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Electromagnetic response in strong magnetic fields. II. Particle polarization and mode
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The particle part of. the polarization matrix for a relativistically dense electron gas in an external magnetic
field is explicitly calculated for the case of propagation vector k parallel to the magnetic. field. The results
are combined with the corresponding renormalized vacuum elements to give the complete co- and k-
dependent dielectric response function ai&(k, co) for the system. The static longitudinal element e~~(k,O) is
used to determine the density and field dependence of the screening along the field. The static transverse
element e~(k, O) determines the magnetic properties of the system. The possibility of magnetic phase
transitions is determined for densities greater than a certain B-dependent value. The longitudinal k = 0
element &~~(0,co) is used to investigate the longitudinal plasma mode and the associated plasma frequency of
the system; its remarkable magnetic field dependence is displayed. The Landau-level structure of the plasma
and the vacuum contribution have important effects on the structure of the mode. The transverse k = 0 left-
handed e+(O,co) and right-handed c (O,co) elements are employed to analyze the transverse modes and to
investigate co„ the associated cyclotron resonance. The latter acquires a complex fine structure owing to the
relativistic Landau energy states of the system.

I. INTRODUCTION

The collective properties of a many-body sys-
tem, such as the ground-state energy, magnetic
properties, and structure and propagation of col-
lective modes, can be determined from the dielec-
tric tensor of the system. The properties of a
relativistic quantum plasma in an external mag-
netic field, apart from their intrinsic theoretical
interest, are relevant to models of collapsed stars.
The questions one is concerned with relate to the
equilibrium properties, to the electric and magne-
tic response characteristics of the system, and
finally to the structure and propagation of collec-
tive modes. A central object for the study of all
these features is the polarization matrix or, equi-
valently, the dielectric response function.

The properties of a rel3tivistic3lly dense elec-
tron gas in a neutralizing background in an external
magnetic field have not received any substantial
treatment in the literature. The modern literature
on the properties of a nonrelativistic quantum
electron gas in intense magnetic fields, however,
extends back to the early 1960's. Stephen' used
Green's-function techniques to calculate the lon-
gitudinal dispersion relation for propagation vector
parallel and perpendicular to the magnetic field.
This problem was analyzed in more detail by
Horing, ' particularly with respect to perpendicular

propagation and the damping associated with the
modes. In subsequent articles Horing considered
in detail the longitudinal static limit and the effe'c-
tive dielectric screening along 2nd transverse to
the field. ' The elements of the dielectric tensor
for spinless electrons were calculated by Quinn
and Rodriquez. ' The static limit of these elements
was used by Quinn' to calculate the diamagnetic
susceptibility of this system. The complete dielec-
tric tensor, including the effect of collisions, for
this system, in the case of parallel and perpendicu-
lar propagation, was given by Green et al.' The
work by Green eI, al. contains additional discussion
of and references to work on diamagnetic interac-
tions. Subsequently, Chiu Bnd Canuto studied the
equation of state and thermodynamic properties of
an electron gas by evaluating the energy-momen. -
tum tensor using the exact wave-function solutions
of the Dirac or Schrodinger equation. ' Canuto and
Ventura included'the effect of spin in calculating
the nonrelativistic dielectric tensor. ' Magnetic
instabilities and phase transitions were derived .

and examined by Quinn' and by Lee et al. '
At the other end of the spectrum the relativistic

electron gas, without an external magnetic field,
wa, s described by Tsytovitch" (also see Kalman
and Prasad").

The above studies already made it clear that,
for a relativistic system, it was not feasible to
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divorce the calculation of the vacuum contribution
to the polarization matrix from that of its particle
contribution. Thus, the investigation of a rela-
tivistic quantuIn plasma in a magnetic field re-
quires a unified formalism for the calculation of
the col responding combined vacuUm and particle
polarization matrix. Such a formalism we de-
veloped in a previous paper" (I). This previous
work constitutes the framework of the present
paper, whose aim is to study the properties of the
Inany-body system we have described. The im-
portant qualitative features result mostly and not
surprisingly froIn the particle contribution. These
features, in the case that pertains to static prop-
erties, appear as straightforward generalizations
of the quantum, nonrelativistic liInit. The col-
lective modes, however, are significantly modi-
fied by the relativistic effects.

The principal restriction both in I and in the
present work is that we only calculate the case
where the propagation vector k is parallel to the
external magnetic field B. We ignore all tempera-
ture effects, considering only the X=0 case. We
do not impose any restriction on the value of the
magnetic field, but our main interest lies in
analyzing the behavior of the system for very
strong (B~ B~ —=4. 4 x 10"G) magnetic fields; this
also implies that in most cases we will be con-
cerned with systems populating the few lowest-
lying I andau levels only. A further simplification
that we will use at a later point is that, although we
evaluate the full k- and e-dependent polarization
matrix, 1I(k, &u) and dielectric tensor e(k, +), we
investigate the e(k, 0) and e(0, &u) limits only:
This simplification will'be commented upon later
in the text.

After reviewing the general formalisIn in the
present section, in Sec. II we study the static
longitudinal (electric) polarizability and the asso-
ciated screening length. In Sec. III the corre-
sponding transverse magnetic polarizability and
the possible magnetic phase transition are ana1, -
yzed. Section IV describes the longitudinal col-
lective modes, plasma oscillation' and the recently
discovered "longitudinal photon' mode, and the un-
usual density and magnetic field dependence of the
plasma frequency. Section V describes the or-
dinary and extraordinary transverse modes and in
particular the important modification of the cy-
clotron-resonance structure.

A. Review of general formaHsm

We will outline the formalism developed in I for
the calculation of the particle and vacuum polar-
ization matrix. The dielectric function e(k, (d)

and the differential diamagnetic function p(k, &u)

of a many-body system relate differentially small
applied field E, and B& to the physical fields E,
and B& and electric polarization P and magnetiza-
tion M by

B)——(v )(~B~ .
These response functions can be expressed in
terms of electric and differential magnetic polar-
izabilities &(k, &u) and $(k, ~) (h=e=1):

P= &E, D=E+P,
M= -$B, H=B —M,

from which it follows that

6= 1 —4)

v=1+k'E '$

Z= (lP —~')1 -kk,
(»)

which in turn are related to the spacelike part of
the polarization matrix via

()'.))(k, a), B)= ——,11))(k, (d&B),
(d (3)

where 0 „„is the fully regularized polarization
matrix. Note that while our definitions of & and $

are in accord with convention, & and v are some-
what different and have been chosen so that the
relations expressed by E(I. (1) remain valid for
arbitrary polarization of E and B. This is not
the case for the conventional definition, where
e = 1 + (T' and p = 1 + (.

