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A new conceptual foundation for renormalizing T„„on locally flat space-times —to obtain the so-called
Casimir effect—is presented. The Casimir ground state is viewed locally as a (nonvacuum) state on
Minkowski space-time and the expectation value of the normal-ordered T „ is taken. The same ideas allow
us to treat, for the first time, self-interacting fields for arbitrary mass in perturbation theory —using
traditional flat-space-time renormalization theory. First-order results for zero-mass X] theory agree with

those recently announced by Ford. We point out the crucial role played by the simple renorrnalization
condition that the vacuum expectation value of T„„must vanish in Minkowski space-time, and in a critical
discussion of other approaches, we clarify the question of renormalization ambiguities for T„. in curved
space-times. In an Appendix, we show how the Casimir effect arises in the C*-algebra approach to
quantum field theory.

I. INTRODUCTION

There has recently been a lot of interest' in de-
fining the energy-momentum tensor for a quantum
field in a fixed curved background. It was realized
by DeWitt' that interesting problems arise already
if we modify the global topology of ffaf space-time
by identifying surfaces, introducing boundaries,
etc. DeWitt pointed out that the physically mea-
surable Casimir effect' —the attraction of two con-
ducting plates in a vacuum —is in fact a problem
of this nature. We follow DeWitt in believing that
a clear understanding of these "Casimir-effect"
situations should throw light on the more difficult
generic case where there is the added complication
of local curvature effects.

By now there is a good measure of agreement on
calculations of the Casimir effect (and indeed the
energy-momentum tensor in the generic case).
However, there is a wide diversity of points of
view on the 0yjgin and nature of the effect. Thus
some approaches' make essential use of the con-
cept of zero-point energy and suggest that the us-
ual procedure of normal ordering is inadequate for
dealing with such subtle phenomena. Qther ap-
proaches' invoke the gravitational interaction and
relate the effect to a renormalization of the cos-
mological constant. Yet other approaches involve
a method, unique in quantum field theory, in which
infinities are handled and finite numbers extracted
solely by regularization and without the need for
any renormalization. The implication is that
somehow the regularization procedure itself con-
tains some deep physics.

Now each of these points of view may be valu-
able in inspiring some future theory. Neverthe-
less, from the point of view of the systematic
development of flat-space-time quantum field
theory, none of them is completely satisfactory.

Thus:
(I) Zero-point energy (like "bare" coupling

constants, etc. ) is not usually felt to be a neces
sary concept. It would be preferable if it were
relegated (again like "bare" coupling constants,
etc. ) to the status of providing some optional (if
albeit valuable) intuition.

(2) Again, one would hope that a consideration
of the gravitational interaction would not be nec-
essary for the Casimir effect which can be regar-
ded as an essentially flat-space-time phenomenon.
(See also Sec. IVA. )

(3) Finally, we shall show (in Sec. IVB) that the
"regularization without renormalization" referred
to above does not always work.

The purpose of this paper is to show that Casmir-
effect calculations can be performed within the
usual framework of flat-space-time physics, using
only conservative ideas about normal ordering
and renormalization. In the second section we
explain how, illustrating our ideas with free mass-
less and massive scalar fields in a two-dimension-
al cylindrical universe. In the third section we
treat self-interacting fields and show how they can
be handled in perturbation theory. For certain
cases of zero mass we obtain agreement with re-
sults recently announced by Ford, ' and thus put
these results on a firmer foundation. Unlike
Ford's our method applies to fields of any mass
and should, in principle, generalize to any order
in perturbation theory.

Although the present work strictly applies only
to locally flat space-times, it is our hope that the
methods developed in this paper will suggest new
approaches to quantum field theory in general
curved space-times. We thus review in Sec. IV
several current approaches to the quantum energy-
momentum tensor in the light of their application
to the Casimir effect. Included in the discussion
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are Wald's "axiomatic" approach, ' Dowker and
Critchley's and Hawking's "g-function" approach, "
and the so-called "point-separation" approach. "
Finally, we sketch in an Appendix the relationship
with axiomatic quantum field theory.

II. CASIMIR EFFECT FOR FREE FIELDS

In this section we explain our approach to the
Casimir effect in a simple intuitive way. A more
careful, mathematical treatment is given in the
Appendix.

