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Recent concerns about the gauge dependence of transition amplitudes describing the changes of state of
quantized systems interacting with electromagnetic radiations have led to the development of invariant
schemes for the expression of the time-dependent quantities involved. It is shown in this work that such
schemes are not uniquely specified by the requirement for gauge invariance. Moreover, they simply
exchange a dependence upon the gauge of the electromagnetic potentials for a previously unrecognized
dependence upon the representation of basis states describing initial and final states of the process that is
equivalent to a dependence upon gauge. However, general expressions are developed in this work which
show that resonant transitions which correspond to physically observable processes involving the pure or
mixed absorption and emission of N photons are gauge invariant regardless of the multipolarity of the
transition moments and independent of the representation of the basis states of the system. A preferred
representation is introduced which is shown to accommodate the physical effects generally encountered.

INTRODUCTION

In 1931, Goppert-Mayer® introduced an expres-
sion for the second-order transition probability
for the interactions of a charged system with elec-
tromagnetic radiation that consisted of sums of
products of matrix elements describing sequences
of nonresonant single-photon transitions through
intermediate states connected to the initial and fi-
nal states by interactions involving the time-vary-
ing electric field. It corresponded in form to the
result obtained from second-order perturbation
theory for transitions between the stationary states
of a quantal system when the transition is media-
ted by the operator

H, =-eBF, )

where T is the spatial coordinate of a particle of
charge e in an electric field E which may be time
and space dependent. In a subsequent reformula-
tion the interaction Hamiltonian was expressed in
terms of the electromagnetic potentials & and y.y
so that

Ay =—(e/Mc)R-D, @)

where P was the operator for the momentum of the
charge. Although not immediately recognized, this
implicitly introduced serious complications con-
cerning the invariance of calculated results to ar-
bitrary choices of the gauges of the fields and to
selections of basis sets of states describing the
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material systems. Apparently the pervasive na-
ture of the consequences was recognized® only as
recently as 1972,

Kobe and Smirl® reviewed these difficulties in
1978 showing that the change of gauge of the elec-
tromagnetic interaction mediating a resonant sec-
ond-order transition between states belonging to a
basis set describing a material system in a field-
free space could introduce a change in the com-
puted transition rate of the order of (w,/w,)’ where
the w represented the frequencies of the radiation
fields inducing the transitions to and from the in-
termediate state, respectively. For example, be-
cause of the large ratio of photon frequencies, re-
cent calculations of the rates at which optical fields
induce the absorption of y radiations* have shown
changes in the transition probabilities as great as
10'° to result from changes of gauge in certain
approximations.

In general the second-order transition probabili-
ties must be summed over all possible intermedi-
ate states and for that case Kobe® has shown that
the resulting sum is gauge invariant for any com-
plete basis set. The extreme divergence observed
between specific calculations employing represen-
tations (1) and (2) result from the fact that the sums
obtained from the more frequently used expres-
sion, Eq. (2), are poorly convergent and undergo
oscillation at large amplitude when only a few
terms are used. Bassani ef @/.® have shown in de-
tailed calculations that convergence nevertheless
occurs to the same value obtained more rapidly
with the interaction given by Eq. (1) if all inter-
mediate states, including continua, are considered.
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While this resolved the principal obstructions en-
countered in the mechanics of computing transition
rates, conceptual ambiguities were introduced
which made difficult the choice of basis sets of
functions describing the stationary states of the
material system interacting with the radiation.

Generally, the lowest order of interaction of a
charged system with electromagnetic radiation is
the minimum in the number of photons N

N=Y m+n,), 3)

i

required for the conservation of energy
E,~Ey=3. (n; —m))hw; , 4)
i

where E, and E, are the quantized energies of the
material system in its initial and final states, re-
spectively, and »; and m,; represent the number of
photons of frequency w; absorbed and emitted, re-
spectively, during the transition. Equation (4) im-
plies that to the order N the transition is resonant,
and hence from the uncertainty principle, repre-
sents the creation of a final state f having a life-
time sufficiently long to permit physical measure-
ment. As mentioned above, for N=2 such transi-
tions were demonstrated by Kobe® to be gauge in-
variant. However, that work also showed that the
probabilities of nonresonant transitions of order

N <2 were gauge dependent if the basis set of func-
tions employed in the calculations was not care-
fully selected. The most transparent example per-
haps is the case of the nonresonant absorption of
single photons discussed by Kobe and Smirl.® They
showed it to be necessary to include part of the
electromagnetic potentials describing the interac-
tion in the description of the basis functions.

For a nonrelativistic charged particle without
spin subject to a static potential U(F) and interact-
ing with an external radiation field described semi-
classically by the electromagnetic potentials
#(F,t) and A(F, #) the Hamiltonian of the system is

ﬁ(t)=§%(§-§2§)2+ U+eo, (5a)

where H and D are operators, and the basis states
of the particle are defined by the basis Hamiltonian
in the most general form

N 1 /. -\2
HB=§7n—(p—-i-A) + U+ ed,(F,t), (5b)

where ¢, is a potential which defines the basis
states ¥, through the eigenvalue relation

Hy¥,=E,¥,. ‘ (5¢)

Previously Yang” had observed that the use of a
basis-defining Hamiltonian equivalent to (5b) with

¢,=0 resulted in the development of transition
amplitudes which were gauge invariant, as later
did Kobe and Smirl.® The consequent result was
that the description of nonresonant transitions re-
quired the use of initial and final states whose com-
position depended upon a part of the electromag-
netic field providing the interaction, that part being
determined by the requirement for gauge invari-
ance of the nonresonant transition probabilities.

It will be shown in this work that the require-
ment of gauge invariance is insufficient to uniquely
define the basis set of states describing the ma-
terial system and that the choice made by Yang”’
actually precludes the description of certain real-
istic systems. A generalized form of the basis
set is examined in this work and its configuration
in terms of the physical fields is recommended.