Using the formalism given in I, one can write
down the polarization matrix for a system con-
sisting of a relativistic positron and electron gas
with distribution functions n'(e~, ), respectively.
The polarization matrix comprises three pieces:
II'„„(k,+) pertaining to the positrons and electrons,
and II,„(k,&u) pertaining to the vacuum. The re-
sults given in I were calculated to lowest order e'.
In the language of many-body theory, this corre-
sponds to the conventional random-phase approxi-
mation (RPA):

I

e'B '
1 R„(k) P~ „(k) P„, (k)II„„(%;~) = — I d),

'" [n. (e-„-) -n-(e~)] — .
'" —n (c;;)+ '" n (e„lj,

S~S
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p„„(e—= )try„A(p, rr ,)D—,—(y)y-„A(p,ee, )D (r)e'" dr",

where

p p +

e„=(p'+ m'+2seB)'"

is the single-particle energy. The general form
of the elements RD„(k) and PD„(k) is given in
I. In this work we will only consider the case
k=km, i.e., k parallel to 8 (=Be). In this case,
the &~'s reduce to

P„=-2 (pp + m'+ e~,e~—,)

x (f), -, , + n, .-..)

where 5 and c have been given explicitly. In ad-
dition, there is a level degeneracy due to spin:

a, =1 for s=0,
a, =2 for s & 0.

The electrons then occupy levels s = 0, 1, . . . up to
some Fermi level sz, which may be partially or
completely filled. The word "filled" is used in a
special sense. A given level s will be referred to
as filled if the fermion number density is such that
the (s + 1) level is occupied or, in the case of the
s~ level, if an addition to the density causes the
(s~+ 1) level to be entered. The Fermi energy of
the system is given by

=P22 e~ = (p,'+ m'+ 2seB)'", (12)

P» — 2( -pp -+ m + 2s eB + E&,e~,)—
x(6, ,-+6, , -, ,),

Pa i = ~2 i'(pp + m + epD&i—,,)

x (V, -„, V„-,)
= —P2

23 32 13 31

with R„„(k) obtained from P„„(k) by a -e~,—
—

&~; replacement. Our interest is in ultradense
systems where the Fermi energy is very high and
temperature effects negligible. Thus we have as-
sumed that n (e) = e(ei —e) and n'(e) = 0.

B. Degenerate Fermi gas in an external magnetic field

To establish the energy and momentum relation-
ships used in the remainder of the paper, we will
review the description of a noninteracting relati-
vistically degenerate electron gas in an external
magnetic field.

The quantized total energy of a free relativistic
electron in a uniform external magnetic field is

e„=(p'+ m'+ 2seB)'~',

where P is the momentum along the field, and s
=0, 1,2, ... is the quantum number characterizing
the Landau level of the electron. The multiplicity
of each Landau level due to the coalescing of the
free transverse-momentum states into those of a
two-dimensional harmonic oscillator'~ is

y2/3 2n 2 (S+l)eh B/g
D=, , f d(, f —.'AP. *

2/3 eB
(10)2n'Sc '

where p, is the longitudinal Fermi momentum
necessary to take the electron from the sth level
to the top of the Fermi sea. The relation between
the various P,'s is

p (p 2+ 2eB)l/2

This gives s~ relations between the (s~+'I) p, 's.
The magnitude of P for a given s is restricted by
0 & p & P, . To determine the P, 's and the resulting
Fermi energy we relate the density of the electrons
to the sum over states:

&s
n= g a, dp/2m

s=O

S~

(14)
S=O

These (s~ + 1) relations allow us to determine the

p, 's and thus the resulting Fermi energy. A sim-
ple limit results if the top level is completely
filled, in which case

p,* = (2eB)'~' (15)

Graphs of ~~ and p, vs B for a given density are
given in Figs. 1 and 2. Note that neither g ~ nor p,
is a continuously differentiable function (even
though the total energy is).

II. STATIC LONGITUDINAL POLARIZATION AND

SCREENING LENGTH

The total polarizability includes the vacuum con-
tribution calculated in detail in I and the electron
contribution II (k, &u), which is the main concern of
the present work. We will simplify notation by
using rI in place of II, and by referring to the
total II and & as II and 2 when necessary. '+le



R. A. COVER, G. KALMAN, AND P. BAKSHI 20

72-

7.0—

6.8—

6.6-

5. —

Q

3-

60 I I I ( I I I I I I I I I I I I I I I I I I I I

7. 9. I I. I3. 15. I 7. 19. 2l. 23. 25. 27. 29. 3l.
B/B,

FEG. 1. e & in units of electron mass m versus B in
units of J3~ =nz2/e=4. 4 ~10~3 G. The density is mea-
sured in units of (Compton wavelength) 3. 8 density of
a=1 is equivalent to 1.74&&10 /cms= N. Her—e n=10N,

consider first the static limit of the longitudinal
polarization II»(k, o). Since the ordinary static
susceptibility

(r» (k, 0)= —lim II„(k, (d )/(u'

should remain finite as ~ goes to zero, we expect

P
0 I

7. 9. I I, I3. 15. 17. 19. 2I, 23. 25. 27. 29. 31.
B/B,

FEG. 2. p~ versus B for n = 10N .

