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Gravitational wave pulse in a spatially homogeneous universe
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An exact solution of the Einstein field equations with perfect fluid source is int rpreted as a gravitational
wave pulse propagating in a spatially homogeneous spacetime. By studying the matter density of the fluid,
we reach the conclusion that if the model universe is expanding the perfect fluid loses energy as a result of
the passage of the wave pulse, while if the universe is contracting the opposite occurs. We also study the
effect of the wave pulse on the kinematics of the fluid and on the curvature and conformal curvature of the
hypersurfaces orthogonal to the fluid flow.

I. INTRODUCTION

The aim of this paper is to construct an explicit
example of a gravitational wave pulse of finite
duration which propagates in a spatially homo-
geneous fluid-filled cosmological model. This
type of construction was apparently first used by
Bondi and Bondi, Pirani, and Robinson, who

gave an example of a plane-wave pulse propagating
in a vacuum spacetime. On the basis of their
geometrical properties, these waves are currently
referred to as plane-fronted waves with parallel
rays, or more briefly, pp waves. Our example
differs from the above example in two respects:
(1) The wave pulse is not a pp wave, primarily
owing to the expansion of the universe in which it
propagates, and (2) the spacetime is fluid filled.
The second difference permits us to investigate
the interaction of a gravitational wave pulse with
a perfect fluid, when the fluid itself acts as a
source of the gravitational field and is not. simply
treated as a test fluid.

The solution that we use is obtained as follows.
In a recent paper it was shown that one could
generalize a certain one-parameter family of
Bianchi type-I spatially homogeneous perfect-fluid
solutions by incorporating an arbitrary function,
which is constant on null hypersurfaces, in the
metric. By restricting this function appropriately,
we are able to construct the desired wave-pulse
solution. The resulting metric satisfies the Ein-
stein field equations with a perfect-fluid source.
The only unsatisfactory feature is that, as regards
the source, we are restricted to the equation of
state for stiff matter, namelyp = p.

Various authors have shown that a distribution
of test particles can extract energy from a pp
gravitational wave pulse in a vacuum. Here we
are considering a gravitational wave pulse that
interacts with a distribution of perfect fluid which
itself acts as a source of the wave pulse. Our
tentative conclusion is that whether or not the

and m is a constant subject to m~-~6. Here se is
an arbitrary function of t —x, which is assumed to
be of at least class &, and n(t —x) is related to
sv according to

n'=(u')',

where a prime denotes derivative.
The coordinates assume the following values:

0&t(+~, -~(x, y, z &+~.

(2.2)

(2. 3)

The fluid velocity is
ÃeQ=8

at '

and the density and pressure are

(2.4}

fluid extracts energy from the wave depends on
whether the universe model is contracting or ex-
panding.

In Sec. II the wave-pulse solution is presented,
and in Secs. III-VII, various properties of the
spacetime are studied and used to justify the phys-
ical interpretation. Section VIII contains the
concluding remarks. The complex null tetrad
components of the Ricci and Weyl tensors are
listed in the Appendix. All the calculations were
performed using a library of programs ' written
in the algebraic computing language CAMAL. Fin-
ally, we note that this paper presupposes a know-
ledge of some of the terminology associated with
orthonormal frames (i. e. , tetrads), as described
in Ref. 9. A knowledge of the properties of pp
gravitational wave pulses ' would also be helpful.

II. A WAVE PULSE IN A BIANCHI TYPE-I COSMOLOGY

We consider the following exact solution of the
Einstein field equations with perfect-fluid source.
The line element is

ds' =e"(- dt'+dx') + t'"[dy + w(t x)dz]'-
+t dz (2. 1)

where
2& t2m n(t-x)
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R(v)= A(v), v]+v v2

2s V~V2

(2. 5)

where &~, &2 are constants and A. is a C function
with

A(vq) =A~, A(v2) =A, ,

A'(v g) = 0 =A'(v, ) .