In particular, it is shown that e¢, is best repre-
sented by the energy of the interaction of the par-
ticle with the radiation fields

ep,=—eE-T-7-H. (6)

Moreover, an examination of the nonresonant tran-
sition probabilities introduced by Kobe® shows them
to be without a clear physical interpretation that
necessitates gauge invariance. It is shown in the
work reported here that, whereas resonant transi-
tions of order N are always gauge invariant, the
component nonresonant intermediate steps of order
less than N are naturally dependent upon both gauge
and the basis of representation as a result of the
nonphysical nature of the intermediate states. Ra-
ther than make a choice of gauge and basis set to
give unnecessary invariance to the nonresonant
transitions, it is shown to be more consistent with
physical reality to adopt a basis set defined by Eq.
(6), where the e¢, represents the envelope of the
physical fields, thus accommodating the Stark
effect precluded by Yang,” and to represent the in-
teraction potential also by the physical fields. A
posteriori, the original representation suggested by
Goppert-Mayer' is found more closely adherent to
physical reality. The lack of gauge invariance
found to result for the nonresonant transitions to
the intermediate states in some representations of
the basis states is shown to be canceled by any
subsequent and additional nonresonant step re-
quired to bring about a final transition which be-
comes physically observable by virtue of being
resonant to a higher order.

" GAUGE INVARIANCE IN CLASSICAL
AND QUANTUM MECHANICS

If the electromagnetic fields E, B are expressed
in terms of the potentials ¢,A
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E=-vgp-=— (Ta)

B=vx&, (7o)

those potentials are not uniquely specified by the
physical fields. If fis any continuous function of
space and time, new potentials

reg L2 .
¢ - —C ot ’ (8a)
R=K+vf (8b)

give the same electromagnetic fields and the same
forces on elementary charges

f=e<ﬁ+lc’x§), ©)

since the forces are expressed directly in terms
of the fields. The independence of the resulting
motion from the nature of the function f represents
the gauge invariance of classical mechanics.

In quantum mechanics the equation of motion is
replaced by the operator equation

_o¥ 4
iS5 =AM, (10)

where the Hamiltonian His

ﬁ(t)=ﬁ(’§—%§) +U@)+ed , (11)

and where U(T)is the static potential describing
the interaction of the elementary charges com-
prising the system. Despite the explicit appear-
ance of the electromagnetic potentials in Eq.
(11), the results of the application of Egs. (10)
and (11) to physical problems are gauge in-
variant.®? In particular the gauge transformation
defined by Eqgs. (8a) and (8b) changes the solutions
of Eq. (10) into

=" exp[+%f(f‘,t)] . (12)

Consequently the probability distributions which
involve the product ¥¥* are unaffected by that
change. Quantities which are similarly invariant
to a gauge transformation are the operator for the
kinetic momentum (~i%ZV — eA/c) and the operator
with units of energy (e¢ —i7%8/8¢). The treatment
of observable quantities depending upon the elec-
tromagnetic fields such as the shift of the energies
of the interacting system and the transition rates
induced between stationary states present greater
problems. The possible dependence upon gauge
inferred from conventional perturbation theory
will be discussed in the following section as it de-
fines the direction in which an invariant approach
is subsequently developed.

GAUGE TRANSFORMATIONS OF TRANSITION
PROBABILITIES

Conventional time-dependent theory

In the conventional time-dependent perturbation
theory for the interaction of a charged particle
with the electromagnetic field the interaction oper-
ator is configured in terms of the potentials

eZ
2mc?

ol —— (KB4 2 ,
Vit)=eo Tme REp+DB)+ A%, (13)
while the basis set of states are taken to be the
eigenfunctions ¥{”(¥,¢) of the unperturbed Ham-
iltonian H, describing the particle in field-free
space

w2

FI(,:E"E + U, (14)

where D is the operator —iZV. Then

. oy (@

Hybl” = m—ﬂ—;pt (15)
“and

VO F, 1) =3O Fe IME (16)

where E,‘,"’ is the energy of the nth basis state and
Hip? =By . (17

The actual state of the system at some time ¢ is
given by the solution to the Schridinger equation
including the interaction

m% =+ V(E))W . (18)

If a transition is conceived to occur from some
initial state n, of the field-free system ¥{(¥,0)
to some final state ¥ (%,¢), it is described by

the expansion coefficient

A, ()= (L0, ¥, )= f vOE, 0)*, (F,4)dg,  (19)

which gives the amplitude of the transition, where
\If,,o(f, t) is a solution of Eq. (18) that describes
the state into which the initial state evolves under
the influence of the full interaction potential of Eq.
(13). Necessarily ¥, (F,0)=\I/,§g’(f, 0). Since the
transition amplitude is an expansion coefficient,
any general solution to Eq. (18), ¥, (T, ¢) can be
written in terms of the field-free functions

0E =T apOVOE 0, 20)

with the initial conditions being a_,(0)=5,,. The
explicit values of the transition amplitudes can be
found from the usual coupled equations
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ar)a, (), 1)

L a

zh’dt a, Z
where the V,,

(‘Il,(nO)(F, t)l V(t)l\lf:no,)(_f" t))-

In another gauge such as the primed gauge de-
fined by Eqgs. (8a) and (8b), the possible states of
the system satisfying Eq. (18) with V’(¢) being
given by Eq. (13) writtenwith the primed potentials
are the ¥’ of Eq. (12) expressed in terms of the ¥
of Eq. (18) for the original unprimed gauge. How-
ever, in the new gauge the field-free solutions at
¢ =0 no longer correspond to individual solutions
¥/(¥,0) of the full Hamiltonian, but rather to lin-
ear combinations of the ¥/(¥,0), so that the initial
state might be expressed as

VO FE,0)= T 7, V4 (E,0) (22)

. (2) are the matrix elements

where tfle
n, = (0 (F, 0), 1O (F, 0))
—(‘If (-> O)Ie-(te/ﬁc)f(r 0)|¢ 0)(" 0)).