Now, from Eq. (4),

e'B
t [n(e„) —n(e;—,)]B„(k)

n (e„)P»(k)

After some algebra this yields

11„(k,o)=o,

a II„(k,oI)

8GO

(17)

n

Il„(k, o) =4 g a, =o.
27t'

'
p kep,

Expanding II»(k, a)) in a series in ((Ia, we get

( )
8 II»(ki (8)

~33
2 GO

2
(aI+0

e B '(n(c-;) —n(e, )]R„(),) n(e, )P„(k)
I

e'B I ~& dp p 2(m'+ 2seB)

Se'B & m'+ 2se J3 1
2II' Z ' (m'+2seB+k'/4)'Ia k

I

-(k/2)p, + m'+ 2seB+ z(me' 2s+eB + k'/4)'i' p, +k/2-
(k/2)P, + m +2seB+ez(m +2seB+ k /4) i (2o)

In the nonrelativistic limit, this reduces to

which formally agrees with the calculation of Quinn and Rodriquez.
As k goes to 0, Eq. (20) reduces to

S

(21)

(22)
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1+ n,', (k, 0) =0. (23)

For small k the screening length is given by the
square root of the factor multiplying 1/k' in the

.22

We see that the relativistic expression has the
same decaying oscillatory long-wavelength be-
havior that is exhibited by the nonrelativistic limit.
That is, as k goes to zero, n»(k, 0) goes as 1/k',
and the oscillatory behavior is manifested in the
(s~+ 1) singularities at k= 2p, . As k goes to in-
finity, the polarizability approaches zero as 1/k~.
This behavior is the same as that without a mag-
netic field. The large-k behavior of the total po-
la, rizability is determined by the vacuum contribu-
tion which goes as -ink. A graph of the static po-
larizability is given in Fig. 3.

The effective charge of a test particle in the
plasma medium is the ba, re charge modified by the
plasma dielectric properties. The imaginary val-
ue of k for which the longitudinal dielectric func-
tion vanishes determines the longitudinal screening
length of the plasma. That is, we seek a solution
to the equation

6.40
B=ID.

4,80
I

E

S.ao
I
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z
LLI

LLI
l, 60-

O
M

.00
0. 2.

N/Nc

IO.
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I4.

FIG. 4. Screening length in units of Compton wave-
lengths versus density for B=10B~.

1 + g'//P + no = 0, (24)

small-k limit, Eq. (22). In this limit the vacuum
contribution goes as a constant n0 plus a term
proportional to k'. The dispersion relation is
then modified by vacuum effects to

PARTI C LE
(a) so that the screening wave number is modified to

.06

0
I.

. I8

O

~ .02
If

OI
O

7.

k /rn

I3.
I I I I I I I

II' = K(1 + +0) (25)

[x being the inverse Debye length, defined by Eq.
(22)].

In general, we must solve a transcendental equa-
tion for k. The screening length as determined
by numerical solution of Eq. (23) as a function of
density and field strength is given in Figs. 4 and
5.

The qualitative features of screening-length
illustrations can be understood from elementary
considerations. In the usual small-k approxima-
tion with few occupied levels the inverse screening
length scales a,s

K = K = 4) 5

. I4-
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FIG. 3. +33(k, 0) versus k. Top level s&= 2 partially
filled. B=10B+,m=lON~, ez=6.64m. (a) Particle
contribution. (b) Vacuum contribution. (c) Total a+b.

80. l60. 240.
8/e.

FIG. 5. Screening length versus B for g =10N~.
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where co„ the plasma frequency associated with
level s, goes as

(o, ~ (n, /e~)'~', (27)

Vs —P

Thus ~

2
2 g Sg 'Ep

p Ps

(2a)

(29)

Since v,' goes as n, /P, '~ 1/n„ the emptiest,
i.e., the s~th, level contributes most to the sum.
As B increases or n decreases, the top level
empties, v increases, and thus the screening
length decreases. When the level is completely
emptied, it disappears from the sum. Then v de-
creases suddenly, and the screening length jumps
to a new maximum.

The screening length obtained by solving the
complete Eq. (23) is almost exactly that of the
small-k limit up to the point where the Fermi level
is almost empty. At that point the small-k ex-
pression, which is dominated by the s~th term,
goes as 1/P, „, becomes large, and the screening
length goes to zero, whereas in the complete ex-
pression for a»(k, 0}, the contribution of the szth
term goes to zero as P» vanishes, and the screen-
ing length approaches a finite limit.

The scaling of successive maxima as a function
of B can be understood from the following argu-
ment. For a given n, as B increases, the screen-
ing length decreases as a given level empties.
However, at the beginning of each lower level the
screening length jumps to a, new maximum before
decreasing. Since for completely filled shells
allP, ~B, K at the top of successively filled levels
goes as

g'= (e~/B) Q n, /C, , (30)

where C, are constants of order unity. For the
case of only a few filled levels and p, -e~ -n/B,

where n, is the number density, 2nd with the Fermi
velocity v, being defined by

III. STATIC TRANSVERSE ELEMENT AND

MAGNETIC POLARIZABILITY

The (differential) magnetic polarizability for
arbitrary k was defined in Eq. (3). In the static
case the magnetic polarizability $ is related to the
(differential) diamagnetic tensor v by

f(k, O, B)=v(k, O, B) -I. (32)

The relationship of f(O, O, B) to the quotient mag-
netic polarizability - was given by Quinn. ' To
recapitulate, let us assume that to a system with
a uniform magnetic field 8, and magnetization M„
we add a small perturbing field B„generating a
corresponding M, . Then

Mo = (Bo)BO,

M~ = $(BO)B~,

M +M~= (~B +8~~)(B,+8,),
(33b)

(33c)

so that subtracting Eq. 33(a) from Eq. 33(c) and
considering the limit as 8, tends to zero, we ar-
rive at two separate cases. If 8, is perpendicular
to 8, we obtain

(Bo)= Mi/Bi,

while for 8, parallel to 80 we get
- (B )+Bo'(oB )=oMi/Bi,

(34)

(35)

where '(B,} is the derivative of:" with respect to
We can relate =(B,) to f(B,) in the k —0 limit

by considering the polarization direction relative
to 8,. If k is perpendicular to 8„ then taking k-
=kx, B~=B~y,

their physical implications are limited. Horing's
work' would imply that the Friedel-Kohn behavior
coming from these results is highly anisotropic.
For the nonrelativistic case in the strong-field.
limit, where only the lowest Landau level is oc-
cupied, Horing showed that off the parallel direc-
tion, the Friedel-Kohn shielding has an extremely
fast exponential cutoff and is dominated by the
strong-field counterpart of Debye-Thomas-Fermi
shielding.

a~ n/B-
-n'/B', (31)

lim $22(k„B,) = lim $„(k„,Bo)

so that the screening length scales as B/n.
Similarly for fixed B, as the number density in-

creases and succeeding Landau levels are filled,
the screening length for each level reaches a p-
independent plateau; if &~ -p„v, -constant, and
ar, -n'~'/P, '~'-1/B'~', the screening length goes
as B', i.e., saturates.

