)+ „' 5x" + ' 5~+2(x, ~) „dxd7. .8Z(x, r) „82(x,r) 8(5x" )
Bx 97 Bx

The integral

(30a)

vanishes since the T end points are fixed (as can be shown by an integration by parts). Thus Eq. (30a) be-
comes

or

82 x, ~) „85x"M= 52(x, ~)+ J Ilx" +2(x, v) „ IdxdT
~R

BSx, g 8 x, v
5ola+ .,'. 8p 5pkn

R 8 n 88vq'~

8Z(xT) 8 8 „+ ~
' (5,y„)+ „j"Z(x,~)5x" ] dxd~,8(„8~ ' " 8x

(sob)

where the relations

508' g„=8q 50(„,

504.= „(5.4 )

(32)

BZ
5,P dxd~

1 dR 8 0

have been used. The following manipulations are
designed to simplify Eq. (31).

Integrating the term

8~ (50$„)88'

=Bp 50(„—8q 50$„. (34)
9Z " 9$

88' lj)&y 8 8y

Substituting Eqs. (33) and (34) into Eq. (31) and then
rearranging the result gives

8 „ d eZ

1 s - c T

2

+ (8„[~ "5,y„+Z5x" ]] dxd~, (36)
I R

by parts, making use of Eq. (32), and postulating
the constraint that 50$ vanishes at the end points
v„v, gives

where

82(x, v)
8 8 p $ (y (x p 7 )

The rule for differentiating a product is used to
rearrange the second term in Eq. (31) such that

Equation (36) associates a four-vector m"" with
every field operator P" .

The integrand of the second integral in Eq. (35)
is the divergence of a four-vectors" defined by

~~5,y„+S5x" .

Equation (37) is put into a physically more inter-
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esting form by first introducing the local varia-
tion

BC BZ d 8
Bg„" BBgg„dr Bg~

(45)

6y. y-='. (x', ~') —q„(x,~), (38)

5y„=g'„(x, 7)+B"y'„(x,v)«„
+j.'(x, ~)6~ y.(—x, ~) (39)

Equation (22} is now used to express 6)„ in terms
of the original fields g . The result is

5y„= 6,q. + B' y.(x, ~)6x, +j.( x~)6~, (4O)

where second-order terms, i.e. , [B'60)„(x,g)]«'
and [B50$ (x, r)/Bw]5& have again been neglected.
The quantity 8" now has the form

where x, ~ and x', 7' refer to the same physical
point as viewed from canonically transformed
reference frames. Performing a Taylor series
expansion of g'„(x', v') and keeping only first-order
terms gives

is true for all values of o.. This relation is the
Euler-Lagrange equation and is the quantum-
mechanical analog of the relativistic classical.
field-theoretic result. Equation (45) is the field
equation for the field operator p„(x, v) and differs
from the corresponding field equation of LQFT in
that the field operator can be a function of w. If
the field operators are independent of 7, then .
is independent of P„and Eq. (45} reduces to the
LQFT result.

It is clear from the above that Hamilton's prin-
ciple yields the field equations for the operators

Furthermore, if the Lagrangian density 2
is invariant: under some symmetry group, such
as the FSF group, then the operator field equa-
tions are covariant with respect to the same sym-
metry group.

8" = ~"~ 6y„—(x""B"q„5""e)-«.—v""j„6~, (41)
LAGRANGIAN QUANTUM FIELD THEORY

6A = G(v~) —G(T,)

BZ —B p
ll' — ~ 60$~ dxd 7,d BZ

T B

where 5'" is the Kronecker 5. Substituting the
above results into 5A yields In order to be a valid physical theory, GQFT

must describe all of the phenomena described
by LQFT. It will be shown in this section that
LQFT is, in fact, a special case of GQFT. This
will prove that GQFT describes at least as much
phenomena as LQFT.