Equation (2. 2) determines n as follows:

V~+ v]
V

n(v)= B,+ A'(v)'dv, v)-«v~v2
Vg

&+2 ) V V2

where 8 is an arbitrary constant, and

(2.7)

v2

B2=B,+ A'(v) dv.
Vy

(2. a}

The resulting line element (2. 1) is of class C' and
piecewise C over the coordinate range (2. 3).

The spacetime, which is covered by a single
coordinate chart defined by (2. 3), consists of
three regions I, II, and III, separated by the

(2. 5)

If w' = 0, Eqs. (2. 1)—(2. 5) define a one-param-
eter family of spatially homogeneous solutions of
Bianchi type I, and form a subset of the solutions
of Jacobs. ' The nature of the initial singularity
at t= 0 depends critically on the parameter m.
If m & 0 the singularity is of the cigar type, if
m =0 it is of the barrel type, and if m & 0 it is of
the point type. The rate of expansion of the
fluid is positive and so the model universe is ex-
panding overall. However, if m &0 there is a
contraction in the x direction as t increases.
These facts can be inferred from Eqs. (4. 1) and

(4. 4). If zo'0 0, the spacetime is "plane symmet-
ric" (i. e. , the metric tensor admits a two-param-
eter Abelian group of isometrics with spacelike
orbits diffeomorphic to R ), but spatially inhomo-
geneous. The special case m =0 was originally
given by Oleson but in a completely different
coordinate system. Our solution is more general
than the p = p solutions of Tabensky and Taub,
which admit the three-parameter group of motions
of the Euclidean plane.

By suitably choosing ur(t —x), we now construct
a spacetime which can be interpreted as a gravi-
tational wave pulse propagating in a spatially
homogeneous universe of Bianchi type I.

I et v =t —x and let v~, v2 be two constants with
v~ & v2. We choose

v=v j.

.t=const.

t=0
x=-v i x=-v

2 1

I'IG. 1. The dashed line indicates how the @=constant
hypersurface deviates from the &7'= constant hypersur-
face. The events P&, P2, and P3 are located on a hyper-
surface of constant 67., and hence are regarded as si-
multaneous. The diagram shows that p (P&) = p (P3), in
accordance with the fact that neither of the fluid par-
ticles x =x&, x =x3 has been affected by the wave pulse.
On the other hand p (P2) & p (P&), indicating that the wave

pulse causes a decrease in density.

hypersurfaces v = v~ and v =v2. It is essential to
note that these hypersurfaces are null. In view
of our remarks following Eq. (2. 5), it follows
from (2. 6} that the spacetime is spatially homo-
geneous in regions I and III, and spatially inhomo-
geneous in region II. We can represent the space-
time by drawing a 2-space y = const, z = const,
with t, x taken to be Cartesian coordinates.

We claim that the metric in region II can be re-
garded as wavelike (i. e. , radiative). Lacking an
invariant method of locally inferring the presence
of gravitational waves in general, one is compel-
led to use other less well-defined criteria. For
example, the presence of an arbitrary function,
which is constant on a null hypersurface, and
which cannot be eliminated by a coordinate trans-
formation, is indicative of the wavelike character
of the pp metrics. ' We were likewise initially led
to interpret the metric in region II as being wave-
like, by the presence of the arbitrary function
zv(t- x). An analysis of the Weyl tensor and of the
behavior of the perfect-fluid source in region II
tends to support this preliminary conclusion. This
is described in detail in the next sections.

We will refer to region II as the gravitational
svave pglse, and to the union of regions I and III
as the background spacetime. It should be stres-
sed that the wave pulse is not simply a perturba-
tion of a background metric; instead the metric of
the whole spacetime is an exact solution of the
Einstein field equations.

III. CHARACTERISTIC SURFACES AND THE WEYL

TENSOR

It is well known (see, for example, Ref. 13)
that the characteristic surfaces of the Einstein



GRAVITATIONAL %AVE PULSE IN A SPATIALLY. . .

s s'"
cif

which is homogeneous of degree 2 in the Weyl
tensor and of degree 0 in the trace-free Ricci
tensor S~, has a discontinuity across v =v& and
v=v2 given by

[I]= '[w" ]t 'e- (3.2)

where [w"] denotes the discontinuity in the second
derivative of w(t —x) across the null hypersurfaces
(see the Appendix). This means, incidentally,
that the arbitrary function u&(t —x) in the metric
is essential, i.e. , it cannot be eliminated by a
coordinate transf ormation.