Rigorously, the foregoing- results apply only to
the direction along the magnetic field, and thus

= lim $22(kN g
B )0

k ~0
II

whereas

(36)

lim)' (k,.B )= g„g(B )= "(B)+B -'(B ). (37)
k ~0J.

Thus for k parallel to B, only the $,( )B= - (B,) is
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accessible. The magnetic polarizability is now given by

~„(k,O) = ~„(k,O) = 11„(k,O)/k'.

From Eq. (4} we find after a few transformations

(88)

e'B ~~ P + ~p 1 (2s+ 1)eB+k'/2 P,k —(k'/2+ eB)
2v ~ -p, +ez + 2 [(m'+2seB)k'+ (k'/2 +eB)']2/' p k+ (k /2+eB)

-(k'/2+ eB)p, + (m'+ 2seB)k+ [(m'+2seB)k'+ (k /2+ eB)')' 'ez
(k'/2+ eB)p, + (m'+ 2seB)k+ [(m'+ 2seB)k'+(k'/2 + eB)']'/'ez

1 (2s —1)eB+k2/2 P,k —(k'/2 —eB}
Z 2 [(m'+ 2seB)k'+ (k'/2 —eB}2]2/2 p k+ (k'/2 —eB)

—(k'/2 —eB)p, + k(m + 2seB) + [(m'+ 2seB)k'+ (k'/2 eB)'—]'/'ez
(2'/2 —eB)(s, +2(m +2seB)e[(m'+2seB)2se(2s/2 eB} ] Ie -'I

and Z' indicates that the (s = 0) term is multiplied by —,. In the nonrelativistic limit

e'B 1 ~~e4p, ~~ (2s+1)eB+k'/2 p, k —(k'/2+eB)~ m ~ mk p,k+(k2/2-eB)

+ (2s —1)eB + k'/2 p,k —k'/2 —eB
— ln s

mk p,k+ k'/2 —eB

The static uniform II»(0, 0) vanishes. The finite f»(O, O, B) is determined from the first term in the k
expansion of II»(0, 0). The result is

se'B 1 ~~, (m'+ 4seB p, + e
11 y & 2+ g2 ~ s F 2 -ps*O s F-

(4o)

(41)

In the nonrelativistic limit this becomes
3 F

f"„"(0,0, B)= —4, g (-', P,' —2seBP, ),
s~O

(42)

which can also be derived as the k- 0 limit of
P»"(k, o) given in Eq. (40).

A similar nonrelativistic expression was derived
by Quinn, which, however, differs from Eq. (42)
in that it refers to spinless particles. The dis-
tribution of particles over the Landau level and
hence the p, 's are different for the spinless sys-
tem. Formally, the spinless expression can be
obtained by letting 2seB —2(s + ,')eB in g2" (02 0, B)—.

Graphs of f,(0, 0, B) as a function of B and density
are given in Figs. 6 and V. Both g, and $, (i.e.,
=, and:. , ) are less than 0, reflecting the para-
magnetic character of the system (Quinn's. spin-
less expression, of course, does not have this
property. )

Since the long-wavelength limit is ak-independent
function, there is no magnetic screening. How-
ever, the sharpness of the Fermi surface is mani-

fested in the singularities in the magnetic polar-
izability. From Eq. (39) these singularities occur
at

k —ps +ps 1p S —0, 1,2, .. . , SF —1

and also at the complex value

(42)

k=Ps +Ps .1 (44)

(Note that p, „is pure imaginary. )

As the last level gets filled and the complex
singularity approaches the real axis, the polar-
izability develops a finite minimum which becomes
a singularity when the level is just filled. A

graph of f»(k, o) is given in Fig. 8.
The character of the static magnetic polariza-

bility as a function of k is dependent on the density
and on the magnitude of B. At k=0, $(k, o) is
negative —the absolute magnitude increasing with
density —and remains negative for all k. If only
the lowest Landau level is partially occupied
$(k, o) has no infinities. As the density increases,
$(k, o) develops a minimum at k=PO, referred to
above. Vfhen the density for a given field strength
is sufficiently high so that $(k, o) can equal —1—
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FIG. 6. Magnetic polarizability (ii(O, O, B)= $~ (O, O, B) versus B for n =10N~. (a) Particle contribution. (b) Vacuum
contribution. (c) Total a+ b.

a condition that obtains when the density equals or
exceeds that of an almost-filled lowest level —the
magnetic response function v(k, 0) vanishes. Since
the induced magnetic intensity B,(k) is given by

-2.

3C)
O„
O

-4.
O

B,(k)=H, (k)/v(k, 0), the vanishing of v(k, 0) indi-
cates a magnetic phase transition. In sum, with
this model there exists for a given field strength
a density above which there is a magnetic phase
transition.

For real systems, small finite-temperature and
collisional effects can strongly modify the charac-
ter of f»(k, 0) and can easily wash out the phase
transition.

At finite temperatures the singularities are
smoothed out and give rise to an oscillatory mag-
netic susceptibility. In a somewhat similar situa-
tion this oscillatory susceptibility was calculated
by Lee and co-worker's" for the nonrelativistic
cases of k perpendicular to B.

-6.

0 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. II. 12. 13. 14. 15.
N/Nc

FIG. 7. $i (O, O, B) versus n for B=10B~ par'ticle
contribution. Vacuum contribution is constant —0.768
x 10

IV. DYNAMICAL LONGITUDINAL POLARIZABILITY
AND THE PLASMA MODE

The dynamical (&uw0) k=0 limit of the polariza-
tion matrix yields information on the normal modes
of the plasma. In particular, the longitudinal ele-
ment determines the plasma frequency of the sys-
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FIG. 8. (~ (k, 0) versus k for B=10B~,n =14.863 N~, &F =7.810~n. Top level sz=2 completely filled. Singularities are
at p2 p f +p2 and p 0+p~. (a) Particle contribution. (b) Vacuum contribution. (c) Total a+ b. (d) Comparative total for
almost filled s&=2 level.

tern.
The vacuum contribution to the longitudinal element of the polarization matrix H»(0, &u) was given in Eq.