After a time ¢ this solution becomes
tI),,O(‘f, t)= E 7_"""0\II',"(F’ t), (23)

where &, (' t) is the solution of the full Hamilto-
nian 1nto Which the initial state \If“”(r 0) evolves
as time proceeds. The transition amphtude then
becomes by analogy with Eq. (19) a,,,, )

=(T, %, ) Substituting Eq. (23) into this ex-
pression together with the value of y,, finally
gives

MO ZFn,<t)F* O)a,, ), (24)

where
Fonlt) =(FD (F, 1) ee/h7 0[O (F, 1)),

Equation (24) is the basic relation describing the
transformation of the transition amplitudes re-
sulting from the change of gauge from the un-
primed to the primed potentials shown in Eqs. (8a)
and (8b).

Resonant transitions

The gauge invariance of the resonant part of the
transition amplitudes defined by Eq. (19) can be
shown to follow as a consequence of the transfor-
mation Eq. (24). It is assumed for simplicity in
this development that the radiation field can be
represented as a linear sum of components oscil-
lating at discrete frequencies w;, w,,...,wy, and
that the function f defining the transformation of the
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gauge also has components of finite magnitude at
the frequencies w,,...,w,. However, no loss of
generality occurs from this assumption because
the derivation is unchanged by the development of
the functions as Fourier integrals.

For example, the potentials describing a typical
radiation field might be expressed in the radiation
gauge as

$=0,
A=2, sin(w,t -k, ‘T+a,)

(25)

+Kzsin(w2t —kz-r+az)+ cee,

where A, and &, are constant vector amplitudes.
The gauge of Goppert-Mayer,'

>

/=~ _}iln_fcos(wlt _kl.r_,_al)
-E,Fco S(wyt =Ky Tray)+eer,
K""’O . (26)
where E,=(w,/c)A, is the electric field intensity

of the nth component, is obtained by the transfor-
mation of Eqs. (8a) and (8b) defined by the function

FE,t)==&, -Tsin(w,t -k, F+a,)
—Kz-?sin(wzt—l? Fray)+ee-. (27)

It is assumed that the interacting system, the
atom or molecule which will emit or absorb the
radiation, is initially in state », and that only one
final state » is resonant with transitions composed
of integral numbers of photons of the available
frequencies. Further, it is assumed that for only
one set of integers {n;,m;} is Eq. (4) satisfied for
the transition from »,—# of the lowest order N.
Then the time dependence of the resonant part

Oy & (t) of the transition amplitude in the original
unpmmed gauge «, (t) that leads to a probability
which grows with t1me of finding the system in the
final state is

el (wnno—wl-wz—'--)t -1
afﬂ (t)zKN —- - —eee) ?
o (w'"'o w; — W, )

(28)

where N is defined in connection with Eq. (4) as
mentioned above, the w, can be positive or negative
corresponding to the absorption or emission of a
photon, respectively, and K, is a constant com-
posed of matrix elements.

For example, in single-photon transitions, the
operator of interaction in Eq. (18) contains terms
with time dependence e*“1* ¢t g=iwit and
e~%vi* where w, can be positive or negative and
corresponds to the single frequency assumed to
describe the electromagnetic potential in a form
such as given in Egs. (25) or (26). In our conven-
tion the resonant part ¥ _for which Wopy— w, =0 re-

nng

sults from the potential term with t1me dependence
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e~#vif which can be denoted V,e~i¥1f, Then for this
single-photon transition N=1, and K in Eq. (28) is
found from Eq. (21) to be

Ky ==(V)),, /7 (292)

where (V,),, =W” @) V19,2 @).

For two-photon transitions N= 2, and the opera-
tor of interaction contains terms w1th time depen-
dence e*ziwlt, eiZiwgf’ eii(wl**wz)t, and ett (wl-wz)t,
where again w, and w, can be positive or negative
while describing the absorption or emission, re-
spectively, at the two frequencies of the compo-
nents of the radiation fields. The terms with a
resonant contribution for which w,, —w, -w,=0in
the second order of interaction are V,e~¥1f,
V,e~i@2t and Ve i @1*w2)t The terms V, and V,
are linear in the potentials and their resonant con-
tribution appears in the second-order iteration of
the conventional perturbation method for the solu-
tion of Eq. (21). The term V,, is quadratic in the
potentials and arises from the term (e®/2mc?)A?,
so that its resonant contribution appears in the
first-order iteration. Then

(V!Z)mlo
Ky=-—%
1 [( Vl)nn’(VZ)n’no (VZ)nn’(VL)n'noJ
+3 +
nE Wprn = Ws Wyrng = @1
(29b)

where the second of the contributions is the one
conventionally used to describe the predominant
part of the transition amplitude for a two-photon
process.

The term retained in Eq. (28) can be identified
as the resonant term because the limit of
[(ei @ _ 1)/Aw|?* is proportional to ¢5(Aw), the
Dirac b function, when ¢ -« and at the frequencies
corresponding to the N-order resonance {n;,m,},
Aw -0, Other nonresonant terms for which Aw
+#0 that arise in solving Eq. (21) do not lead to
physically observable transitions and have been *
neglected in Eq. (28).

The time dependence of the primed amplitudes de-
fined by Eq. (24) similarly results from terms
showing behavior which is either resonant or non-
resonant with the transition frequency W o For ex-
ample, terms such as F,,(¢)F} ,(0)a,, (), when
either [ #n or m+ n,, dependinverselyonthe Nth-
order frequency differences through the a®. (). If
the sum of the N-photon frequencies were
Y., w; =w, then the terms containing «,,(¢) would
include the potentially resonant parts af, (¢)

« (w,, —w)~* and the resulting product would be
resonant when the transition frequency was w
=w,,. However, it has been assumed in this de-

velopment that the transition occurs between 7,
and n sothatinthis case af, (¢) = (w;,, ~ w,,) ", which
cannot be divergent because of the initial assump-
tions of this section designed to avoid the acciden-
tal equality of transition energies between differ-
ent pairs of levels. Terms of this type are non-
resonant in their temporal behavior.

