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Perturbations of a general background space-time with a hypersurface of discontinuity, such as the history

of a collapsing star, are considered, The junction conditions that these perturbations obey are expressed in

terms of the perturbed first and second fundamental forms (intrinsic metric and extrinsic curvature) of the

(perturbed) set of hypersurfaces one of which is the discontinuous one. These junction conditions are applied

to the odd-parity metric and hydrodynamical asymmetries of a slightly aspherica1 but otherwise general and

realistic spherically collapsing star. The junction conditions are stated in terms of those metric and matter

perturbational objects that are the most natural, economic, and versatile: gauge-invariant geometrical

objects. For odd-parity perturbations these are scalars and vectors on the totally geodesic submanifold

spanned by the time and radial coordinates. The end result is simple: The junction conditions amount to the

continuity of the gradient of a master gauge-invariant scalar wave function from which all other

perturbational quantities can be derived.

I. INTRODUCTION

The first detector of gravitational radiation mas
built nearly 17 years ago, ' and the rate at which
additional detectors have been put into operation
has been more or less a monotonically increasing
function of time ever since. The most likely
sources of the radiation that these detectors are
hoped to receive are supernovalike events as-
sociated mith the births of neutron stars or black
holes. ' Such astrophysical events are in general
11onspher ical. Consequently, primarily during the
collapse phase gravitational radiation is emitted
which is expected to be received by these detec-
tors. The catastrophic collapse is envisioned to
proceed along various scenarios. "But at the
present time no precise information about the de-
tectable power, spectral flux, polarization, etc. ,
is knomn for any one of them. Indeed, the present
theoretical state of the art has not even permitted
a detailed consideration of the simplest astro-
physically relevant source of gravitational radia-
tion: a slightly aspherical version of the spheri-
cal supernova-type collapse first considered by
Colgate and White' and May and White. ' Moreover,
during such a collapse neutrinos are produced. in

large quantities and indications are that they can
play a nontrivial dissipative role. ' Consequently
gravitational radiation has a viable competitor
also capable of damping out perturbational asym-
metries that a supernova-type event may have.
This decreases the magnitude of the signal a
gravitation radiation detector would receive other-
mise.

It is clear that the formulation of the coupled
hydrodynamics-radiation problem for the asym-
metries of relativistic collapse must be pre-
ceded by several preliminary steps. They in-
clude, among others, (1) the availability of an
economic and versatile formalism together mith
its equations that describe these asymmetries,
on an arbitrarily given spherically symmetric
background, (2) the junction conditions that join
the asymmetries across a surt'ace ot' discontinuity
(e.g. , the history of the surface ot a star), and

(3) a formulation of the initial-va, iue problem
governing the asymmetries. The above-mentioned
formalism seems to exist only for asymmetries
having odd-parity angular harmonic components. '
This paper describes the first tmo steps for odd-
parity asymmetries that evolve in accordance with
the linearized Einstein field equations for an ar-
bitrary spherically symmetric sp3,ce-time.

Cunningham, Price, and Moncrief'0 have obtained
results simi. lar to ours, but only in the context of
the interesting problem of radiation from a slight-
ly aspherically collapsing homogeneous dust cloud.
The results of th18 paper, by contrast, are ap-
plicable to perturbations away from aI1y spherical-
ly symmetric background.

Notation: Greek indices run over 0, 1,2, 3, cap-
ital Latin indices run over 0, 1 only, lower case
Latin indices run over 2, 3 only, and they refer
to the angular coordinates 8 and y.

II. SUMMARY

The results can be stated as folloms: Consider
a spherically symmetric space-time with metric
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g„„dx"dx'=g»dxAdx +r2(x )(d8 2+sin ed/2)

t „dx"dx"=tAsdx dx +2t 2r (dg +sin edp ).
Consider an odd-parity perturbation of these

fields (suppress angular integers I and m) ex-.
pressed in terms of the vector harmonic 8, (6, P)
which is transverse (8,"= 0) on the unit two-
sphere:

h „,dx" dx' =h„(x")S.(dx"dx'+ dx'dx")

+h (x )(S, , +8,.,)dx'dh',

n tp)qdx dh =QtASg(dx dx +dx dh )

+ 6 t(8, , +8, ,)dh'dh' .
Construct the corresponding gauge-invariant met-
ric and matter perturbations:

hA.=hA -r2(r-'h) „(metric),
T =b, t„-,'t', h„(m—atter),

T = n, t -2t'p (ma-tter) .
It is to be noticed that, given these gauge invari-
ants, one can reconstruct all perturbations pro-
vided one imposes a suitable gauge condition on Pg.