Let us take, for sake of illustration, a massless
Klein-Gordon- field in a two-dimensional flat cylin-
drical universe of radius" R (see Fig. 1.):

Bpgp

We want to calculate the expectation value of the
energy density H(p) = Too(p) at a point p.

Now everything will follow from the basic prin-
ciple that measuring H(P) is a local.-operation: To
measure H(p), our measuring device need only
examine the properties of a small neighborhood N
of P; the only quantum-mechanical observables in-
volved are the field operators for points in the re-
gion N. But the structure of observables in the
region N is precisely the same as it would be if N
was embedded in a globally flat space-time. A
measuring device —only making measurements in
N—has no information about the global topology

FIG. 1. The structure of field operators on the cylinder
space-time is locally identical with that of ordinary flat
space-time.

and must behave exactly as it would in a globally
flat space-time. "

It follows that our calculation must proceed ex-
actly as in a (globally) flat space-time. But, in a
globally flat space-time, we know how to proceed.
We must take the expectation value of the norrnaE-
ordered energy density.

Now what is different of course is the state of the
system. The ground state s of the field propagating
on the cylinder will not look like the vacuum state
v of globally flat space-time, even when we re-
strict our observations to observables in the re-
gion N. This is easily demonstrated by examining
the two-point functions:

1 i
s(V(x24'(xi)) = -4» I - exP ——[( , t- )t- (y, -y,) - zE] I

I - exV ——'[(4 - f i) + (X2 -Xi) -&«+ &

(u(y(x, )y (x,)) = -
4

ln (t, —f,)' - (}(,—y, )' + jet + C'

for x, = (t~, p, ), x~ = (t2, y2) in our region N, say. '» It
is important not to think of the state s as a "vacu-
um. " Indeed, much of the confusion in the past
has been caused by using the same symbol (0~X[0)
to indicate both s(X) and &o(X).

We shall be careful in what follows to reserve
the word "vacuum" for the "true" global Minkow-
ski-space vacuum ~. Likewise, normal ordering
will always be with respect to this "true" vacuum.
We want, then, to calculate the expectation value
s(:H:(p)) of the normal-ordered energy density

:H:(p) in the state s.
We shall find it advantageous to view this calcula-

tion as a simple type of renormalization, the
physical "renormalization condition" being the
demand that the vacuum expectation value of the
energy density &u(::H( )P) is zero. s(:H:(P)), then,
is calculated as follows: We take the formal ex-
pression

and regularize it in some way, obtaining HA(p) where A symbolizes the regularization parameter. (Ex-
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perience in quantum field theory leads us to expect that, after renormalization, results will be regulariza-
tion independent for a wide class of regularization procedures. )

Then

s(:H:(P)) = lim [s(H~(P)) —(u(H„(P)}] . (4)

In words, we first subtract the vacuum expectation value, then we remove the regularization.
We choose here a point-separation-type regularization, obtaining

s(:H:(p))= lim ((s- (u)[-,'(s, rp(x, )a,p(x, ) +S„y(x,)e„cp(x,)}]}
Xg f X2

lim —,'(s, s, +a„s„)[s(qr(x,)q)(x,)}—(u((t)(x, )y(x, ))] . (6)

For the skeptical reader, we sketch an independent and rigorous derivation of Eq. (6) in the Appendix.
From translational invariance, we obtain

g2 82
lim ——,+, [s((p(x)y(0)) —(u(y(x)(t)(0))] .
x 0 2 8 t. 8X

Changing to null coordinates u =t —X, v = t+X, and using Eq. (2)

v(:H:(4))= )im
4

—,(,.(„,„„&),-( . ), v{v—v)I

1 1 1, u 1=21xm— ~+0
4v )) (v/4{ —(E) 44 (B —vv) I

(8)

So,

s(:H:(p))=-24
1

(10)

We thus recover the usual result" for this model.
Now, it might be objected that the renormaliza-

tion ideology we propose in this paper is rather a
luxury for this simple zero-mass case. We could
simply have thrown away the 1/u', 1/v' divergences

in s(H(P)) and got the right answer. "
Indeed, it is sometimes said" that renormaliza-

tion is only really needed to deal with logarithmic
divergences. For this reason we provide an ex-
ample of such a case: We sketch the Casimir ef-
fect for a massive field in a two-dimensional cy-
lindrical universe and postpone further discussion
to Sec. IV.