The only other type of terms appearing in the
transformation Eq. (24) are of the type

,m @)F ,,on(O)ano,,(t) and F,,,,(t)F,,O,,D 0)0:,,,l (t). Both
appear resonant a p7iori because of the form of
the of (¢) and anD,,(t) given by Eq. (28). However,
in the first the a;,(¢) describes the inverse transi-
tion n —-n, for wh1ch p AW =W, = » so that
the denominator becomes (Zw 0) > at resona.nce
rather than at zero and only the second of the
terms leads to the 6 function in the transition
probability. Since the F;; are functions of time
which are everywhere finite, the transformation
equation of the resonant parts leading to transi-
tions at the frequency W, becomes

& (O) = F ()P (O)E, (2)

+nonresonant terms, (30a)
or
, B ei(dwit _q
a,,,,o(t) = GU)KNT
+nonresonant terms , (30b)

where G(t)=F,,(t)F}, (0) and Aw =w,, ~25'.; w;
which goes to the limit of zero as precise reso-
nance is obtained between the sum of the N-photon
energies, respecting the convention on sign which
identifies absorption or emission, and the transi-
tion energy ﬁw,,,,o.

The transition probabilities then become in the
respective gauges

wn«nozlannoiz (313)
and
W no=lotp | (31b)

As is generally demonstrated in time-dependent
perturbation theory,’ only the resonant term leads
to a transition probability of the form w « ¢ 5(Aw)
which corresponds to a physically observable tran-
sition to a final stationary state. Thus retaining in
the primed gauge only the resonant terms in the
transition amplitude that lead to physically mean-
ingful transitions gives the effective transforma-
tion equation

= Fonl)F3, (00, ). (32)

To determine the dependence upon gauge, or the
invariance, from Eq. (32) requires consideration of
the.order of the dependence of the various terms

Y"lo
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upon the intensity of the radiation fields. Expand-
ing the phase factors appearing in the matrix ele-
ments, F,,; ,

e lieMOF(T 8y _q +-;:§f(?, E)deee, (33)
gives

wnl) =85 Fo (8420 (34)
where the matrix elements, f,,(¢)

=(TOF, t)|f(F, )| ¥OF, ). Since fis generally
proportional to either the fields or the potentials
of the electromagnetic radition, Eq. (34) repre-
sents an eéxpansion in increasing orders of field
strength. The @;; are obtained from Eq. (21)
through the usual itération

N2

with the initial condition a{(¢)=4,,, and a,,,(¢)

=2 t). The V,,, are'also proportional to the
fields or the potentials, either linearly or quadra-
tically, so that the a,,=0,,+a’) +- - representsl

mn

®ED () = @O a® (@)dt (35)

IOVITZU POPESCU, AND C. B. COLLINS 20

an expansion in increasing powers of the field, but
it does not necessarily follow that o ®’ « A*, Since
V,n» may contain quadratic powers of the fields,
the %th order of iteration will contain powers of

A ranging from % to 2k. It is useful then to evalu-
ate the gauge dependence of the transformation
Eq. (35) not in terms of the order of iteration %
but in terms of the coefficients of the terms con-
taining comparable orders of dependence on the.
electromagnetic potentials. Considering only the
resonant parts of the transition amplitudes which
lead to observable transitions, they can be written
in terms of their components proportional to the
various powers of the potentials as

R _ 4R R s
anrlo— 0e""oﬂ"-‘- a'l"o»Nﬂ + ’ (36)

where a,‘fno’ v 18 that part proportional to A%,
Terms lower than N need not be considered for
the N—photon transition modeled here. Any partic-
ular term af o ¥ TR2Y contain components from or-
ders of 1terat10n varying from M > N/2 to M=N.

A similar equation to Eq. (36) can be written for
the primed gauge. Then substituting into Eq. (32)
together with Eq. (34) gives

Ol )+l gea(t) oo = (1 fm<t>+---)(1—-ﬁ"—ﬁ USXORED I ROR MO REED

+nonresonant terms.

As discussed above, the f are at least linearly
proportional to the potentials. Equating compar-
able powers of the electromagnetic potentials
gives

ams w(t)=af () (38)

for the lowest order of interaction with the poten-
tials of the field, thus demonstrating the gauge in-
variance of the lowest-order transition probability
describing a resonant N-photon process.

The quantities oz,’fno, ~(t), although superficially
less general than the @ pngs actually represent the
transition probabilities as generally understood.
An N-photon process requires at least an N-fold
dependence upon the radiation intensity and reso-
nance is routinely assumed in the conventional de-
velopments of transition probabilities leading to
physically observable changes of state. It is re-
markable that Eq. (38) demonstrates a general
gauge invariance of the transition probability for
an N-order electromagnetic transition without as-
sumptions about the type or symmetry of the par-
ticular interaction. This is to be contrasted with
the most general previous treatment of gauge in-
variance,’ in which the invariance of a two-photon
process mediated b.y electric dipole interactions
was demonstrated when a change was made be-
tween two specific gauges. The proof demonstrated

37

r .
in that work rested upon the completeness of the

sums over the intermediate states. This can be
understood in the context of the development pre-
sented here, since the sum over all nonresonant
intermediate (N - M)-photon transitions, where N
>M>0, gives the transition probability for a reso-
nant N~photon process and it is the resonant nature
of the N-order process that ensures the invariance
of the transition probability depending upon the
Nth power of the intensity. Related results de-
monstrating the equivalence of the energies of

the interactions with external fields described in
differing gauges have been reported recently by
Goldman'® for the lowest order of the time-depen-
dent perturbations.