We have thus shown that region II is bounded by
characteristic surfaces of the field equations,
across which the Weyl tensor discontinuity is
necessarily of purely radiative type (i. e. , type
N). This provides some justification for the in-
terpretation of region II as a gravitational wave
pulse.

vacuum field equations (i. e. , hypersurfaces across
which the second derivatives of the metric tensor
are discontinuous) are null hyPer surfaces. In
addition the discontinuity in the Weyl tensor (i, e. ,
in vacuum, the Riemann tensor) is of Petrov type

Th'e proof in fact depends only on the Ricci
tensor being continuous across the hypersurfaee
in question. Thus if we demand continuity of the
energy-momentum tensor, it follows that the
characteristic surfaces of the Einstein nonvacuum
field equations are null hypersurfaces, and that
the discontinuity in the Weyl tensor is of Petrov
type N.

In our example, the Ricci tensor is continuous
across the null hypersurfaces v = v& and v =v2 (in
fa,ct it is of class & everywhere), since by Eqs.
(2.4) and (2. 5), the density, pressure, and fluid
velocity are of class C . The Weyl tensor is,
however, discontinuous, and hence the null hyper-
surfaces v =v& and v =v2 are characteristic hyper-
surfaces. As expected, the discontinuity in the
Weyl tensor is of type +. This can be verified
directly by calculating the complex Weyl tensor
components relative to a null tetrad (I, n, m, rn],
with l tangent to the null geodesic generators of
the hypersurfaces v = const (see the Appendix).
One finds that only &j&4 is discontinuous. Unlike
in the vacuum case, however, one can construct
curvature scalars which exhibit the discontinuity.
For example, the scalar

matic quantities associated with the fluid con-
gruence. Firstly, the rate of expansion scalar
is

8 =[(m+1)t '+-,'(w' )' ]e '. (4. 1)

Since ~& 0, the fluid is expanding throughout
spacetime. In addition it follows from one of the
contracted Bianchi identities viz. t(= (t&-+p)i&,

that t2&0, i.e. , that the matter density always
decreases into the future along the fluid flow
lines. However, Eqs. (4. 1) and (2. 1) show that
~, and hence p, , is affected by the wave pulse.

We will consider the components of the accel-
eration vector and the 'rate of expansion tensor
relative to the following orthonormal frame. '

=t [dy+w(t —x)dz], w ' =t' dz.

Note that e(0& is the four-velocity of the fluid, and
that the frame is invariant under the group of local
isometrics. The required components can be
calculated by using the commutators for the vec-
tor fields (4. 2).

For the acceleration vector, the only nonzero
component is

u&=- ( 3)w' 'e. (4. 3)

Thus in regions I and III, where w'=0 (i.e. , the
background spacetime), the fluid flow lines are
geodesics, while within region II (i.e. , the wave
pulse), the acceleration of the fluid is nonzero.

Finally, the nonzero components of the expan-
sion tensor are as follows:

&&2 = [m, t '+ —,'(w' )' ]e ",
~22 ——,'t 'e ',

(4.4)

8

It is clear that the frame (4. 2) is not an eigen-
frame of the expansion tensor in region II, since
~23 0 there. We can, however, introduce an ex-
pansion eigenframe by means of a change of frame
of the following form:

(4. 2)

en&=t ~ e&3&=t —-w(t —x))y4 B 3)4 8

ay' ' =
a~ ay)'

The associated one-forms are

IV. KINEMATICS OF THE FLUID

The effect of the wave pulse on the motion of
the fluid can be studied by calculating the kine-

e(2& = cost e(2 &+ sint e(3&

e(3 &
—»n4 e(2 &

+ cost e(3 &

(4. 5)

where (j& is a function of t and x. Under (4. 5),



J. WAINWRIG HT 20

~23 transforms according to14

8 23 cos2&l e23 g sin2&l& (822 —&33)