Equation (42) can be written as

where m"" and 9" are defined by Eqs. (36) and (41),
respectively, and the notation

2 2

QA = 5Ld7= &@A" dxd&,
1 R

(46}

G(v, ) —G(~,)=- t B„Pdxd7.
R

(43)

GENERALIZED FIELD EQUATIONS

The notation used in Eq. (42) is intended to sug-
gest the identification of G(r). Equation (42) is con-
sistent with the postulate, Eq. (17), only if the in-
tegral

( 9 ~„d BS
I2=

~

—Bpx"" — . 60/„dxdv
s l, sf~ d7' Bp(g

(44)

is always zero. Observing that 60/„and R are
arbitrary implies that I2 vanishes identically only
if the bracketed quantity vanishes. Therefore,
Eq. (43) is valid only if

has been used.
At this point the mathematical formalism is es-

sentially complete. Headers familiar with Schwing-
er's work will undoubtedly notice the similarity
of the above formalism to LQFT. The principal
differences are due to the incorporation of a fifth
independent variable T and this, in turn, arises
because the symmetry properties of the FSF group
have been imposed on the physical system.

where Eqs. (17) and (45) have been used. If the
field operators are independent of v, as all fieM
operators of LQFT are, then Eq. (46) becomes

u, = a~eL, = S~ 8„&"dx, (47)

8 g JPdx

Applying the divergence theorem to Eq. (48}
yields

5L = ~"do „— &"do„,
02 Qy

(48}

where der„ is the p. th surface element defined by

vo dx dx dx

g

02 dx dx dx

dg 3= dx dx dx

(5O)

and it has also been assumed that the field opera-

where the subscript S indicates the operator is in-
dependent of v. Dividing Eq. (47) by A7 yields
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tors vanish at spatial infinity. The variation 5L~
can be written as the difference of generators of
observables on the spaeelike surfaces a„cr, such
that

8" =-,'M""e,p+ t"'e, +II"c (57)

where M"'P is the covariant angular momentum
tensor density defined by

~La =&sbj -Fable (51)
M""p= t"px' —t"'xp+vat ~rsvp, (58)

where

F,[o j -=&"do„,
"a

(52)

t"' is the canonical energy-momentum tensor de-
fined by

(59)

which correspond exactly to the relations used by
Schwinger. ' The formulation of LQFT, including
the usual commutation rules, ean now proceed
as in Refs. 1 or 2.

GENERATORS OF THE FSF GROUP

and the notation

has been used. Observe that M"' is antisym-
metrie, i.e. ,

Substituting Eq. (57) into Eq. (55) yields

(60)

(61)

aA = e„&"dxd~, (53)

which was obtained by combining Eqs. (42) and
(45). The four-volume integral in Eq. (53) can be
transformed into a hypersurface integral by using
the divergence theorem. The result is

A physical interpretation can be assigned to
specific mathematical constructs of the GQFT by
obtaining the field-theoretic form of the FSF group
generators. These forms are developed from
the equation

2

&,p (x', ~') =
2

M" ppdg„d~, (r)„(x', v') e,p
]
2 I

+i t"'da„dv, x', z' e.
1

t

+i H" dS„d7, g„(x', v') e . (62)
1

A comparison of Eq. (62) and Eq. (C14) implies
that the generators of the FSF transformation are
given by

M = 8"ds„d7-,
1

(54)
(63)

5 (f) (x', 7') =i
2

PdSpd~, y„(x', ~') . (55)
1 J

where dS„ is an infinitesimal, covariant four-vec-
tor characterizing the hypersurfaee elements of the
closed boundary of R. If the particular four-
volume A~ is used as the region of the integration,
then dS„becomes do„on g, and -do„on o, . (See
Fig. 1).

Equation (54) is used to determine the total
variation of („due to 5A as in Eq. (23), thus

(64)

and

H, p= JI (II
H" dSpdv

1
(65)

since the coefficients of the arbitrary infinitesi-
mals e,p, e„, and e must be equal.