It must be emphasized that the gauge invariance
specified by Eq. (38) concerns the entire transi-
tion probability describing an N-photon process
and includes terms usually neglected as being
small For example, the two-photon amplitude

,m ,2 given by Eq. (28) contains in the K, factor,
not only the sums over single-photon transmons
to nonresonant intermediate states, which are the
only terms usually retained in two-photon transi-
tion probabilities, but also the term —(Vlz),mo/ﬁ
which results from the part of the interaction
(€®/2mc®)A? which is usually neglected. Thus the
two-photontransition probability, asusually ex-
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pressed, is gauge invariant only to within the error
introduced by neglecting the A® term from the sum
in K, which is gauge invariant. In specific cases
the remainder resulting from neglect of the A?
term may be separately gauge invariant as shown
by Kobe® for the specific case of two-photon elec-
tric dipole transitions. The general gauge invari-
ance of a resonant, N-photon transition pertains
to the entire transition probability describing the
dependence of the transition rate upon the Nth
power of the radiation intensity.

Gauge-dependent amplitudes—* ‘nonresonant transitions”

Although the amplitudes leading to transitions
which are resonant for the absorption of N photons
are gauge invariant, individual component transi-
tions to intermediate states involving the nonreso-
nant absorption of (N —M) photons generally are
not gauge invariant when N>M> 0. The gauge-de-
pendent nature of nonresonant single-photon tran-
sitions was first recognized in 1978 by Kobe and
Smirl,® although the lack of physical significance
of such a dependence was not mentioned. A simi-
lar gauge dependence of nonresonant, two-photon
processes was demonstrated subsequently by
Kobe,’ but again without emphasizing that the pro-
]

D)+ D)+ = a8 D)+ [ £, (1) = o (O]

cess cannot lead to a physical result incorporating
a gauge dependence.

For example, even in the simpler first-order
process the physical meaning of a “nonresonant”
transition is questionable. The nonresonant ab-
sorption of a single photon by an atom might occur
as an intermediate step in a Raman or scattering
process.' This cannot lead to the creation of a
stationary state, and hence the transition becomes
physically observable only if another nonresonant
step finishes the process. To become physically
observable the final state populated by the compo-
site process must have a-lifetime comparable to
the time 71 required for a physical measurement.
Then the uncertainty relation for the energy im-
plies an overall resonance to within the accuracy
7/7. Thus the overall process, which is the only
one that is physically observable, becomes a reso-
nant and therefore gauge-independent process.

To examine the gauge dependence of the nonreso-
nant transitions to intermediate states of the over-
all transition resonant with N photons, in the for-
malism developed in the previous section the gen-
eral transformation of Eq. (24) can be written
explicitly in terms of successive orders % of the
iterations of the o ® by substituting into Eq. (24)

the expansions giveﬁ in Eq. (33) and (34),.and re-

i = W, @ ... 5
calling a,,,=06, ,+a,, +o, + to obtain

DO e 2 a0 - (0),, O]

_%gzzi Z [fnl (¢ )fzno(t) ~fu )flno(o) +fm (O)flno(o)] et (39)

Each term of a particular order % of iteration con-
tains resonant and nonresonant terms and may de-
pend upon orders of the radiation intensity as
great as 2k. For example, the conventional transi-
tion amplitudes at the first order of iteration can
be seen to depend upon gauge through the appear-
ance of the term (ie/c)[f,, (t) =f,, (0)] Which in
general is not zero. Expression (3%) represents

a generalization of the statement of the gauge de-
pendence of nonresonant first-order transition and
second-order transitions considered by previous
authors.'?

The fact that a gauge transformation of the am-
plitudes of the nonresonant, nonphysical transi-
tions to intermediate states introduces terms de-
pendent upon both the gauge of the fields and im-
plicitly upon the basis set of the representation
used in the computation of the matrix elements
fij does not present an apparent problem. The
computation of the probabilities of a process of

sufficiently higher order involving enough photons
to be resonant and hence physically observable,
will necessarily contain terms describing transi-
tions to the intermediate states whose gauge depen-
dence will be precisely compensating so that the
overall invariance of Eq. (38) is maintained.
Nevertheless, the concern for maintaining gauge
invariance of even the nonphysical intermediate
steps has continued to motivate® an examination
of basis sets in which the nonresonant matrix ele-
ments adding to the transformation of the «,,
might not appear. Unfortunately, certain choices
of basis set made according to this criterion tend
to exclude some physically meaningful processes,
while other possible choices predict that nonzero
transition probabilities will occur in the absence
of real electromagnetic fields. These problems
and the means for avoiding them will be examined
in the following sections.
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INVARIANT FORMULATIONS

Basis sets

Considerable attention has been given in the lit-
erature®* 7 to the development of alternative meth-
ods to the conventional time-dependent perturba-
tion theory for the computation of transition prob-
abilities by invariant schemes, regardless of the
resonant or nonresonant nature of the transition
being described. As can be seen from the previous
discussion of the conventional method a gauge de-
pendence can result from the fact that according
to Eq. (12) the solutions to the Schrddinger equa-
tion including the electromagnetic interactions
change by a variable phase factor which depends
upon the gauge, while the basis set of states de-
scribed by Egs. (14) to (17) are, of course, unaf-
fected by the gauge. It is evident that if the initial
as well as the final state of the transition were to
transform with gauge by the same phase factor,
the resulting expansion coefficients and hence the
transition amplitudes would not contain the depen-
dence upon the function f determining the gauge of
the potentials. Thus the gauge invariance of all of
the transition amplitudes would be obtained. ,

A technique for choosing a basis set of initial
states having the desired dependence upon gauge
was first suggested by Yang,” who included in the
Hamiltonian defining the basis states part of the
electromagnetic potentials. However, Yang’s
choice is not unique and appears to have excluded
certain physically meaningful situations as will
be discussed in the following section. Subsequent
authors®® continued the use of the same basis set.
A more general representation is developed here
from the basis set resulting from the solution of
the eigenvalue equation

Ap¥(F,t)=E@)¥(F,t) (40)
for the basis-defining Hamiltonian
i =-1—<5l—fK-vx U@ auE, e, (@)
B zm c ] ’

where A (T, ¢) and u(¥, ¢) are functions not depending
upon the gauge of & and A. Since the Hamiltonian
contains an explicit dependence upon time through
the electromagnetic potentials, the eigenvalue of
the energy corresponding to a particular state will
also depend upon time as indicated in Eq. (40).
Such an energy is not conserved in the strict
sense, but rather is an analog to the energy of an
adiabatic state that may change with the variation
of a parameter included in the Hamiltonian without
leading to a change of the state itself.