For l ~ 2 the relevant scalar equation governing
these quantities is

where

S=-pT AB

hA=[«TA+~A2(r II) ][(I—1)(I+2)]

« = 16xa/c',

(r2TA) 0

i.e., the integrand has hiero curl. The exact vec-
tor field p A is indeterminate. The junctioncondi-
tions consist of g, II, and TAn" being continuous
across the spherically symmetric hypersurface Z.

III. CONTINUOUS TENSOR FIEJ.DS

Consider a space-time M with a metric

ds =gp pdg cQc

whose signature is -+++. Consider the one-pa-
rameter family of contours of a real-valued smooth
function f(x") defined on M. These contours are
three-dimensional submanif olds. One of them,
Z, say, the history of the surface of a collapsing
star, has the property that some property of
space-time, e.g. , the stress-energy tensor, is
permitted to be discontinuous in such a way that
the intrinsic geometry as well as the extrinsic
curvature of these submanifolds are continuous
across Z. This condition is satisfied if the stress-
energy tensor has no 5-function type of singularity
across Z."

Consider the vector field of (spacelike) unit
nor mals

(3.1)

associated with the contours of the scalar f. Next
consider a tensor field t„...„on M. The restric-
tion of this field to a given contour is said to lie
on the contour, or, more briefly, t&..., is intrin-
sic to the given contour of f if

t„...„n" = = t„...,n'= 0. (3.2)

qAs = [AB](-detgc~)'~'

is the antisymmetric unit tensor on the two-di-
mensional manifold spanned by the radial and time
coordinates x (C = 0, 1).

The junction conditions across a spherically
symmetric hypersurface of discontinuity Z with
unit spacelike normal n„consist of

Il, hAnA, h„(g"' n"n'), and T„-n"

being continuous across Z.
For / = 1 the relevant scalar equation governing

these quantities is

K
T E gsdx

hA 0 ~CA 4,A

Thus one may consider the metric intrinsic to a
given contour of f,

~ [fp fl p fl p
Spp gpp gpgipy 2 —g g g (3.3)

Indices of intrinsic tensors can be raised and low-
ered with i„„orwith g„„. Furthermore, i„„pro-
jects vectors and tensors onto the contours of f,
Another tensor field which is intrinsic to the con-
tours of f is the (symmetric) extrinsic curvature
tensor field'

~ a ~ 8
8pp 86 QZp Zp Sp p Rp + S+p

=f pg". u+f, vgp+gf pu-gf, ,g ,pg'f , pf v~ (3.4)'
where

g=(f, &,8g") "'
Thus, given the smooth function f, we assume the
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corresponding tensor fields i„, and e„, to be con-
tinuous tensor fields on M.

Similarly, consider space-time M with per-
turbed scalar f and perturbed metric g„,. The
corresponding intrinsic metric z'„, and extrinsic
curvature tensor field e„, are also assumed to
be continuous on M. The perturbations in the scal-
ar

are continuous. The per turbations

si„„=i„„(x')—i„,(x'),

Se„„=e„,(x') —e„,(x')

~ Ct ~

z„zv azagy (3.5)

are also continuous, but not intrinsic to the same
contour f: The normals n„and n„do not coincide
in general.

Recall, however, the specific feature that makes
junction conditions across a particular contour of

f, say Z, so useful. This feature is the fact that
the coordinate system used on one side of Z need
not be joined continuously onto the coordinate sys-
tem used on the other side. This feature of rela-
tive arbitrariness in the coordinate systems on
either side of Z necessitates expressing the junc-
tion conditions in terms that are totally intrinsic
to Z. One thereby deals only with geometrical ob-
jects that lie strictly on the boundary common to
two adjoining coordinate neighborhoods.

"Usefulness" is, however, not a sufficient cri-
terion for using intrinsically defined data as ma-
terial to be joined across Z. The ultimate jus-
tification lies in the linearized Einstein field equa-
tions being expressed precisely in terms of the
above-mentioned and the to-be-below-exhibited
[Eqs. (3.5} and (3.6)] intrinsic data on some one-
parameter family of 3-surfaces. Expressing these
field equations in terms of intrinsic quantities
amounts to what is known as a "three-plus-one"
formulation. " This has been done very elegantly
for the unperturbed field equations in terms of the
first and second fundamentaI forms. '4 In this paper
we shall not do this for the perturbed field equa-
tions.