If it is assumed that ()) vanishes at spatial in-
finity and the four-volume A~ is chosen as the re-
gion of integration, then Eqs. (63)-(65) become

Xv CvpX + Cv ~

P

5v=e,

(56a)

(56b)

~kn = a~ddd 48&pP ~

Bvp (56c)

where e,p, c„, and e are first-order infinitesi-
mals. By Eqs. (56), Eq. (41) now has the form

In order to evaluate 5p)„ for an infinitesimal FSF
transformation, it is necessary to determine
6x", 57, and 5g . These increments are developed
in Appendix C for the FSF transformation and may
be written as

W =P"(~,) -I "(a,),

H p H p((r2) H p (rl)

where
2

d"'(o)=- f f dd""'dv, dv',
1, a

2
. d"(v)-=f f ('"d(r„dv,

I o

and

(63a)

(64a)

(65a)

(63b)

(64b)
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2

H.,( g) = - H" dg„d7.
1 a

(65b)
free particle. Begin by defining a vacuum state
Io) such that

X '(x)=xx' f Mx id' (66a)

Notice that if the eigenvalues of J', P", andH p

are zero, then the respective eigenvalues of these
generators evaluated at g, equal those evaluated
at a„ i.e. , the eigenvalues are conserved. This
situation is more fully discussed in the next sec-
tion.

The physical meaning of the generators 8 "~(g}
and P"(g) is obtained by reducing the GQFT form-
alism to the LQFT formalism and comparing the
results. This reduction is achieved by requiring
that (f(„be independent of v in Eqs. (63b)-(65b).
In this case g„ is zero which, by Eqs. (60) and

(65), implies H., vanishes. 'Ihe resulting equa-
tions are

H.,(g)lo) =0,
P" (g)lo& = o,
~~"(.}Io& = o,

and

&olo) =1

(68a)

(68b)

(68c)

(68d)

2m(, (f =g (I—
9 P

Bx0

which can be derived from a Lagrangian density
having the form

(69}

in a manner analogous to LQFT. The specification
of g is intended to indicate that the eigenvatues of
the respective operators belong to a state vector
at the spaeelike surface 0.

The field equation for a free spinless particle
ls

2

H.p
= e„H"dxd7-.

R
(67)

P~(g) =67 )t t""dg(i,

where the subscript S indicates $„ is independent
of 7. as in Schwinger's formulation of LQFT. 'Ihe
generators J P(g) and P'z(g) are proportional to
Schwinger's field-theoretic expressions for the
total angular momentum tensor and the energy-
momentum four-vector, respectively. The propor-
tionality constant is the c-number b.7. Thus
J "P(g) and P'(g) are interpreted as the GQFT ex-
pressions for the total angular momentum tensor
and the energy-momentum four-vector, respec-
tively.

The physical interpretation of H" is based on the
fact that H" is related to the generator H„of in-
finitesimal translations along 7 by Eq. (65). Ac-
cording to Ref. 16, H,„has as eigenvalues the in-
ner product of the canonical momentum four-vec-
tor for spjnless particles. In the ease of nonin-
teraeting spinless particles the eigenvalues of H p

are the same as the eigenvalues of the Casimir
operator P"P„, which are just the square of the
rest mass of the particles. Thus H,„ is identified
as a mass operator andH" is called the mass flux
operator. The latter terminology depends on the
observation that H" may be thought of as a flux
density and this observation is verified by using
the divergence theorem to rewrite Eq. (65) as

&.= Z(4*4 4*0+-2—s"4s~4*

The constants @ and c have been set equal. to one,
and m is the average observable rest mass. '
Equation (69) has the general solution

((x, x) = f2 (i) exp(-iX(k) —+ikx)d'i,

where

q(k) = k02 —k k

(Vl)

(72a}

&@=Ago —k x. (72b)

If Eq. (71) is used in Eq. (C15c) and the result
applied to the vacuum state, then the result is

H„(g)A(k)IO) -A(k)H„(g)IO) = 2- A(k)lo). (73)

Equation (VS) is simplified by employing Eq. (68a)
such that

H.,(.)l» = ',
where

I» =-~(~) Io&.