The solutions of Eq. (40) transform with changes
of gauge according to Eq. (12). Since A and yu are
completely arbitrary, the requirement of gauge

invariance does not uniquely determine the nature
of the basis set, contrary to the implicit assump-
tion of Yang. Yang,” as well as subsequent auth-
ors,*® exclusively employed a basis set equivalent
to the solutions of Eq. (40) for A =0 and u=0.

From the more general representation of Eq.
(41) it will be shown that the use of the class of
basis sets obtained from the assumption that A =0
for an arbitrary u(f,¢) is equivalent to the devel-
opment of the conventional time-dependent pertur-
bation theory. Both predict the same amplitudes
for the resonant transitions. All members of the
class result in transition amplitudes which are in-
variant with respect to changes of gauge, although
they are not necessarily equal for the nonresonant
transitions.

The term in the A, Hamiltonian u(¥,¢) appears
in the form of a potential energy of the interaction
of the charge with the external field. To emphasize
this fact it can be expressed u=e¢,(F,?), where
¢o(F,¢) is an arbitrary potential written in terms
of the fields and thus is not dependent upon the
gauge of the potentials. For the A =0 class of ba-
sis sets, the equations from which the transition
amplitudes are developed in this invariant scheme
include the expression for the Hamiltonian defining
the basis sets describing the initial and final states

-~ 1 > € 2 -
HB=§E(p—ZA> +U(r) +ed,, (42a)

the eigenvalue equation for these states
Hp¥,(F,t)=E,(t)¥,F,¢t), (42b)
the full Hamiltonian of the interaction with the
electromagnetic fields
fI(t)=—1—-<ﬁ—-e-K 2+ Ur)+ed (43a)
2m c ? v

where ¢ is the real electromagnetic scalar poten-
tial, and the Schrodinger equation

. )
Ht)® =iﬁ-5% . , (43p)

It should be reemphasized that changes of gauge
of the potentials &, A& transform both the basis sets
satisfying Eq. (42b) and the solutions of Eq. (43b)
according to Eq. (12), while the energy eigenvalues
of Eq. (42b) remain invariant, E/(¢)=E,(¢).

It is most convenient to develop the solutions to
Egs. (42a), (42b), (43a), and (43b) in a gauge®® for

‘which ¢ =¢,, so that H(¢)=H. Since the transition

amplitudes are invariant to this, as well as other
gauge changes, generality is maintained. However,
in addition to facilitating computation this particu-
lar choice is more comfortable from a physical
viewpoint. The basis set describing the initial and
final states of the system is preserved in an adia-
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batic sense during the time the perturbation acts
to cause the transition. Physically, the electro-
magnetic transition can be perceived as occurring
in two steps. First, as the fields develop the sys-
tem undergoes an adiabatic passage, without tran-
sitions, from one of the field-free states satisfy-
ing Eq. (15) to one of the basis states satisfying
Eq. (42b) for ¢,=¢ as suggested by the Ehrenfest
theorem.'* Subsequently, the same time-dependent
interactions are viewed as causing transitions
from pure states of the basis set, which continues
to be a basis set throughout the process. The
transitions produce linear superpositions of the
basis states with time-varying amplitudes that are
interpreted as the transition probabilities, since
“the basis states ultimately reverse the adiabatic
passage to become again field-free states as the
electromagnetic interaction terminates.

Perturbation method

Quantitatively the process of transition is de-
scribed in the ¢ = ¢, gauge by expanding®® the
solutions of Eqs. (43a) and (43b) assuming non-
degenerate base states as

U(FE,£)= ) C,()¥,(F,t)e 4/ MEt (44)
n

Substituting into Eq. (43b) gives
dacC,

where w;; = (E{®) - E{?))/ii, and where E° is the ini-
tial eigenvalue of the energy of the nth state. Atthe
time £ =0 the system is assumed to be in the initial
state n,, so that C,(0)=9, and the C,(¢) represent
the amplitudes of the transitions from »,~# in this
invariant method of development. For this ap-
proach Eq. (45) corresponds to Eq. (21) of the con-
ventional method.

The solution of the coupled set of equations rep-
resented by Eq. (45) requires the substitution of
expressions for the basis functions ¥,(F,#) and
these may be obtained by the conventional time-in-
dependent perturbation scheme of iteration for
which I-?B =I;I0+ V(t) and the time is treated as a
parameter. The expansions

,(F,2) =9 @) + O F, t) + TEF t) 4000,
(46a)

E,(t)=EXP+EX )+ EP )+, (46b)

Clt)=8,, +CP )+ CP () 42+, (46c)

where the superscript indicates the order of itera-
tion and not necessarily the order of the depen-
dence on the fields when substituted into Eq. (45),

—2=C,(E,(t) -E®
i dt (B, () = E,%) and the resulting terms equated according to the
, a\I, A, various orders of iteration give through second or-
-z’fE elom'*C,, f —r (45) der, for n#n,,
. .
Cc= B ng » (47a)
¢ Vom, /at)
=W = iw —_—
Zﬁdt C ihe nng ¢ E(o) E(noo) ’ (47b)
(Vo Vi )/ 08 (V, » Vo )/ 08
iﬁicm = — ifet¥mgt Z ' i N - KR 20) 3
dat n - (E(o) _E(o))(E(O) _E’(10 ) (E’('g) -En )
V2,8 7,, /0t)
"o v @Vyu/ot)
~ il mnot Z EO - E‘°’)(E(°’ D)~ ’ﬁz eWnn't E_‘O’M—ET’ cP+cv,., ‘ (47¢)
and for n,,
.. d
ZEEC;;)= V"O"o ’ (47d)

where V.