The intrinsically defined junction conditions are
expressed in terms of the equality of the projec-
tions of tensors from each side of 5 onto Z itself.
It follows that the perturbed tensor fields contin-
uous across a given contour of f are the projections
of Ai„„and Ae„„, namely

IV. REDUCTION OF TENSOR FIELDS ON A SPHERICALLY
SYMMETRIC SPACE-TIME

zAB =4AB ~A+B

i„,=0,

Zab +ah + ~ab &

C y IC ~

AB ~ AIB AIC Bi C AB

(4.4a)

(4.4b)

(4.5a)

m C
ab 2e mgab SC V gab (4.5b)

Latin lower cases a, 5, . . . , m refer to the angular
coordinates e and P. The symbol y„ is the metric
on the unit two-sphere. The vertical bar in Eq.
(4.5a) refers to the covariant derivative with re-
spect to g» on M'. The second equality in Eq.
(4.5a)

c
eAB e CzAB

is true for any symmetric tensor with the proper-
ty e»ne = 0 on M'. The partial trace e
+e', =2vcn in Eq. (4.5b) is a scalar on M'.

It is clear that f(xc), i„e, e», ne'c, neve, and
r(x ) are geometrical objects on M', and that their
restrictions to the contours of f(x } are intrinsic
to and continuous across those contours.

Another geometrical object on M' is the antisym-
metric unit tensor

e» = [AB](-de|gcD)' '.
It gives the integration differential

-'e»dx"dx = Igl' 'dx dx'
'I

for M'. On the other hand, the vector field
c

&AC'Z

A general spherically symmetric background
space-time has a metric of the form

gq, dx" dx'= g»dx"dxe+v'(xc)(d82+ sin'ed' ) .
(4.1)

Latin capitalsA. , B, C, . . . refer to some as-yet-
unspecified radial and time coordinates. The func-
tions x(xc) and g»(x ) are scalar and tensor fields
on the totally geodesic two-dimensional space-
time M' spanned by xc (C = 0, 1). The vector field

(4.2)

is also on this submanifold. The scalar function f
is independent of the angular variables

(4.3)

The intrinsic metric Eq. (3.3) and the extrinsic
curvature Eq. (3.4} have the form

~ a ~ 8z„zfj me~~. (3.6) intrinsic to a given contour of f(x }, gives the in-
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tegration differential e„cn dx" for the contour,
say Z.

V. ODD-PARITY PERTURBATION JUNCTION CONDITIONS
ON A SPHERICALLY SYMMETRIC SPACE-TIME

(5.5)

and with the help of Eqs. (5.4b) and (5.4c)

are expressions (3.5) and (3.6). With the help of
Eq. (5.2) these are

s„A,~ and fg,

ec and &e. (5.6)
Perturbations away from the background metric

Eq. (4.1) have "odd" harmonic components of parity
(-1)'". They have the form (suppress angular in-
tegers l and m)

'
h„,dx dx'=h„(x )S,(&, p)(dx"dx'+Cx'dx")

+h(x )(S, , +S, ,)dx'dx'. (5.1)

The covariant derivative of the transverse (S,"= 0)
vector harmonic 8, on the unit two-sphere is in-
dicated by a colon. Lower case Latin indices
a, b, . . . refer to 0 and P. It is clear that the three
expansion coefficients $0, A. „and 5 can be as-
sembled into a covector and a scalar field

Pg„dx" and P

on M'. Similarly, odd-parity perturbations away
from the intrinsic metric Eqs. (4.4) are given by

Although these expressions are continuous, they
can be altered readily by performing arbitrary
infinitesimal coordinate changes on the background
space-time. The resultant "gauge" ambiguity
in these quantities at best is an inconvenience and
at worst obscures their important aspects. It is
therefore desirable, if not mandatory, to reex-
press all quantities in terms of gauge-invariant
geometrical objects on M2.