(74)

(74a)

In words, the eigenvalues of H,p(g) are dimension-
ally proportional to the rest mass of the state I1).
Repetition of the above procedure can be used to
build up a multiparticle state. Equation (74) further
justifies the interpretation of H, p as a mass opera-
tor.

THE PHYSICAL MEANING OF H

The interpretation of H„as a mass operator is
verified by evaluating the eigenvalue of H,„for a

CONSERVATION LAWS

The scope of GQFT is illustrated by using GQFT
to derive conservation laws with broad physical
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validity. Conservation laws a,re a result of cano-
nical transformations which do not change the ac-
tion operator A. , i.e. ,

2

aA = 0=- ~„ t"dxd7-, (V5)

where 8 is again arbitrary. The necessary and
sufficient condition for Eq. (75) to hold is the con-
tinuity equa, tion

(76)

which is the differential form of a conservation
law. The form of 8" depends on the type of con-
tinuous symmetry transformation that leaves A
invariant. For the case of FSF transformation
Eq. (V6) becomes

t 2
J'p= Bu Mp'pdxdT

1 R

and

I"= a„t"'dxd~.
R

Substituting Eqs. (83) and (79) into Eqs. (85) and
(86), respectively, then yields

(86)

z"'= o=@ "(~,) -z "(~,) (87a)

II.,(o,) =II.,(o,) . (84)
t

Equation (84) asserts that H.„on the spacelike
surface 02 is the same as H„on the spaeelike sur-
face a, . Results similar to Eq. (84) can be ob-
tained for I" and J "P

by applying the divergence
theorem to Eqs. (63) and (64) such that

(77)
and

1 "=0 =P"(~,) -P'(&,), (87b)

Evp 6 0

and Eq. (77) gives

(ii) For a r translation only:

c,p= e„=0

and Eq. (V7) gives

e„H" =0.

(78)

(79)

(80)

(81)

(iii) For a proper homogeneous Lorentz trans-
formation only:

where Eq. (5V) has been used. By expressing
B&$" as in Eq. (VV), it is easy to determine the
form of the conservation laws for three particular-
ly important transformations.

(i) For a coordinate translation only:

where Eqs. (63a) and (64a) have also been used.
As a final example, let us apply the concept of

rest mass conservation to the free spinless par-
ticle example. This is done by applying Eq. (84)
to ~1) and then using Eq. (74) to show that the rest
ma, ss of the single particle has not changed during
the evolution of the state from g, to v2. In other
words, the rest mass of the noninteracting single-
particle state ~1) is conserved as it should be.
Thus it ean be inferred from this simple case that
if Eqs. (81) and (84) hold then the rest mass of a
state is conserved. It should be noted that if the
free-particle state ~1) is allowed to interact, then
the form of q(k) will change and the conservation
law expressed by (84) will no longer be valid. The
detailed effects of specific intera, ctions will be
considered elsewhere.

cv=E'=0 (82) SUMMARY

and Eq. (77) gives

g„l""P= 0. (83)

Equations (79) and (83) represent conservation
of energy-momentum and angular momentum,
respectively, as in LQFT. These two relations
are clearly independent of all spacelike surfaces
since the space-time four-volume B is arbitrary.
The remaining result, Eq. (81), is a new conser-
vation law that has appeared because the sym-
metry properties of the FSF group have been im-
posed on the physical system. Equation (81) is one
form of the assertion that the eigenvalues of H.„
are conserved when Eq. (75) is valid.