Casimir effect in massive case. Now our ener

gy density is formally

So we replace Eq. (6) by

s(:H:(p))= lim —,'(s, s, e„+s+m')[s( t( ())yx( ))x—(u((t)(x, )y(x,))],
X

y

where now Eq. (2) is replaced by

1 ~ exp{-i[(u„(t,—t, ) —(n/R)(X, —X,)]—e (n~}s(px, y x, )=2

(12)

where
2 1/2

(u, =(k'+m')'", (u„= —,+m'

If we leave the points separated only in the spacelike direction, we easily have
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s(:If:(p))=11m 2 Zjmft, X —— dy(1~+m )'I e~~"1 I' 1

o 4'' ( '8 4w

where

g( ) g ( +g) ( e ng-elnj

To get the short-distance behavior of Z(a, z), we write it as (dropping the e, which is understood)
00 Oo 00

Z(a, z) =g (s'+cP)' 'e'"'=a+2 gn cosnz+ —,'s' g — +S(a)+O(z),
~00 1 8

where

S(a) = g [(n'+cP)' '-n —a'/2n].
1

Using

ncosnz =-—,csc (—,z) and1 2 1 cosgg = —ln(2 sm —,z),
1 ]

this is

a ———p —cP lnz +2S(a) + O(z) .2 1
Z2

Also, we have (Erddlyi, "p. 17, No. 27, and differentiating twice)

dk(k'+m')'"e'~" 'j'j — K' (m )f 2m

~ OO x

2/X m ln( mX)-m'(y--, ')+O(X),

where Ko is the derivative of a modified Bessel function of zero order and y is Euler's constant.
With these results Eq. (14) gives

1 1 2 1s(:a:(p)}=——,+—,S(mfa) -m'ln +m'(y- —,') +-
4+ 6R' mR R

where S(a) is defined after Eq. (15).

III. INTERACTING FIELDS

We take for our model a —,'A.y' interaction

H(p) = —,'[(a,y)'+ (v(p)'+m'y'+ ,'Xy'], (2—0)

where m may be zero or nonzero. We take a flat
four-dimensional space-time with topology R x R'

x S, the last space dimension being a circle of
radius R." %e aim to calculate the Casimir ef-
fect to first order in pertorbation theory. Naively
one might try to simply apply Eq. (4) to Eq. (20),
leading to a perturbation in the energy density of
magnitude

—,
' Xlim (s - (o)(y A') .

However, one soon sees that this quantity diverges.

l

The resolution of this apparent difficulty lies iv.. a
straightforward and simple application of renor-
malization theory. " As it stands, the term —,'Py'
cannot be treated as a small perturbation, for, no

matter how small X is, y will have divergent ex-
pectation values.

In fact, we have [e.g. , from point separation,
see Eq. (As)]

e~'=:mA':+5~( ~')~' -2[~4~')]'.

W'e must therefore add to our regularized Hamil-
tonian density a counterterm

&X[5~(pp )pA 1

to cancel the divergent-operator part of —,'Xy~'.

In systematic Feynman-diagram language, the only one-particle-irreducible (1PI) divergent graph to
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first order is the tadpole graph (Fig. 2) giving rise to the same counterterm. m is then the square of the
"physical mass" and m' —3Xco(yA') is the square of the "bare" or unrenormalized mass to first order.

So the correct generalization of Eq. (4) to first order in X is

s(JI:(P))=lim (s —(u)[HA —-24'(yA')(/)„'] .
A~~

The reader may find it instructive to compare the above discussion with the closely parallel treatment
of the "Xy' kink mass" given in Rajaraman" Sec. 3.4.