VI. ODD-PARITY GAUGE-INVARIANT JUNCTION
CONDITIONS

%e wish to construct from the perturbations
Eqs. (5.2) and (5.4) geometrical objects on M' that
are independent of gauge transformations. To this
end consider any symmetric tensor field, say

ai„,dx" dx"=h„s, (dx"dx'+ dx'dx")

+h (S, , + S~.,)dx'Cx' . (5.2)

eppdx dx = e~edx Cx + 2 e cg~gdx Cx

on a spherically symmetric space-time. An in-
finitesimal odd parity -coordinate perturbation

This follows from the fact that perturbation away
from the unit normal n„dx",

(an„)dx" = (agf „+gaf „)dx",

whereg=(f f Bg 8) '~', depend only on the scalar
perturbations b,g and bf. These are zero for odd-
parity perturbations. For odd-parity perturba-
tions one has therefore

(an„)dx" = 0, (5.3)

and Ai„„, Eq. (5.2), receives no contribution from
5nu ~

Odd-parity perturbations away from the extrinsic
curvature Eq. (4.5) have the form

(„Cx"= t (x')S,dx'

in the spherically symmetric background M in-
duces a change in e„„dx"dx" and ing„„dx"dx'
which is the Lie derivative with respect to $„:
(Saepp)dx dx = (ep~. $ —e p$ .p

—ep $ .p)dx dx

,'e cr ($—/—r ) „S,(dx dx'+dx'dx )

--,'ecct(s, ., +S,.,)dx'Cx',

(8,g„„)dx" Cx" = —((„.„+], „) xd" dx".

r'(&/r )-„S,(dx"dx'+dx'dx")

—$(s, .„+S~.,)dx'dx .
(he&„)dx"dx' = n.e„s,(dX"dx'+ dx'dx")

+n e(s, , +S, ,)dx'dx', (5.4a)

It follows that the gauge-transformed odd-parity per
perturbations h» =h»+8& g„„and ae&„=Aeu„
+8&eu, are

eA 2 @Al c h clA + 2kc~~)n1 c

&e=- (hc h, c)n

(5.4b)

(5.4c)

(6.1a)

n'eA ~2e cr ($/r )~ ke = Ee —pe c $ . (6.1b)

This is because, with the help of Eq. (5.3),

n, e„„=n,(n„.,) -n, (n„.,)n'n„.

Its components can be evaluated with the aid of
the expressions given in the Appendix.

The perturbed quantities that are continuous
across, say, the surface of a collapsing star, k„=h „r(h /r '}~,- (6.2a)

The gauge-invariant geometrical objects on M'
are constructed by taking those linear combina-
tions of Eq. (6.la) and (6.lb) which are independent
of the gauge function $. The resultant gauge in-
variants evidently are
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EA ~eA Be a~A

=-'[(k /&')ic —{kc/&') ]n', (6.2b)

FAB ~~AB y

where

(V.3)

(6.2c)

Odd-parity geometrical objects that are contin-
uous across the surface of a collapsing star are
linear combinations of those in Eq. (5.5) and (5.6).
The gauge-invariant Eq. (6.2c) has precisely this
property already. Projecting Eqs. (6.2a) and (6.2b)
with iA onto the history of the collapsing star's
surface Z, one obtains the remaining continuous
gauge invariants,

1 cD
rr =- FcD2T

take the curl of Eq. (V.2), use Eq. (7.3), and obtain

2(r '(r'necI„) t ~j+ (I —1)(I+2)IIe„,= ~Sr„~,

where

SA kC (6.3a) a
&A)c&

AC

O'Ec= —2[(& 'k~)Ic-(& 'kc)i~is'=&~ (6 3b)
Now use EGA)B 0 multiply by 6 and use KAB
= -2. Thus obtain

Their continuity follows from Eqs. (5.5), (5.6),
and the continuity of the intrinsic derivative
(k/&') ct „of the continuous scalar k/v'. Equa-
tions (6.3a), (6.3b), together with (6.2c), con-
stitute the odd-parity gauge-invariant perturba-
tion objects that are continuous across Z. These
continuity conditions can be summarized loosely
by saying that kA as well as the normal compon-
ent of its curl and continuous across Z.

which reduces to the master equation

(r'Il) c),c+(I —1)(I+2)II =KS.