= [PxO@) V(£ )y F)dg, E,(¢)=EL + V,,, and the convention regarding the primed summation is

that particular indices leading to zeros in the denominators are excluded from the sum. In second order
C f,i =0 and does not appear in the above equations. Specific examples for one-photon and two-photon ab-
sorptions are developed in the following sections and considerable simplification is found.

Single-photon processes

The part of the interaction operator leading to single-photon transitions is of the form V(f)=V,e~*v1!, As
in the conventional approach of the preceding sections, w, can be positive or negative to denote the absorp-
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tion or the emission of a photon, respectively. Substituting this form of the potential into Eq. (47b) and re-
taining only the resonant contributions to C{*’ gives

C(l) = w

t
" -t M (Vl)'mo JO- et (“’nno'wl)f dt'. (48)

Then the corresponding transition probability becomes

2

1
wn<—n0=;[—2 I (Vl)rmolz

t
J’ ei (w,mo—wl)t 'dt ’
(o]

(49)

Two-photon processes

As mentioned in the development leading to Eq. (29b) describing the transition amplitude in the conven-
tional application of time-dependent perturbation theory, the important components of the potential for two-
photon processes are V(i) =V e t1t+ Vyemiwet 4+ 7, g~t Wi1*@p)!  Qubstituting this expression into Eq. (47b),
Eq. (47c¢), and Eq. (47d) and retaining only the resonant terms for the simultaneous interaction with one

photon of each frequency gives

. d 7w, +w i —w, -
i— c'(l1) __(__J___ZZ_ (Vm)moez (w""o wy—w, )t

(50a)

]ei(w,mo—wl—wz)t

at " EP-EPY
and
i d cw [ fiw, + w,) Z ’ (Vl)nk(V2)kn0+ (Vz)nk(Vl)kno :ﬁwz(vl)nk(vz)kno+hw1(Vz)nk(Vl)kno
mn— = —
dtr = n E"(.O) _E’Eg) - Eh(O) —Erig) - (Er(xO) — E};o))(E;O) __E’(lg))
4 ( Vl)nk ( V2)Izn0 N t
. (W =W, )t i({wy, ~w,)t’ ’
ihw,w, 4 (E,ﬁ‘” —E,§°’)(E,§°’-E,§g’) et (Wnp—¥1 jo e Wen ~w)’ gt

’ ( V2)nk( Vl)kno

- ilW,Ww, ; el
w2 TP-EPET-ED)

i

t
W =Wyt i(w —-w )i ’
nk=Ws fe kny "CVE g
(o]

3 t
TEO_E® [wzw,,,.(Vz)Moe"‘“” S e ems e it s 0, (7,), (V) e [ ettmomen dt’]
n ng

o

0o

1 w w ’ .
tEO O [;Z(Vl)nong(vz)m,o‘r EL(VZ),,O,,O(VI),,,,O] e (@nng 1wzt
n ng 2

1

ot
(Eno - Eno )

The first-order interaction of Eq. (50a) evidently
describes the generation or absorption of sum and
difference frequency radiation. Being first order
it coneerns single photons, but is resonant at the
frequency + w,, =|w,|+ |w,|. The second-order in-
teraction of Eq. (50b) relates to the processes
more customarily understood to be two-photon
transitions: two-photon absorption and emission,
Raman scattering, and conventional scattering. It
is interesting to observe that the matrix elements
are general and may represent radiative interac-
tions of an arbitrary multipolarity.

(V) (Vo + (Ve (Vi) € Oy =272, (50b)

CONCLUSIONS
Equivalence of the conventional and invariant methods
applied to resonant transitions

For single -photontransitions the resonance condi-
tion is E;” - B\ ~ 7w, and Eq. (48) can be integra-
ted to give

V. ; )
C(l) __ ( 1)nno et (w,,,,o—wl)t -1
n

r wnn(.) —w; ’ (51)
which is identical to the transition amplitude of
Eqs. (28) and (29a) obtained by the conventional
perturbation method.
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n!

For the transitions resonant with the energies of two photons Wppy = W1~ Wp = 0,
(V12) i Wy —wy-
C'('l) __ 12/nn, i (w,mo wy—wydt _ 1 ’ (523)
r ((.‘Urmo—wl —w2)
and for the second-order process
4 ’ 1 7w 7iw,w
/R C(z) - _ 2 _ . 1Y
2 dar °n ; E:,?) _E:’g) + (Er(tO) '—Er(,?))(E,(.?) "Er(.g)) (Er(‘o) . E;?’)(E,‘,?’ _ Eég))(E’(lg) “E;Ez) _ ﬁw.z)
X (V )nn’(V )n'no
. Z [ . fiw, _ 7w, w, ]
E‘°> B, (B -ED)ED -ED) T (EP -ED)ED - EONE,D ~ B0~ Iw,)
X (Vz) nn'(Vl)n’n
(Vl)nn’(vz)n'm) ( ) (V )
- 2 2/an’ 7 1n'ng —wy—wy)t
Z";"o [ w"l"o =, ﬁ(w - _w ) wnno wymwy)t (52b)
The latter can be simplified considerably by the identity
_ 1 B 1 . _ hw,
EW B —hw,  (E -EY) (E)” -EQ)ED - E.)
_ 7w, w, 53)
(B;Y - E9) (B, - ED)ER — E —hiw,) ’
and by the analogous relation through interchange of w, and w, to obtain
@ Z [(V1)nm(V2)nrn0 ) (Vz)nnl(Vl)n'nO] @ Wnnymw1-wt _ 1 (54)
" T g1 = @)

Z‘/i(wn,,,o-wl)

This result is identical to that obtained by
conventional perturbation theory and presented in
Eq. (29b). Since the coefficient of the time-depen-
dent part shown in Eq. (29b) is from the sum C
+C{, it can be seen that the two approaches yield
the same second-order transition amplitudes and,
therefore, complete equivalence is obtained be-
tween the invariant and conventional formulations.