(36) of I. From Eq. (4) the particle contribution is

e'8 ~ ~& (-2p' —(ye~, ) ((u' —2(ue„) + (-2p'+ (oe„,) ((u'+ 2(ue„) dp—2 ~ a
4&@'(p'+ m + 2seB —&u'/4)

Sge'I' ' nz'+ 2seB dP=2 as
27k 0 ~ p + m + 2seB —4P/4

e'8 ~ m'+ 2se8, (~/2)p, /e~
2n ~ ' ((u/2)(m'+ 2seB —(u'/4)'~' (m'+ 2seB —(o,'/4)'~'

g3jg M m + 2seB' ((u/2) ((o'/4 —m' 2seB)'~'—

((u/2)e~+ m +2seB -p, [(u'/4 —(m'+ 2seB)]'"
( ~/2) e~+ m' + 2seB +p+uP/4 —(m'+ 2seB)]&&2

p. —[uP/4 —(m'+ 2seB)]'"
0, +[ad/4 —(m'42seB)] "I''
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g =1 s=Q

=2, s)0,
8~ -- -1 lf 40 & 2 SZ

(46)

.14—

- 02-p

=-integer [((u'/4 -m')/2eB] if (u ) 2 m.

In the nonrelativistic limit this expression re-
duces to

3 Ii

II (0 (u).=-4— a—NR

2r 'm
s=O

which, in view of relation (14) relating p, and
the density, is the square of the usual pla. sma fre-
quency. As cu goes to zero, li»(0, ~) goes to a
positive constant, so that e»(0, &o) goes to infinity
as -I/&u'. As &u goes to infinity, II»(0, &u) goes as
-I/uP, so e»(0, &d) approaches unity as I/u'.

A plot of o'»(0, &u)[=- -II»(0, cu)/e'] is given in
Fig. 9(a). The graph is characterized by s~+1
arctangent singularities at u&=2(m'+2seB)'~',
s = 0, . . . , s„, and a logarithmic singularity at w

=2e~. From Eq. (36) of I the arctangent singular-
ities are canceled by the corresponding singulari-
ties in the vacuum element. The logarithmic sin-
gularity coming at the boundary of the momentum
integration (at the Fermi surface) is not canceled.
The corresponding vacuum and total polarizations
are displayed in Figs. 9(b) and 9(c).

For the general case the real solution to the
equa. tion

-.54-

-.50

.46

3
O

lo

O
fo

O

—.02-p

.04

.02—

3 .00
O

I
I I

I I I

2.

PARTIC
B=l.
N=.47

F =2.645

VACUUM
B= I.

I I i I

I i

S. - 4.
~/m

TOTAL
B= I.

c =2.645
F

(a)

, i

(b)

5. 6.

e„(0,(o) =- 1 + n~r, (0, (u) = 0 (48)

~, = ~, =- (4ime'/c~)'~' (49)

as long as & &2ez.
For fixed and small B, c~ -rn and (do roughly in-

creases as n'~ as successive Landau levels are
occupied. For fixed B& B+, and n becoming suf-
ficiently large to fill.the lowest level, the density
dependence of e~ comes into play and the increase
of v~ with n is slower than /n. In particular, for
large, fixed B and n beginning to fill the lowest
level,

e~ -p, -2m'n/B, (50)

and thus the plasma frequency

defines the plasma frequency w0 of the system.
Graphs of the plasma frequency versus density a.nd

magnetic field strength are given in Figs. 10, 11,
and 12. Some of the features of the plasma fre-
quency curves can again be adduced from simple
scaling arguments. The Landau-level structure is
evident. For small enough B, the plasma frequen-
cy ~, goes as

-.02-

-.04

( c)

FIG. 9. a33(0, co) versus co for B=B~, n =0.47K~, e'&

= 2.645m. Top level sz= 2 completely filled. (a) Par-
ticle contribution. (b) Vacuum contribution. (c) Total
a+b.

2~2 1/2
&u, -[4iine'/(2m'n/B)]'~'= B

is independent of n; i.e., saturates. For this to
happen the density has to be high enough for the
plasma to be relativistic (1 &n/X, ), but low enough
so that only the lowest level is occupied [n/N,
& (B/B+)'~']: the two requirements are compatible
for B & B~ only, which is the condition for the
plasma frequency saturation to occur. This pro-
cess is illustrated in Fig. 10; for B=B~ the slope
of coo merely decreases, whereas for B=100B~,
v, is almost flat over the range of densities n/n,
from 10 to 70.



20 ELECTROMAGNETIC RES PONS E IN STRONG. . . . II.

.16 4.00

.12 5.20

.08

Q
3

2.40

.04 1.60

.0
.00

1.60

.08 .16 .24 .52 .40
N/Nc

.48
.80

.0
.0

I I I

40.
I I I I I I

80. 120. 160. 200.
10 8/80

1.20—
FIG. 12. Plasma frequency coo versus B for n =100N~
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a=co~ [= (4m'ne /e~) ] are added for comparison.
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FIG. 10. Plasma frequency coo versus n for (a) B=B~
and {b)B=100B~. Note the differe'nce in the range of g.

N = I.

E

O
3

.275

. 215

. 115
I. 17.

8/8,
25. 41.

FIG. ll. ,uo versus B for I=N~. Lowest value of B
corresponds to three filled levels.

For fixed density and increasing 8 the plasma
frequency, as a level is being emptied, first in-
creases and then decreases because of the oscil-
latory nature of the Fermi energy within that
level —the longitudinal P, decreasing while the
transverse energy is increasing. In the lowest
level the Fermi energy decreases with increasing

The plasma frequency first rises reflecting its
e~ 'I' dependence. For n/N, & 1, and B/B„&1/e',
the plasma frequency approaches its nonrelativis-
tic limit (4vne'/m)'~'. This behavior of the plas-
ma frequency is shown in Fig. 11.

For large B the vacuum contribution qualitatively

I

affects the plasma frequency. Since the vacuum
contribution to e»(0, +) is positive for ~ &2m, the
vacuum has the general effect of lowering the
plasma frequency. For the case of n/N, z 1 and

B/B~ &1/e', the plasma frequency decreases from
its nonrelativistic plateau with increasing B.

For n/N, & 1, the value of B such that only the
lowest level is occupied is already substantial.
Within the lowest level as B increases, the plas-
ma frequency again first increases reflecting its
qz dependence. It pecks somewhat before the
value of B for which

(4one'/e~)' ~' = 2e~ (52)

and for increasing B monotonically decreases.
This large-B behavior is illustrated in Fig. 12.