Applying formula (22) we get the usual Casimir effect for a free field s(:H, :(P)) plus a term of order ](:

&Xllm(8 —({))[-6({)(pA)pA ++A ] (23)

=-.'Xl m[-6 (((),') (/ ')+6 ((/) ') (q ')+ (({) ') — ((/) ')]

1{low, e.g. , from point separation, see Eq. (A4) and (A5), we have

(24)

~(y ~') —3[~(VA')]'

giving finally"

s((()A') = 3[s(9)A')]-, (25)

s(:Ii:(P))= s(:Ef 0(P)) +
4

lim[s(A)A') —(u(pA')]'+ 0(&') .3A.
(26)

Note that this formula is valid for arbitrary mass. %e calculate this in the case of zero physical mass.
Using the methods of Sec. II, we have

s(:)),:{))))= ))m(,— E d*).~~ „a x)(w)„t{+e){]„
1 a').~ „a p[i~ „{)x+)s-)]), - (27)

where &o, „=(k„'+k„'+n'/A')'/", ~], =(k„'+k,'+k, ')"', where our regularization consists of separating points
in a timelike direction. " This is easily calculated using the method given in Fierz'4 to be

s( 0 (P))=- I/1440''~'

To calculate the first-order perturbation, we use the same regularization, obtaining

s(y, )' —(u(&p, )' =
2

—, Q —— exp[i(o, „(i+ is)] ——, exp[i(u], (f +ie)],d'k . . 1 d'k

(()). n 2 2g

which, again by methods in Fierz, '4 gives

(28)

(29)

(30)

thus yielding a first-order correction [Eq. (26)]

3]( j
4 i48)]'ft' 3072)('It' ' (31)

These results are in agreement with those given for this model by Ford." However, in contradiction to
Ford, we have seen that point separation or mode-sum regularization give perfectly unambiguous results,
provided we use them as part of a proper renormalization scheme. "

Finally, to illustrate the massive case, we return to our two-dimensional cylinder model (see Sec. II)
and add a ]{.q self-interaction. Clearly, Eq. (26) still holds. Using methods which are by now familiar,
we obtain a first-order correction:

, 3A.
—,'](s(:9)'.) =' —lim [s(y~') —u)((/) „')]2

DO

+in)(/R dk(k2 +~2}-)/2 e(l)x
4m

+2 -1/2
=—lim, +m

4 g-o' 4mB R'

=—lim — -- +2
3X . 1 1

" coen'/R
+2C(mf(, ) + 0(X) ——Z, (mx)

2

4 x-o 4m mA, n 4m

(33)

(34)
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FIG. 2. The A@4 tadpole.

where

C(a) =Q [(n'+ 8) "' n-'].
1

Using

cosnz j.=-ln(2 sin-, z) =-inc+0(z)
n

and

mX} =[-ln( —,'mX}+y] +O(X}

we have finally

3Z 1 mg
—,'Xs(:y':) =

( ), +2ln

2

+2C(mR) —2y (35}

where C(a) is defined after Eq. (34). Note that
this diverges as nz-0, one expects this to be a
special pathology of two dimensions (cf. Ref. 14).

lV. MSCUSSION

A. Relation with current formulatiOnss for renormalizing T„„

A central concept throughout Secs. II and III was
our "locality" (or "equivalence" ) principle that
small regions in locally flat space-times may be
identified with small regions in globally flat space-
time. A second, important concept was the physi-
cal renormalization condition that the vacuum ex-
pectation value of the energy density (and, more
generally, of the energy-momentum tensor) should
vanish in globally flat space-time. We saw how
these two concepts, taken together, led to our
basic equations (4) and (22). Now our Casimir-
effect situations may be considered as special
cases of the more general problem of renormaliz-
ing the energy-momeritum tensor in a curved
space-time. One therefore expects that these prin-
ciples (or some replacement for them") must play
a role in that wider context. We discuss the situa-
tion as it is presently understood.

Paid's axiomatic approach. " Wald correctly
states our renormalization condition as his Axiom

However, his work lacks a replacement for
our locality principle. Indeed, a careful examina-
tion of Wald's arguments" shows that he implicitly
chooses, to begin with, a fixed space-time mani-
fold and then considers T~ as a functional of all
metrics on that manifold. For this reason, his
Axiom 2 (validity of normal ordering in flat space-

(36)

In order to obtain a finite expression, we must
subtract from this another expression with the
same singularity structure before taking the limit
X-0. In fact, we are told to subtract the Chris-
tensen-DeWitt expression. This Christensen-
DeWitt expression is the universal state-indepen-
dent singular part of (T„,) and is only a function of
local geometrical terms. However, as is well
known, whenever it contains a logarithmically
divergent piece, it is ambiguous because of the
freedom to write

ln ~ =ln + +ln— (3V)

where X, X' are arbitrary length scales. If we re-
fer back to Sec. II, we see that our renormalization
condition essentially fixed the scale, telling us to
subtract precisely [Eq. (18)]