Comparison of invariant schemes

It was discussed earlier that the requirement
for the invariance of the transition amplitudes
does not uniquely define a basis set with which
calculations may be performed. In fact, any set of
states obtained as solutions of the basis-defining
Hamiltonian Eq. (41) will lead to the generation of
amplitudes for resonant transitions between basis
states which are invariant to changes of gauge of
the electromagnetic interactions mediating the
transition. Since the Hamiltonian A g defining the
bases contains completely arbitrary functions en-
tering in the form of electromagnetic forces, in-
finitely many gauge-invariant schemes may be de-
veloped. However, results obtained through the
use of different basis sets, while giving equivalent
probabilities for resonant transition, do not yield
the same results for the general transition ampli-

ﬁ(wnno -W,; - wz)

r
tudes. The manner in which these amplitudes
transform with changes of the basis set will be
developed by assuming that the real potentials
¢,K are altered by a gauge transformation so that
they correspond to the arbitrary potentials ¢, and
X, defining the basis.

In particular if it is desired to compare the ef-
fects on the transition amplitudes of changing
from the basis set defined by ¢, to the set ¢/, it is
useful to define the function £, so that

rog L2
D490 L2 . (55)
Then the &} and A, are assumed to be the vector
potentials corresponding to the ¢ and ¢, in order
to completely specify the fields used to define the
basis sets through Eq. (42a). The A and &, are
related by

=%, +vf,. ' (56)

That these gauge transformations of the potentials
defining the bases do not lead to invariant results,
while transformations of the physical fields by
Eq. (8a) and (8b) do preserve the invariance can
be illustrated by the behavior of the transition
amplitudes for the one-photon process given in
Eq. (4™).

In the primed basis set defined by Eq. (55), the
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C!® are solutions to the equation analogous to Eq.
(47b) obtained by substituting the expressions of
Egs. (55) and (56) for ¢/, A into the interaction
operator of Eq. (13) from which the V;; matrix

e 1

3f,(t)
( ¢
c, ”(t)—Cn”(t)—cm? ot

R

The gauge dependence arises from the second term
which is generally nonzero.

Physical choice of the gauge

Since Eq. (57) showed the transition probabilities
to be. dependent upon the base sets, it is of rea-
sonable concern to inquire which of the possible
representations leads to a more physically mean-
ingful result. The idea of the adiabatic passage
from the field-free states to those representing
instantaneous solutions of the eigenvalue equation
for the energies of the system in the external
fields is consistent with the nonrelativistic ap-
proach used in this work. The time of retardation
R/c is small compared to the period 27/w of the
radiation, and the neglect of inductive terms
seems justified at least in the dipole approxima-
tion. Considering the fields as uniform in the re-
gion of the interacting atom suggests the appro-
priateness of the potential

ep,=—eE-T—7'B (58)

in the definition of a basis set. Such a basis set
naturally provides for the adiabatic development
of the Stark and Zeeman splittings of the levels of
the basis set.  Transition amplitudes calculated
according to the methods introduced in this work
can then represent transitions induced between

the states actually occurring in the external fields.

The only other basis sets employed in past com-
putations®*” of transition probabilities developed
according to invariant schemes have been those
defined by the potential ¢,=0. It would appear that
such a choice would preclude adiabatic passage to
states shifted by the electric part of the field. For
example, if the magnetic field were B = 0, the elec-
tric field could be represented by the time-depen-
dent vector potential E =—(1/c)(3A/8¢) and ¢ =0.
This, however, does not affect the energy eigen-
values of the basis set of Eq. (42) while in fact
Stark shifts are a physical reality.

While the development of transition amplitudes
in a manner invariant to the gauge of the electro-
magnetic field is philosophically satisfying, to do
s0 introduced nearly equivalent problems of the

o) 7
YOI,

elements needed in Eq. (47b) were obtained. The
expression becomes with the simplification of ne-
glecting second -order terms

o~

I

representation of the basis set of states which
must describe the end points of the transition.
Gauge dependence is transformed into a repre-
sentational dependence. Since it appears evident
that a physically meaningful transition mediated
by electromagnetic fields will be resonant in an
adequately high order of development, the prob-
lems associated with the gauge dependence of
nonresonant processes seem to be artifices result-
ing from the consideration of an insufficient num-
ber of photons in the transition.

It has been shown in this work that a transition
which exhibits an overall resonance with some
combination of sums and differences of integral
numbers of photons of the fields is invariant at
the lowest order of the potentials needed to induce
the transition. This general result is valid, even
when the relatively unsophisticated techniques of
the conventional perturbation theory are used.
Moreover, since the accidentally poor convergence
of the perturbation schemes in the cases of certain
potential gauges can be avoided by the use of the
physically realistic fields, a highly attractive ap-
proach to the computation of multiphoton transi-
tion probabilities appears to be the original method
of GOppert-Mayer,' extended appropriately to ac-
commodate N photons. In the context of the pre-
sent work it can be seen that that method which
involves the minimum complexity would yield
highly convergent, gauge-invariant results. At the
next level of complexity the invariant scheme in-
troduced in this work, when developed in a basis
set generated by the realistic potentials of the
problem, would add the possibility for accommo-
dating the adiabatic passage of the system to 1ni-
tial and final states of the transition more nearly
characteristic of the physical states involved.
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