The scalar function

II = --2[(& 'k„)~~ - (r 'k~)j„]e"~

(V.4)

(7.5)

VII. APPLICATION TO ODD-PARITY LINEARIZED FIELD
EQUATIONS ON SPHERICAL SPACE-TIME

The odd-parity junction conditions which consist
of the continuity of Eqs. (6.3a), (6.3b), and (6.2c)
can be applied directly to solutions of the linear-
ized field equations'

k
( c = KT, (2 ~ I)

[r'(~ '
k), --c~'(~ 'kc)~„]' +(I-1)(I+2)k„

=~'~~ (I- I) (7 2)

(V.1)

Here ~ = 16mG/c', and T and T„are the two gauge
invariants constructed from the odd-parity per-
turbation in the stress-energy tensor t„„dx"dx",

ht&„dx" dx" = t t„S,(dx"dx'+ dx'dx")

+t t(S...+S, .)dx'dx',

in a way identical to that given by Eqs. (6.2b) and

(6.2c). The result is

Solutions to the odd-parity equations are obtained
from a master equation in a certain scalar II. In-
deed, any antisymmetric tensor F» in two dimen-
sion, can be expressed in terms of a scalar and the
antisymmetric unit tensor e»,

k„=[xr'T„+~„,(~'ll) "][(I—1)(I+ 2)]-~,

whose projections onto Z, Eq. (6.3a), as well as
perpendicular to Z, Eq. (6.2c), and also contin-

.uous. Thus

(I I)(I+2)k„e" nc = (~'ll)' +x&'T„e" Nc,

(V.6a)

as well as

K& TAB (v.6b)

is continuous across Z. Indeed, with the help of
Eq. (7.3), Eq. (6.3b) becomes

c
.EA = -z«Ac& .

The tensor ~Acn is intrinsic to Z and hence is
continuous across Z. Since E„ is continuous, the
scalar Q is continuous.

lt may be remarked that in an empty Schwarz-
schild background the scalar II is not the same as
the quantity Q originally introduced by Regge and

Wheeler. " Instead, @=ko, the time component
of kA. It is the fact that the Schwarzschild time
coordinate is a Killing orbit which cooperated in
letting them write down their odd-parity wave equa-
tion for this quantity.

For E ~ 2 the gauge-invariant object kA is given by
Eq. (v.2),
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are continuous. The latter follows from the con-
tinuity of kAn", Eq. (6.2c), and of

(r4II) ICi CAeABnB = (r411)ICeC, nB .
For l = 1 multiply Eq. (7.2) by the antisymmetric

tensor eAB, use Eq. (V.5), and obtain

(t II) = —Kx 7

Evidently the right-hand side to be exact must have
zero curl [i.e., (x'TA)'"=0]. This fact is confirmed
by the odd-parity linearized conservation equa-
tion'

Vrn. CONCLUSION

The problem of odd-parity perturbation as de-
scribed bv the linearized Einstein field equations
on an arbitrary spherically symmetric space-time
has been reduced to the simpler problem of solving
a scalar wave equation Eq. (V.4) for each angular
mode, on the totally geodesic submanifold M2. The
continuity properties of the scalar 11 are precisely
those that one expects for such an equation; name-
ly, II and its gradient are continuous on M', even
if M' has finite discontinuities in the background
stress energy defined on it.

Thus for l = 1 the continuous scalar II is

K
2H& '4)IB-« '&B)IA«"'=ll=-',

For this case use Helmholz's theorem on M' and

let

~A II' ~CA+ 4',A ~

-2 IC

and obtain the scalar equation

(V.7)

IC 4 & g eABdx)C 2m' B
r (7.8)

The compl. ementary solution ($ gmp I c 0) is not de-
termined by the source, but instead is determined by
boundary conditions. Loosely speaking, a particular
solution of Eq. (7.8) is associated with rotating
matter, whereas g„~ may be nonzero even if
ostensible spinning matter is absent. The scalar
P is indeterminate. This is because for /=1 the
scalar Ib, Eq. (5.1), is indeterminate. Thus kA

is not gauge invariant, although II, the (dual of the)
curl of r 2kA still is.

APPENDIX

Here rve list the derivatives h„„., of a given per-
turbation mode l, m for odd parity, Eq. (5.1). The
reduced form of the nonzero Christoffel symbols
that is the basis of our perturbational formalism is

e. C b b A A
~AB y Aa =VA5 +& I ~ =—V ~~ V yah

Here I'» and VA ——rA&„are defined on the totally
geodesic submanifold M whose metric is

gABdx"dx, (A, B =0, 1) .
The derivatives h„„., themselves have the following
form for odd parity:

AB, C

hAgi B (@A I B ~AVB)Sg p

~ABIg (AAVB + ABVA)Sgi

IbAg; b =hASg: b
—VAh(Sg b+ Sb ,)., .

h.„., „=(h,„-2v„n)(S.., + S, .),
lb, b. ,——v hc(S,A, +She«) +Ib(S,, b,, + Sb ...) .
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