——,—m ln(-, mX) —m (y ——,} .1 2 3 2 (38)
4n

Without this renormalization condition, (T ) would

only have been fixed up to an arbitrary multiple of

g& and we would not know the Casimir effect.
This situation arises whenever we have logarith-

mic divergences. Now for massive fields, we have
logarithmic divergences both in flat and curved
space-times. In fact, we can take advantage of the
flat situation described above to fix the. scale once
and for all, i.e. , the Christensen-DeWitt series"
is completely fixed by demanding that it gives zero
when used to renormalize (T„„)for the vacuum in
Minkowski space-time. This explains why Chris-
tensen chooses precisely the term

y+ —,
' ln (-,'m'(o~a ) I

in Eq. (6.4} of Ref. 11. Thus, we obtain unique

time) is ineffective for manifolds with nontrivial
topology such as our cylinder.

The axioms of Ref. 9, then, only define T„,up to
a constant multiple of the metric" and are thus
incapable of fixing the Casimir effect. We should
point out however, that the point separation pro-
cedure of Ref. 9 yields results on the Casimir ef-
fect in agreement with our own. Also, more re-
cent developments of the axiomatic approach con-
tain a possible approach to the Casimir effect."

The point-separation approach. " To fix ideas,
consider a massive field in a two-dimensional
cylinder which we treated in Sec. II. If we simply
separate points in the expression for s(H(P)} we
would obtain the expression [see Eq. (16)

1 2, X m 2S(mjt) 1——,-m'ln — +—+,— —,+O(X) .
4p y R R R 6R'



3058 BERNARD S. KAY 20

G +Ag„„=~(T ),
we can never settle the ambiguity

(T~) - (T~) + Cgtk,

(39)

(40)

by measuring A.
The g-function approach. " The situation here is

quite analogous to that for point separation. When
there are no logarithmic divergences in the point-
separation approach, the f-function method auto-
matically throws away the divergent part. How-
ever, whenever point separation would give
logarithmic divergences, the g-function result
includes an unknown normalization constant p,

with dimensions of inverse length. " Once again,
we can fix this p, in the massive case by ap-
pealing to our renormalization condition (that
the vacuum expectation value of T vanishes in
globally flat space-time). But the ambiguity will
remain for massless fields in curved space-times.

In conclusion to Sec. IVA, we wish to underline
that the situation as it is presently understood is
not a satisfactory one. There does not at present
exist a comparable understanding of the generic
case to that which we have given here for the
special Casimir-effect cases of local flatness.
First, as we pointed out above, we have no way in
general of fixing the renormalization ambiguities
for massless fields. Second, the procedure out-
lined above for fixing the ambiguity in the massive
case can probably not be taken seriously either,
when there is genuine local curvature. If it was a
sensible procedure, one would expect to be able to
fix the ambiguity in the massless case also by
taking the massless limit of the result in the mas-
sive case. However, recent calculations suggest"

values for (T„,) for massive fields in curved space-
times.

Qn the other hand, for massless fields we only
have logarithmic divergences when there is non-
vanishing local curvature. Thus, our flat-space-
time renormalization condition cannot fix the scale,
and we are forced to leave an arbitrary length
scale; thus in the massless case (T~) can be de-
fined only up to local geometrical terms. " The
above discussion describes what is actually done
in point-separation calculations. However, these
things are not always made clear in the literature. '4

Indeed, the (erroneous) impression is sometimes
given'4 that these issues are settled by renormaliz-
ing the cosmological constant. " Now it may well
be that, in a fully quantized theory, the correct
solution to these problems will come from re-
normalizing the cosmological constant" (and that
the methods described here will fail to generalize).
But in the semiclassical approximation where we
write

that (for space-times which yield logarithmic div-
ergences in the massless case) this limit can
diverge

Q. Other analytic regularization methods

One popular method" for obtaining the Casimir
effect in the zero-mass case is to take (e.g. , for
the two-dimensional cylinder) the formal expres-

sionn

(41)