Thus, on account of Eqs. (4. 4), the choice

tan2$ = 2t -'w' (4. 5)

n, ,m t e, @2=0, @3=0. (4. V)

Under the frame transformation (4. 5), the angular
velocity components transform according to

~1—~1+ ~0y ~2 ~2 t ~3 ~3 y

where 80 denotes the directional derivative in the
8&p& direction. It follows, using (4. V), that

t&i2 [w" —2(w')'] -~

I + 4t(w')'

Thus, in the background spacetime '(IUIII), the
expansion eigenframe is fermi propagated (as
expected, on account of the spatial homogeneity ),
while within the wave pulse (II) the expansion
eigenframe rotates about the e&, &

direction with an
angular velocity of magnitude

~
Q& ~.

To summarize, the wave pulse breaks the spatial
homogeneity of the pressure (and density) in the
direction of propagation (the e&» direction), there-
by giving the fluid a nonzero acceleration in this
direction. This in turn affects the rate of expan-
sion ~11 in the e~1) direction. The wave pulse also
rotates the expansion eigenframe about the direc-
tion of propagation, and affects the principal
rates of expansion orthogonal to the direction of
propagation. In this respect, the wave pulse be-
haves like a transverse wave.

V. ENERGY DENSITY OF THE FLUID

Our aim is to determine the effect of the wave
pulse on the matter-energy density of the fluid.

will yield an expansion eigenframe. The rate of
expansion in the e~1~ direction, 811, is unchanged
and one finds that the principal rates of expansion
in the 23 plane (i. e. , the eigenvalues of &

&&
in

this plane) are

—,'t '(I+ —,.'[I + 4t(w' )' ]'"]e' .

We can thus see the effect of the wave pulse on
the principal expansion rates.

The wave pulse also causes the expansion eigen-
frame to rotate in the 23 plane, relative to an
orthonormal frame which is Fermi propagated
along the fluid congruence. Such a frame is in-
terpreted as nonrotating. ' The angular velocity'
of the expansion eigenframe relative to a nonro-
tating frame can be calculated by considering the
commutators of the frame vectors. One firids that

r(P) = t e"" "' dt, x= const,
0

where tp is the value of the t. coordinate at P.
This integral is improper, but converges since
m ~-~6. If we integrate by parts and use Eqs.
(2. 2) and (2. 5), we can express r(P) in terms of
the. density p, (P) at P, and an integral

I(P) t ' e"« "&I [ ~(t x)]2dt (5. I)

The equation for r(P) can be solved to yield the
following expression for t&(P):

2m+ 8

[(2m+ 2)r(P)+I(P)]' ' (5.2)

If there is no interaction with the wave prior to
the event I', i.e. , if the world line in question
does not intersect region II prior to reaching I',
then f(P) =0. Thus for any two such simultaneous
events P„P2, i. e. , such that ~(P&) =r(P2), it
follows from Eq. (5.2) that t&(P&) =t&(P,), as one
would expect in view of the spatial homogeneity
of the background spacetime. On the other hand,
consider any two events P» P, with r(P, ) =r(P2),
which are such that the matter at P2 has interacted
with the wave, while the matter at I'1 has not.
Since f(P2) &0, f(P&) =0, it follows from Eq. (5.2)
that

p, (P, ) & p(P, ).
Thus the density of the fluid is decreased by the

W'e wish to compare the density of matter which
has interacted with the wave pulse with the density
of matter which has not interacted with the pulse.
Because the density is affected by the expansion
of the universe, however, we must compare the
density at events which can be regarded as simul-
taneous. The timelike coordinate t is a global
timelike coordinate but nevertheless cannot be
used to define simultaneity globally. The reason
is that the time elapsed between t=t1 and t=t2,
as measured along the world line of a fluid par-
ticle, viz.

t2
t e" ' "' dt, x = const,

t1

is dependent on the particular fluid world line
(i. e. , on the x coordinate) due to the inhomogen-
eity introduced by the wave pulse. A reasonable
choice of time appears to be the (proper) time
elapsed since the initial singularity, as measured
along the fluid flow lines.