Equation (81) is the differential form of the
conservation of H, p' Another form is obtained by
substituting Eq. (81) into Eq. (65a) with the result
that

The primary goals of this paper have been to
derive a field-theoretic framework (GQFT) which
includes a mass operator, to show the consistency
of GQFT with LQFT, and to express the concepts
of the FSF in the language of the mainstream of
elementary-particle physicists, namely field the-
ory. These goals have been achieved. In ad-
dition, the field-theoretic formulation of the usual
conservation laws and a new one (rest mass con-
servation) has been presented. Thus the GQFT
not only contains LQFT as a special case, but it
also employs the concepts of the FSF and pro-
vides a field-theoretic framework upon which to
build.
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APPENDIX A: CANONICAL TRANSFORMATIONS 5,n=i[s, n]. (A12)

The canonical transformation of. a field g (x, v)
to g'„(x, 7) by a unitary operator U is defined by

The corresponding finite transformation is found
using Eqs. (Al), (A6), and (AV):

q'„(x, ~) =up (x, 7)V

where, for U* the Hermitian conjugate of U ',

UU+ U~U 1

(Al)

(A2)

(x, 7) = e g (x, 7)8

A similar result is obtained for 0:
n' = 8'~ne '~.

(A13)

(A14)

All physical properties of the system described by
the original field P„(x,~} are unchanged in the new

system described by the transformed field P'„(x, r).
A quantity which' is invariant with respect to a
eanonieal transformation is considered physically
signif icant.

An infinitesimal canonical transformation ean be
obtained by writing U as

U= 1+iI', (A3)

P*U = (1 —iE*)(1+iE)=1 z(E* F—) = 1,—

i.e. , I" must be Hermitian such that

(A4)

(A5)

The operator I is called the generator of the in-
finitesimal canonical transforma, tion U. The finite
canonical transformation is.ob fained by iterating
Eq. (A3}, thus

and

n
U= lim 1+—F = e'~

n~ oo n
(A6')

where F is considered a first-order infinitesimal.
The unitarity condition Eq. (A2) when applied to
Eq. (A3) and upon neglecting second-order infinite-
simals yields

APPENMX 8: THE FSF GROUP

The FSF group represents the linear transfor-
mation

X~ =A~ "X„+ap,

g' = v+Av'.

(Bla)

(Blb)

The set containing as elements all FSF transfor-
mations together with the binary operation speci-
fied in Eq. (B2) comprises the FSF group. Ob-
serve that if 6&-0, then the Poineare group is
obtained as a subgroup of the FSF group. Further-
more, denoting the Poineare group by P and the
translation group along 7 by T„ it can be shown
that the FSF group, denoted by J, is the direct
product of T, and P, i.e. ,

The quantities {A„'}represent a homogeneous
Lorent2; transformation, ' '" and the quantities
{a„},b, 7 represent translations along the {x„},r
axes, respectively. Equations (Bl) can be denoted
by {a,A, n, ~} and are referred to as the FSF trans-
formation. The product of two FSF transforma-
tions {a„A„nap and {a„A„b,rg is given by

{a„A„~~,) {a„A„~~,}
={a, A+,a A2,A &2v, 6+7}. (B2)

g
n

U*= lim 1-—I' =e '
n~ Oo

where I is now considered a finite operator.
Substituting Eq. (A3) into Eq. (Al) gives

q' (x, ~) = (1+i')y„(x,~)(1 —iF)

or, to first order,

g'„(x, r) = g„(x, 7)+i[E,P„(x,v)] .

(A7)

(A8)

(A9)

f = T„P.
This fact makes it easy to evaluate the Lie alge-
bra of the FSF group.

The FSF group is an eleven-para, meter contin-
uous group; therefore, it has eleven genera, tors .

which satisfy 55 commutation relations. " Of the
eleven generators, ten are those of the Poincare
group and satisfy the usua, l commutation rela-
tions" '.

Thus if the change (total variation) of the field
operator 50$„(x,7) by an infinitesimal canonical
transformation is defined by

[Jpv J~ )=i(zp ~~~+A~~.