Qne replaces this by

This will converge for sufficiently large s. Ana-
lytically continuing back to s =-1, one obtains"

1 1, g(-I) =-
2m'' ' 24mR' ' (42)

It is then claimed that the Casimir effect is given
by regularizing without the need to renormalize.
However, in general, the method fails. Take, for
example, a massive field in two-dimensional
globally flat space-time (where the vacuum energy
density should vanish). We write

s(H(P)) =— (m'+k')' 'dk.1
4m

Now

(m'+k') s'dk=m "'f cosh "'Sdc
0 0

m "' F((s-1)/2)I'(1/2)
2 r(s/2)

(43)

which diverges at s- -1.
Another counterexample is obtained for the mas-

sive field on the two-dimensional cylinder. Here,
one must deal with the discrete sum

C. Historical precedents

In Refs. 12, 41, and 42 will be found points of
view on the Casimir effect which are related to-
but not the same as—that given in this paper. It

The resulting generalized ( function is more diffi-
cult to treat analytically but it appears also to have
a pole at s =-1." This failure of analytic regular-
ization seems to occur whenever we would have
logarithmic divergences in the point-separation
case, though this relation seems to be not yet fully
under s tood. "
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is interesting to note that in the Appendix to his
important 1973 paper, "Fulling attempted to cal-
culate essentially

lim (s - (d)(11„(P)}

with a point-separation regularization for a mas-
sive field in a two-dimensional cylinder. As we
showed in Sec. II, this yields the Casimir effect
for this model. Unfortunately, Fulling's method
failed to yield a clear-cut result, and the con-
sensus of opinion was that this calculation has
nothing to do with the Casimir effect.

V. CONCLUSIONS

We have developed a consistent, paradox-free,
and indeed infinity-free framework for Casimir-
effect calculations. We have seen, on the one
hand, that the concepts of "zero-point energy" of
"vacuum polarization, " "virtual particles, " etc. ,
are not necessary. We have also seen that regul-
arization alone fails, in general, to yield the ef-
fect.

Rather, we showed that the effect can be com-
pletely understood in the framework of ordinary
flat-space-time quantum field theory with its
unique vacuum sta.te ~ and its unique normal-
ordering procedure. All the physical effects of
nontrivial topology or conducting plates are coded
into the state s of the field which is then studied
locally. We also showed how this viewpoint can be
consistently applied to treat self-interacting fields
in perturbation theory.

Finally, our clearer understanding of the Casi-
mir effect helped us to clarify some issues about
renormalizing the energy-momentum tensor in a
curved space-time.

Note added in proof
1. The calculation of the Casimir effect for in-

teracting fields presented in Sec. III is correct
but depends on rather special properties of our
model: In particular, E()I. (22) is justified only
because s(:H: (p)) is proportional to the expecta-
tion value of the Hamiltonian, for which we have

adapted the familiar perturbation theory result

In general (for nontranslationally invariant situa-
tions and for other components of T„„}there will
be, in addition, a term involving the expectation
value of the zero-order part of Tf„ in the first-
order correction to the vacuum. A systematic
method for calculating interacting-field Casimir
effects for arbitrary components of &» and to

arbitrary order in perturbation theory will be
given in a future paper. For a brief resume, see
B. S. Kay, in Proceedings of 2nd Marcel Grossman
Conference on General Helativity, Trieste 1979
(unpublished).

2. The conjecture at the end of Sec. IV(ii) is
easy to resolve. ' Consider for example Tpo expec-
tation values. In mode-sum cutoff (or point-sep-
aration) schemes we have a formula such as

whereas the 0-function definition depends on

g„(S)= g ((d„) '.
n

g denotes the operator with eigenvalues ~„.) We

then have

00

(~(s)=~(
) f V 'Qe

(for sufficiently large s). Now writing, e.g. ,

e "~ =—+—+Xlny+C+DZ
X

n

+ YX ink+ ' ' '

and writing

we obtain

A S X C D
L(s)= + — ——,+—+I'(s) .s —2 s —1 s s s+1

Y
(s+ 1)

whereupon if Y = 0, l(-I) =D which is the same as
throwing away the divergent part of ( ~2'oo~). But
if Y+ 0, L (-1)= ~.
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APPENDIX