Let r(P) denote the time, as measured along a
fluid world line C, from the initial singularity
t = 0 to an event I' on C. It follows from Eqs.
(2. I) and (2.4) that
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X2 X3

= const.

X

t = const, as being simultaneous. This being
granted, we select an initial slice t=to in region
III. Let r(P) denote the time, as measured along
a fluid world line C from t = to to an arbitrary
event P on C (P may be in III, II, or I). Let t& (P) .

be the energy density of the fluid at P, and po be
the (constant) energy density on the slice t = to.
We can repeat the derivation leading to Eq. (5. 2)
to obtain

FIG. 2. Diagram of a two-space y =const, z=const.
Lines at 45 represent null geodesics, e. g. , the lines
v=v1 and v=v2, where v=t-x, represent the initial
and final wave hypersurfaces, respectively. Region II
represents the wave pulse. Vertical lines x = const
represent the fluid flow lines, and are geodesics except
when they pass through region II. Horizontal lines
i= const represent hypersurfaces orthogonal to the
fluid flow lines, and are surfaces of homogeneity,
except when they pass through region II. The jagged
line t= 0 represents the initial singularity.

passage of the wave pulse. This is illustrated
schematically in Fig. 2.

It is not at all clear how to give an intuitive
physical explanation of this phenomenon. A pos-
sible explanation has been suggested to me by
Dr. D. , Eardley, namely that the wave is not
purely gravitational, but also contains a sonic
component. This would in principle be possible,
since for the stiff equation of state p = p the
speed of sound equals the speed of light. Heur-
istically a sonic component of the wave, which
would be longitudinal, would appear solely in 811
(since propagation is in the eo& direction). With
this line of reasoning, Eq. (4. 4} suggests the
presence of a sonic rarefaction wave (in contrast
to a compressional wave), with amplitude propor-
tional to —,'(~'), which could possibly be the cause
of the decrease in density of the fluid.

It is natural to ask whether this decrease in
energy of the fluid is related to the fact that the
wave pulse is propagating in an expanding uni-
verse. One might expect that if one reverses
the time orientation inthe spaceti~e of Sec. II
(i.e. , specify that t decreases into the future),
then the fluid would gain energy from the wave
pulse. A detailed analysis supports this conjec-
ture. In this case, however, the physical inter-
pretation is not as attractive, since the wave pulse
is created at past infinity (in some sense) in a
spacetime which is undergoing gravitational col-
lapse.

With this interpretation, region III is a portion
of a spatially homogeneous universe, which has
in no way been affected by the wave pulse. It is
thus natural to regard events in region III, with

V(P) = l&, »/I —[4vt&, ,/(2m+-', )]'a

&&[2(m + 1) (P) +I(P)]I

where

(5. 3)

VI. THE DURATION OF THE VfAVE PULSE

Let &7. denote the time taken, as measured along
the fluid flow lines, for the wave pulse to pass.
We will refer to this as the duration of the wave,
for the fluid particle in question. This quantity
in general depends on the x coordinate, and so
we write &w(x). It follow from (2. 1) and (2. 4) that

v2+x

(x) tsletl(t x &l2dt

t =v 1+x
/

for any fixed x satisfying -v1&x & ~. A simpler
, formula can be obtained by using v = t —x as inte-
gration variable. One obtains

V.2

t&r(x)= (v+x) e "' dv, with -v&&x &~.
v1

We see that the duration depends crucially on the
parameter m, and that the duration is constant if
and only if m=0. In addition, since m~ ~6, it
foll.ows that

lim &r(x) is finite,
x v 1

for all values of m. On the other hand, as x-,
0, if -~~m&0

lim t& r(x) =
+, ifm&0.