+gua ~P k+gk&~aP }~ (B4)

5qf~(x, r) = $~(x, T) —P„(x,7), (A10) t~P. , Pk] =i(P.A k PK.k»- (B5)

then the substitution of Eq. (A9) into Eq. (A10)
yields

and

[Pp, P~] = 0. (B6)
5,i „(x,7) = z[Z, y„(x, ~)] . (All)

A similar expression can be obtained for any oper-
ator 0 satisfying Eq. (Al}, hence

Equations (B4)-(B6) represent 45 of the 55 com-
mutation relations. The remaining 10 are eval-
uated by taking the commutator of the eleventh
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generator of the FSF group, call itH, p with each
of the ten generators of the Poincare group. The
operator H.„ is the generator of infinitesimal
translations along v. As such, H p is the genera-
tor of the group T, and, as a consequence of Eq.
(B3), it is known that H„must commute with all
of the generators of the Poineare group P. Thus
the remaining ten commutation relations are

[Z„„H.,]=0 (B7)

[Pq, H, p] =0. (as)

Equations (B4)—(B8) completely define the Lie al-
gebra of the FSF groups. It is of interest to note
that the structure constants of the Lie algebra of
the FSF group are the same as those of the Lie
algebra of the Poineare group.

then equated.
The term 50$ is given by Eq. (40), namely

5og~=5$„—9"$„5x,—P~5r . (C6)

The increments 5P„, 5x„5T are specified in terms
of the infinitesimal FSF transformation:

and

5x~=gq~x +cp )

5v =e,

54 =' ""48(x ')"v~

(C7a.)

(C7b)

(C7c)

where Z ~"" are the infinitesimal operators of
the proper homogeneous Lorentz group. Observe
that Eq. (C7c) is valid because translations along
x, r do not cause a variation 5)„although they do
cause a variation 50$„. This is shown by per-
forming an infinitesimal translation along x, 7 such
that

APPENDIX C: THE FSF TRANSFORMATION AS I
CANONICAL TRANSFORMATION

An infinitesimal FSF transformation. can be writ-
ten as

(C1a)

g'„(x", T) = („(x"—e", v —e).
Substituting Eq. (CB) into Eq. (22) yields

5oka=ln(x &1' &) Pn(x ')
4

ekn&" 4n& ~

(C8)

(c9)

and

Qp =Cp, (Clb)

(Clc)

Hence it follows from Eqs. (C6) and (CS) that

5(„=50/ +3"g„e,+g„@=0.
Combining Eqs. (C6) and (C7) gives

(C10)

where e„", e„, and e are first-order infinite-
simals. The above infinitesimal FSF transfor-
mation has the unitary operator representation

5,y = ,'[Z„'"q-,+(x'5" -x"5')y„]e,„
'ka4 4n' (C11)

UE =1+iX,
where

(c2)

(c3)

where O'P„e,„x"has been rewritten as

8 $~6ppx =g[(x 8 —x 8 )~/)(y]cpp

and the antisymmetry relation

(c12)

It is easy to prove that UE is unitary to first order
in infinitesimals by showing that

U~U~ —U~UE —1 (C4)

as in Appendix A. A finite FSF transformation can
be obtained by iterating Eq. (C2). Since Uz is uni-
tary, the FSF transformation ean be interpreted
as a canonical transformation.

A set of commutation relations of the operators
j'"', P", and H., with the field operators g„are
obtained by replacing F of Eq. (A11) with K such
that

vp
—-6/v (C13)

i[Z', q„]= ,'i[a"",g„]e„„+i[P',y„-]e,

+i[H.„(]e. (C14)

Comparing Eqs. (Cll) and, (C14) yields the com-
mutation relations

z[Z'", q.]=Z.""g,+( 'x"-sx"s")q„,

i[P",P ]=-9 g

(C15a)

(C15b)

has been used. The commutator i[K, P ] is ob-
tained by substituting Eq. (C3) into Eq. (C5), thus

50$„(x,7) =i[%,g„(x,q)]. (C5) and

Each side of Eq. (C5) is developed separately in
terms of the infinites™ ls c„,, e„, and e. The
coefficients of the linear terms on both sides are

i[H.„,y„]=-y„. (C15c)

Equations (C15) can also be considered the de-
fining relations for the operators J"",P II p.
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