We give an alternative discussion of the model
in Sec. II, in the language of axiomatic quantum
field theory. Especially relevant is the more gen-
eral viewpoint on what constitutes a quantum state
made available by the C* algebra approach to
quantum field theory. '4 One of the fruits of the
C*-algebra approach has been clearer understand-
ing of the origin of the ultraviolet divergences in
quantum field theory. These are understood as
being due to inequivalent representations of the
field 'algebra. However, it has also long been con-
jectured44 that these inequivalent representations
are only of importance for representing global
observables (e.g. , total energy). As long as we
restrict to local observables, all representations
are "physically equivalent"'4 and the distinction be-
tween inequivalent representations should be unim-
portant.

We sketch, then, how the Casimir effect arises
in this framework, without the appearance of
infinities at any stage.

(a) The only representation for the field algebra
we ever consider is the usual Poincare-invariant
Minkowksi-space representation.

(b) At the point P, in our cylinder space-time,
we choose some sufficiently small space-time
neighborhood N—with compact closure —and iden-

tify it in an obvious way with a neighborhood (also
to be called N) of the origin in Minkowski space
(see Fig. 1).

(c) The cylinder ground state s [see Eq. (2)] will
restrict to a "partial state" s ~„(in the sense of
local algebras) on the algebra 8(N) of the region N
(considered to be a region in two-dimensional
Minkowski space, under the identification given
above).

(d) This state s ~„will not coincide with the Min-
kowski-space vacuum u& ~„on Q(N) [see Eq. (2)].
However, we conjecture that it will arise as a den-
sity matrix state p, in the flat-space-time repre-
sentation. Equivalently, we expect the flat-Min-
kowski- and cylindrical-space-time representa-
tions to be "local ly quasi-equivalent. ""4

Once we have p„we can take the expectation
value of the usual Minkowski-space no~mal-ordered
energy-momentum tensor at P (suitably smeared
as A: (f) supp f c N) —there is no problem in def in-
ing this as a Wick polynomial (see below) —and we
expect:H:(f) to be in the domain of p, and to be
sufficiently regular for p, (:H:(P)) to exist. We
sketch how this may be calculated without needing
to construct p, . Wightman and Ga, rding ' give the~

following formulas:

'.(x) = lim [cp(x,)p(x, ) —ar(q (x,)y(x,)}],
(Al)

(A2)

whereupon we define s(:H:(P)) to be

p,(:H:(p)}= p, ( lim —,'(s, ,s,, + Bz,sz, ) [cp(x,)y(x, ) —v(cp(x, )y(x, )}]j
lim -', (8, s, + s„s„)[p,(y(x, )y(x, )}-(u(p(x,)y(x,)}].
~X2 ~

put since the points are now separated, we can replace p, by s itself and recover Eq. (6).
Notes
(1) That p,(:H:(p)}may be negative [Eqs. (10) and (19)] is nothing paradoxical, in fact, it is well known"

that:H:(p) cannot be a positive operator-valued distribution.
(2). The appearance of s as a density matrix state in flat space-time has led Ford to conjecture that s

may be considered as an "imaginary-temperature state" on Minkowski space-time. " We hope to explore
this idea in a later publication. '

Finally, we note here some more formulas from Wightman and Garding" which we will need to refer to
in Sec. III:

:q&(x )y(x )p(x3)y(xc): = »m (y(x&)y(x2)y(x3)y(xc)

where [x,x,] =(o(y(x, )y(x,)},

-([x,x,]y(x,)qr(x, )+ [x,x,]q (x,)y(x,)+[x,x,]y(x2)qr(x, )

+[x,x, ]y(x,)y(x,)+[x,x,]y(x,)y(x, ) +[x,x,]y(x,)y(x, ) +[x,x,x,x,]]},
(A3)
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[x,x, x,x,] = o)(y(x, )cp(x, )cp(x,)q (x,))

= [x,x,][x,x,]+[x,x,][x,x,]+[x,x,][x,x,],
Also in analogy with Eq. (A4), we have for the state s

s(cp(x, )(o(x,)y(x,)q&(x,)) =(x,x,)(x,x,) +(x,x,)(x,x,)+(x,x,)(x,x,),
where (x,x,) = s(y (x,)y(x, )) .

(A4)

(A5)
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