I(P) =- t 'e"" "' [u&'(t —x)]'dt.
to

We note that I (P) ~0 since tp & to. Whether or not
the fluid particle with world line & interacts with
the wave prior to event P depends on whether I(P)
& 0. Consider two fluid world lines &1, &2 which
pass through the slice t = to within region III, i.e. ,
the matter density on Cq "initially" (i. e. , when
t =to) equals the density on C, . Consider two
events P»P2 on C1, &2, respectively, such that
I(P,}=0, I(P2) & 0. It follows from Eq. (5. 3) that

t&(P2) & W(P&),

i. e. , the effect of the wave pulse in the colLapsing
universe is to increase the density of the fluid.
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One can also calculate the "spatial thickness"
&I (t) of the pulse in the direction of propagation
(i. e. , y, z = const), as measured along a t = con-
stant slice. One finds that

v2

&l(t) =t e"'"' dv, for fixed t&0.
V1

Thus t&l(t) = const if and only if m = 0, and

lim &&(t) = 0, if -&&+ &0

+~, if'&0

lin) &l(t) = +&, if -~6&m &0

0, if m&0.

This behavior is evidently related to the rate of ex-
pansion in the e~1& direction, 811, which is given
by Eq. (4. 4). It follows from this equation that
if m & 0, the background spacetime (m'=0) is
contracting in the en& direction (i.e. , &» & 0) as t
increases, while if m &0, there is expansion in
this direction.

We note that in order to calculate the C ~, we have
to assume that the function /i(v) in Eq. (2. 6) is of
class C', so that zo is piecewise C'.

It follows that in regions I and III (w'=0), the
spacelike hypersurfaces are flat. However, with-
in the wave pulse, the slices have nonzero Cotton-
York tensor, and hence are not conformally flat.

Since zo is only of class C' globally, both A~z

and C~& are discontinuous across the null hyper-
surfaces which bound the wave. It follows from
Eqs. (7. 1), (7.2), (2. 1), (2. 6), and (2. 7) that

[R4 ] 1[ gg]t-2m-&/2 em

[C4 ] [C4 ] [~s&r]t-3m-&/2 e-3n

We note that the discontinuities occur only in com-
ponents which are transverse to the direction of
propagation of the wave pulse (i. e. , the e&q& di-
rection). It can be shown, using the results of
Ref. 17, that this type of behavior will occur in a
large class of solutions which admit a two-param-
eter Abelian group of isometrics.

VII. THE SPATIAL GEOMETRY VIII. CONCLUSION

t-3/2( r)3e 30

C22 =-2C&& + t ' [zo'" ——,'(zo')'~" + —,'(zv')']e

C33 =-C11—C2»

C2, = 2t 'w'[~" ——,'(w' )']e

(7.2)

We finally consider the effect of the wave pulse
on the geometry of the spacelike hypersurfaces
which are orthogonal to the fluid flow. The pri-
mary tensor of interest is the Ricci tensor since
for a metric tensor in three dimensions, the Rie-
mann-Chrisoffel tensor is determined algebrai-
cally by the Ricci tensor. Another tensor that is
associated with a three-metric is the so-called
Cotton- York tensor (also known as the York
tensor). This tensor depends on the third deriva-
tives of the metric tensor, but nevertheless plays
a role analogous to the Weyl conformal curvature
tensor in four dimensions, in that its vanishing
is necessary and sufficient for the three-metric
to be conformally flat. We refer to Ref. 17 for
definitions and more details. It has also been
suggested that the Cotton- York tensor may be
related in some way to the presence of gravita-
tional waves, and it is for this reason that we
study its behavior in the present situation. The
components of the spatial Ricci and Cotton- York
tensors relative to an orthonormal frame are
denoted by R*