For a sufficiently large magnetic field (&430B„)
it was reported earlier" that the vacuum singular-
ity structure. gives rise to a longitudinal photon
solution in which the vacuum &»(0, ur) = -1 for ar

between 2m and 2(m +2eB)'~2. The presence of
particles modifies this photon solution to a doub1. e,
that is a "two-plasmon, " solution. The particle
and total polarizability diverge to plus infinity on
both sides of v=2&~. If the particle number den-
sity is sufficiently low that e~ & (m'+ 2eB)' '
and the field strength exceeds the photon threshold
(so that the 2ez particle singularity occurs between
the s = 0 and s = 1 vacuum singularities, where the
massive photon is only weakly damped), then the
total polarizability will get pulled down from plus
infinity through the value -1, giving the first
plasmon solution. Before the point 2(m'+ 2eB)'~'
the total polarizability, now dominated by the
vacuum contribution, climbs through -1 again,
giving rise to the second pla, smon solution. Since
the particle contribution is positive, the total po-
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larizability will rise more rapidly than the vacuum
part alone, and the second solution will be at a
smaller value than the original photon solution.
As the density increases, the two plasmon solu-
tions will approach each other and finally merge.
For larger densities no solutions of this type
exist. A graph of the real part of the plasmon
frequencies versus number density for a given B
is presented in Fig. 13. En assessing the physical
significance of this second resonance, it must be
noted from Eq. (41) and Figs. 2 and 8 of I that the
resonance is heavily damped near ~ = 2'.

2.8 8 = IOOO.

2.6-

2.4-

2.2—

2.0
IO

I I I I I I I I I

IO
N/Nc

FIG. 13. Real double ("two-plasmon") solutions to
F33(0,+)=0 for ~ & 2m, B &437B+. B=1000B~.
Smaller solution just greater than 2 m until n =N~ .

IO.

V. DYNAMICAL TRANSVERSE POLARIZABILITY AND TRANSVERSE MODE STRUCTURE

For transverse polarization this reduces to

((u' —k' —tl, )((o' —0' —tir) = 0.
Thus for 0 = 0 the previous equation becomes

(u'= tir(0, (o),

where

II,'(0, (u) = II„(o,(u) + iti„(0, (o) .
For parallel propagation the Kronecker delta factors for the II, are

IE, -~, „,.
Equation (4) in this case reduces to

e'B n(e„) (oe, + 2seB
II 0 &u =-4 Sp8%1 I

~ ( +~ )2 ~
2lr dh

S S ps PS PS

After interchanging s and s inthe second term, the matrix element becomes

n(et—,,) ~y; -2seB
E"- ((d —6—)

From Eq. (2) the normal modes of the system are determined by the dispersion relation

Det
~
&(k, &u)+ II (k, &u) ~=0.

(54)

(58)

(58)

(»)2w " '
& uP+ 2~e +2 AeB ' —2~q 2neB--p, p . ps PS

where &=s -s =+1 corresponding to II,.
Since neither s nor s can be less than zero, s cannot equal zero in II, and s cannot be zero in II . Letting

the following symbols indicate the thus-modified sums

multiply by -', for s=o,

': s0 for &=1, (80)

: stofor &=-1,

we get
Sp

II,(0, (u)=4 Q ' ln ' 'Q' L;((g)+ Q' T ((g)+ Q L,-(~)y Q 1-(~)
S=O + S=OS= S=So1 +~ s=s +1

where (note that s„' for II, equals s„ for II and vice versa)

s'„= -1 if
~
ar'+2neB~/2&@ &m

= integer [(&u' + 2 &eB)'/4uP m']/2eB ~ s ~—if
~

ar' + 2 &eB
~
/2u & m, (82)
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1 oP -2(2s —A)eB ~ D;(&u)+2&op, uP+2heB D;(&d}ez+ I~'+2heBIp,
2 D;(&u) g D;(&d) —2&dp, I &u + 2neB I D;(&d)ez —I &u'+ 2LeB Ip,

oP -2(2s —6)eB, 2&op, &d'+ 2heB, p, I &un+ 2heB I

D;((0) D;(&d) I (d'+ 2aeB I D;((d)c~

(62)

(64)

(66)

(66)

As + goes to zero,D'(( )d= [~ (oP+2neBP —4&d'(m'+2seB) ~' '].
Graphs ot' o„(0,m) [= -II, (0, &o)/&d'] are given in
Figs. 14 and 15. It is convenient to divide the
analysis of the expressions for II, into a low-
frequency regime where &'&2eB and a high-fre-
quency region in which ~'& 2eB. In the low-fre-
quency domain, the total II, is dominated by the
partic le contribution.

Sy'

lim ll, (0, (o) = 16 (ra Q (67)
S=.O

so that II,(0, ~ —0) is propo rtional to +&d, n, (0, &d —0)
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FIG. 14. n, (0, co) versus co for top level s&=2 par-
tially filled. B=lOB~, n=lON~, ez= 6.64m. (a) Par-
ticle contribution. (b) Vacuum contribution. (c) Total
a+1.

FIG. 15. 0. (O, cu) versus ~ for top levels&=2 par-
tially filled. B=10B~, n=10N~, &&=6.64m. (a) Particle
contribution. (b) Vacuum contribution. (c) Total a+b.

1 ar -2(2s + 6)eB D, ('&u) +2 &Op, ru' —2&eB D, (&u)op+ I uP —2heB lp, ~
I,, &u =-- ln '+, ln

2 D(&u) D,( (d) —2&op, I uP —2 &eB I D, (&u)eF —
I

uP' —2 beB I p,
uP —2(2s + 6)eB, 2&uP, uP' 2&e-B,P, I

&u' —2heB I
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(uc, = (~~'+ 2eB)'" (68)

independent of s. A given term L;(&u) switches to
&;((u) at

&u~(s ) = [m'+ 2 (s + 1)eB]' ' —(m'+ 2s eB)' 2 . (69)

The L;(&u) term is finite at vc,(s) —0. The T;(~)
term ha.s an inverse-square-root singularity at
4)c2+ 0.

Similarly, each term in L,(v) has a singularity
at

is proportional to w I/&u.

The structure of II,(0, cu- 0) be»w ~' &2eB is
quite simple. The apparent logarithmic and arc-
tangent infinities cancel one another term by term
for each s within T,' and L'„so that II. and Q., do

not exhibit any singularities and &, simply mono-
tonically increases with increasing co.

The structure of II (0, &o) for aP &2eB is domi-
nated by the presence of modified cyclotron modes.
We will discuss the structure in terms of that of
the related polarizability o.' (0, ar), since this
quantity can be more easily compared with the
usual dispersion curve.

The qualitative features of o! (0, e) as deter-
mined from the structure of Eg. (61) for. II (0, &o)

are as follows: Each term L;(ar) has a singularity
at

(d Goc 3 It then increases from minus infinity as
w increases from vc, .

To determine the possible propagation of the
relevant modes as a function of density and field
strength, it is useful to analyze the relative am-
plitude of the resonances as a function of B and n.
For a filled Fermi level, vc, and ~c, coincide.
For fixed B, as the density decreases, ~c, in-
creases, ~c, is constant, and roc, begins to ap-
proach ~c,. As the level is almost emptied, ~c,
and +c, almost coincide. When the level has just
emptied, roc, jumps to the value of ~c,. As a
function of 8 for fixed density, the sa.me relations
between resonances occur as a level empties,
only this time coc, also increases for increasing

This variation of cyclotron resonance with B
is illustrated in Fig. 16.

In the nonrelativistic limit

NR NR NR~ci = vcn = &uc s = eB/m (74)

4'ci= &cm= +cs j./2

As was noted previously, if s~=0, there is no

(76)

and the structure of & (0, v) approaches that of the
usual cyclotron mode. Detailed analysis of the
modifications to the cyclotron mode will be pre-
sented in a subsequent publication.

In the large-B limit eB»m', P,' we have

coc~ = 6p —(E~ —28B) (70)
IO.

independent of s. A given term L,(&o) switches to
T, ((u) at

uc, (s)=(m +2seB)'~' —[m'+2(s —1)eB]' '. (71)

Again the L,(~) is finite at ec,(s) —0, the T,(&u)

has a singularity at e~(s) + 0.
However, &u~(s)= &ac,(s+1), so that the singu-

larities a.ssociated with T,'(~) cancel each other
except at

C

I.
/Pl'li '//l'll

N=IO.

vc, (sz) = [m'+ 2(sz + 1)eB]'I'

—(m'+ 2s ~eB)'~' = ~c, .
It can be shown that

+ci +c2- cs~

(72)

(78)

the equality obta, ining in the case of a filled s„
level. Note that if s~=0, L,(&u) is absent from
the sum so that there is no singularity at w = ~c3.

Thus the structure of n (0, &u) for oP &2eB is as
follows: o.' (0, &u) decreases from plus infinity as
+ increases from zero. It then increases, going
to plus infinity a.s & cuci For ~ wc' the polar-
ization d c eases to a finite limit a,s w c2
At ~ =ec„c.'(0, ~) has an infinite discontinuity,
rising from minus infinity at co= coc, + 0. It then
decreases, becoming logarithmically infinite as

.OI
5. IO,

I

l5.
I I I I

20. 25. 50. 55. 40.
8/B

FIG. 16. Modified cyclotron resonances ~cf Q3Q2,

cuc3 versus B. ~ca ceases to exist for sz=0. Also, w~

versus B, where n+ (0, +~) =-1. The graph of co2 versus
B [where co2 is the smallest solution to n (0,u2) =- 1]
would lie just above ~c3 (or above coc2 for s&= 0) and is
not separately displayed here.
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resonance at ~c3.
The resonance spacing in the nonrelativistic

limit m'»eB, p,' is

(uc, —(oe, —(eB)','m'.

In the large-B limit with s~= 0,

(76)

(u, = e„+ (e~'+ 2eB)'~'. (79)

Similarly, for the s~ terms in L„n (0, +) has a
positive logarithmic. singularity at

If s~=0, ().'(0, v) has no singularity. This special
feature of the resonance structure is again due to
the absence of a L (~) contribution if s~= 0.

After this singularity, the particle contribution
to o, (0, (d) goes to zero as 1/&u, while the total
polarizabilities are dominated by the vacuum con-
tribution which includes infinities at

u& = (m' + 2s eB)' ' + [m' + 2 (s + 1)eB]' '
(61)

8 —Sy+1y Sy+2i ye ~ o ~

To return to a discussion of mode structure, the
mode described by &,(0, (d) is generally referred

When ~'& 2eB, the cancellation of arctangent in-
finities between T, and &„,no longer occurs.
However, the singularities of T, 's for each s are
canceled within each 7';. Both &,(0, (d) a,nd n (0, +)
have inverse-square-root singularities for each
term in T,. Namely, ().',(0, (d) has negative infini-
ties at

(u = (m'+ 2seB)'"
+[m'+ 2(s + 1)eB]'~', s = 0, 1, . . . , sz.

(77)

Similarly, ().'(0, (()) has negative infinities at

(u = (m'+ 2seB)' ~'

+[m +2(s —1)eB] ~, s= 1,2, . . . , s~.
(76)

However, from Eqs. (52) and (55) of I, these
singularities are canceled by corresponding terms
from the vacuum contribution a'»(0, &u), so that the
total polarizabilities are continuous and monotonic
in the neighborhood of these values of +.

For larger u the polarizabilities enter the L,
domain. For each s with each L;, the singularities
again cancel. All L, terms in n, (0, &o) have a posi-
tive logarithmic singularity at

to as the left-hand circularly polarized wave. The
wave propagates for v & (d„where &,(0, &u, ) = —1.
Below this cutoff, the index of refraction [1+n, (0,
(d)]' is imaginary. For field strengths and den-
sities of interest here, the plasma frequency w~ is
less than the classical cyclotron frequency co,
(-=eB/e~). The cutoff is larger than but of the order
of classical cutoff for &ac & &u~, i.e., &u, ~ &o~'/+c.
This cutoff is well below any of the resonances
discussed above and approaches zero as B in-
creases or n decreases.

The mode described by o.' (0, ~) for ((de* (where
u&c* is somewhere between ec, and (()c,) is the
electron wave, or whistler. The propagation re-
gion for this right-hand circularly polarized wave
for higher frequencies is complicated by the ex-
istence of two negative resonances. %hen (d~,
coincides with ~~, , as is the case with an almost
full Fermi level, the cutoff ~, for the mode lies
just above co~, and the wave can propagate for
&u & &u, [where &u, is the highest frequency for which
o (0, u&, ) = -1]. For &uc, and &uc, more widely
spaced, there is generally a propagation region in
the interval ~~, to v~, . The excluded region sur-
rounding the logarithmic resonance at w~, tends to
be quite narrow.