~ and C*», with c/, P =1, 2, 3. Rela-
tive to the frame (4. 2) we obtain

R&i=-R22=R.,*,=-2t '(~')'e ",
R,*,=--,'t '"[w"——,'(w' )']e ",

We have established that the spacetime of Sec.
II can be interpreted as a gravitational wave pulse
which propagates in a spatially homogeneous
spacetime. We have not, however, been able to
define the amplitude and polarization of the wave
pulse. In the case of pp gravitational waves,
Ehlers and Kundt were able to give a coordinate-
independent definition of the amplitude and polari-
zation, by using the complex Weyl tensor and the
equation of geodesic deviation. Their approach,
however, depended essentially on the Weyl tensor
being of Petrov type N, and hence cannot be ap-
plied in the present case. The standard line ele-
ment for pp gravitational waves contains two
arbitrary functions which are constant on null
hypersurfaces, and the approach of Ehlers and
Kundt relates these functions to the amplitude
and polarization of the waves. The fact that the
line element for the present solutions contains
only one arbitrary function suggests that the ampli-
tude and polarization must be restricted in some
sense. The fact that the wave pulse rotates the
expansion eigenframe in the two-space orthogonal
to the direction of propagation implies that we
cannot regard the wave as being linearly polarized.
In contrast, it should be noted that other recent
papers which deal with gravitational radiation in
spatially inhomogeneous (but plane or cylindrically
symmetric) cosmologies, e. g. , I tang and Cen-
trella and Matzner, assume a diagonal metric21

which permits only gravitational waves of one
linear polarization.

To conclude, we mention some possible exten-
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sions of this work. Firstly, the present solution
describes a wave pulse in a spatially homogeneous
spacetime of Bianchi type I. It is also possible to
construct solutions in which the wave pulse pro- .

pagates in a spatially homogeneous spacetime of
Bianchi type V and type VII„. These solutions
will be presented elsewhere. It would be of
interest to determine for which of the Bianchi
types of spatially homogeneous spacetimes this
type of construction can be performed.

Secondly, Szekeres and Kahn and Penrose
have given exact vacuum solutions which repre-
sent the collision of two pp wave pulses. Szekeres
has shown that curvature singularities develop in
the interaction zone, and has suggested that this
behavior is due to the very high symmetry of the

pp wave metrics. In view of this it would be of
interest to construct a spacetime which represents
a collision of two wave pulses of the type consid-
ered in this paper, so as to be able to study the
geometry in the interaction zone.
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APPENDIX

In order to calculate the Weyl tensor, we intro-
duce a null tetrad as follows

I.ux'= ~(u "'- u "'),

m.dx'= ~ (~"'+ i~"'),

where the m
' are given following Eq. (4. 2). The

nonzero complex components of the%'eyl tensor,
relative to this null tetrad are given by

-2 -2k
40 -——4mt e

(0=1[0 (m —0)t '+i~'t '"le-",

q4
—[-—,'mt, '+ —,'(u ')'t '

+i(00"- (w')'- mzu't ')t '"]e".
(AI)

P=- t 8
2

10 =-~P .
The spin coefficients p and ~, which describe the
expansion and shear of the null congruence defined
by n„are given by

t
2&2

t (I +4it ~go')e ".
These quantities describe the distortion of light
signals which pass through the wave region in the
negative x direction.

In order to calculate the curvature scalar (S.1),
we also need the null tetrad components of the
Ricci tensor. The only nonzero components are.'

2 «2 «2)If
f00 = P» —2P qq = —nt~

The formulas given in the Appendix of Ref. 25 can
be used to show that the invariant I, as defined
by Eq. (3. 1), is givenby

I= q[$0$0 + $4/4 + $0/4 + (0/4

+ S(40'+ 240(0+ 40')1.

Equation (S.2) is an immediate consequence of
this equation and the expressions (Al).

On account of Eqs. (2. 6) and (2. 7), the only com-
ponent which is discontinuous across the null hy-
persurface boundaries of region II is g0, and

[q,]=i[u "]t '"e '",

i. e. , the jump in the Weyl tensor is Petrov type
N, with the normal to the null hypersurfaces de-
fining the repeated principal null direction.

Relative to this tetrad, the spin coefficients
p, a, which describe the expansion and shear of
the wave hypersurfaces (i.e. , the hypersurfaces
whose null geodesic generators are defined by /, ),
are given by
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