VI. SUMMARY

In this paper we have explicitly calculated the
elements of the particle contribution to the polar-
ization matrix for a relativistically dense plasma
in an arbitrarily strong external magnetic field
for the case of k () B. Upon combining these results
with the corresponding vacuum elements displayed
in I, we were able to analyze the corresponding
static electric and magnetic properties and normal
modes of the physical system. The new physical
features that have emerged from this analysis can
be attributed to three main sources: the ultra—
strong value of the magnetic field (B&B„=m'/e),
the relativistic Fermi energy (n&N, =m') of the
electrons, and the small number of Landau levels
occupied; some additional new features were shown
to come into existence for n a%,/e' and B & B~/e'.

The new effects can be briefly summarized as
follows. (1) The fact that only a few Landau levels
are occupied brings into focus the sharp depen-
dence of the screening length v ' on the population.
of the individual levels. Since each level contri-
butes to the screening length in. the proportion of
n, /v, ', and since v, -n„paradoxically the emptiest
level dominates, enhancing the screening proper-
ties of the plasma with increasing B within each
level. In particular, for the case of an ultra—
strong magnetic fieM where only the 0 level is oc-
cupied, )( '(B)/a ' (B=0) for a given density is of
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the order (n/N, )B~/B, raising the interesting pos-
sibility of the formation of a strongly coupled one-
dimensional plasma. (2) The relativistic particle
energies make it impossible to separate the spin
a,nd orbital contribution to the static magnetic
polarizability $,(0, 0; B), which now exhibits the
resulting pa, ramagnetic behavior. , together with
the expected oscillatory character. When only
the 0 level is occupied the rapidly decreasing
(-B ') value of the particle contribution renders
the vacuum contribution (which is a slowly in-
creasing function of B) competitive even for high
values of the density. For finite k the singula, rities
of $,(k, 0; B) point to the possibility of a magnetic
phase. transition known from nonrelativistic analy-
ses; but in the ca.se of only the 0 level being oc-
cupied, the condition for the phase transition is
met only when the density exceeds a critical val-
ue. (2) The plasma frequency ~o~ develops a re-
markable magnetic field dependence whose origin
lies in the combination of all the physical effects
listed above. The relativistic Fermi energy is
responsible for the reduction of the plasma fre-
quency below its nonrelativistic value and for its
oscillatory behavior with increasing B in the wake
of the oscillating Fermi energy. Once, however,
only the 0 level is occupied, for ultra. strong B
values the nonrelativistic value of the plasma fre-
quency is quickly restored, except for densities
high enough to result in &u~ exceeding 2m [n
= (1/4me')N, ]; the pair-creation resonance of the
polarizability at ~= 2e~ prevents the plasma fre-
quency from exceeding this limit, resulting in it
passing through a maximum for some value of the

magnetic field. (4) The vacuum-supported longi-
tudinal photon, whose existence itself is a conse-
quence of the ultrastrong magnetic field [B
= (&/e')B~],"splits into two longitudinal modes,
one in the vicinity of 2~~, the other somewhat be-
low the frequency of the vacuum longitudinal pho-
ton. Both of these longitudinal modes disappear,
and the longitudinal photon is suppressed as the
density exceeds a critical limit. (5) The relativis-
tic structure of the one-particle energies leads to
a very peculiar splitting of the nonrelativistic
cyclotron resonance. The width of the satellite
region itself widens with increasing B, undergoing
discontinuous structural changes at each value of
B when a, level empties.

Although we have derived the full k and co-depen-
dent polarizabilities, we have analyzed in detail
only the ~= 0 and k = 0 limits. By doing so we
neglected two related features of the full (k„, ur)

system: first, the expected singularities at the
Fermi surface ~ = k 'p/e~ together with their con-
tribution to the imaginary part resulting from these
singularities, second, the difference between the
structure of the value of e(k, &u) in the vicinity of
the mass-shell m =k and its "hydrodynamic" value
e(k, 0). From the point of view of the propagation
of those transverse modes whose phase. velocities
are of the order of, or greater than, e, the dif-
ference might be significant.

In future papers we will analyze the cyclotron
mode in more detail, extend our considerations to
the full (0„,&o) case, and consider the case where
k~B.

~M. J. Stephen, Phys. Bev. 129, 997 (1962).
N. J. Horing, Ann. Phys. (N.Y.) 31, 1 (1965).
N. J. Horing, Phys. Rev. 186, 434 (1969).
J. J. Quinn and S. Rodriquez, Phys. Rev. 128, 2487
(1962).

5J. J. Quinn, J. Chem. Solids 24, 933 (1963).
M. P. Green, H. J. Lee, J. J. Quinn, and S. Bodriquez,
Phys. Rev. 177, 1019 (1969).

~V. Canuto and H. 'Y. Chiu, Phys. Rev. 173, 1210 (1968).
V. Canuto and J. Ventura, Actrophya. Space Sci. 18,
104 (1972).
J. J. Quinn, , Phys. Bev. Lett. 16, 731 (1966).
H. J.Lee, V. Canuto, H. Y. Chiu, and C. Chiuderi,
Phys. Rev. Lett. 23, 390 (1969).

~~V. N. Tsytovich, Zh. Eksp. Teor. Fiz. 40, 1775 (1961)
[Sov, Phys. —JETP 13, 1249 (1961)).
G. Kalman, Bull. Am. Phys. Soc. 12, 777 (1967);
B. Prasad and G. Kalman, ibid. 13, 309 (1968); G. Kal-
man and B. Prasad, Bull. Am. Astron. Soc. 1, 195
(1969).
P, Bakshi, . B. A. Cover, and G. Kalman, Phys. Rev.
D 14, 2532 (1976).
4M. H. Johnson and B. A. Lippmann, Phys. Rev. 76,
828 (1949); 77, 702 (1950).
H. J. Lee, M. P. Green, and J. J. Quinn, Phys. Bev.
Lett. 19, 428 (1967).
R. A. Cover and G. Kalman, Phys. Rev. Lett. 33, 1113
(1974).


