
PHYSICAL REVIE% 0 VOLUME 20, NUMBER 12 15 DECEMBER 1979

Axially symmetric two-body problem in general relativity. III. Bondi mass loss and the failure
of the quadrupole formula
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Suggested difficulties and criticism regarding earlier work is addressed. It is demonstrated that the rate of
gravitational energy loss from the authors model free-fall system employing the widely accepted Bondi
method agrees precisely with the results described in prior works. Origins of the breakdown of the

quadrupole formalism for free fall, previously indicated, are now delineated in detail. The role of source
structure in the energy loss rate re-emerges, bringing into question much of the earlier work of others. The
iterative technique with flat-space wave operators is justified. A new approach to quasiperiodic systems such

as binary stars is described. Ideally modeled upon the actual birth of such systems, it evolves from an

initially stationary configuration, again avoiding the problems and ambiguities regarding incoming radiation.

I. INTRODUCTION

Gravitational radiation has been and continues
to be a subject of intense interest in general rela-
tivity. Its existence was predicted by Einstein'
more than sixty years ago and since then hundreds
of papers have been written about it. In spite of a
world-wide effort, it has thus far eluded direct
detection. However, new enthusiasm has been
generated by the recent observations' of the binary
pulsar PSR 1913+16which, it is claimed, point
to an indirect confirmation of the emission of
gravitational radiation. Furthermore, it is sug-
gested that basically the observations validate the
Einstein quadrupole energy loss rate"

g (D IXB)2
45c'

for such freely falling systems. This "quadru-
pole formula, " which is a direct analog of the
electromagnetic expression, has also had an
interesting history. Based on the linearized ver-
sion of the Einstein field equations, it correctly
describes the lowest-order' emission from small
weakly radiating slow-motion systems which are
driven by nongravitational forces. However, for
systems with motion deriving from gravitation
itself, such as binary stars, the nonlinearities in-
herent in the field equations must be contended
with and the quadrupole formula is case into doubt.
Through the years, this has been emphasized by
Eddington, ' Bonnor, ' Papapetrou, ' and others.
Numerous papers have been written, usually in

conjunction with singular sources, in an effort to
address the problem, and the authors have contra-
dicted each other and at times themselves as well. '
A major source of difficulty in these works stem-
med from their uncertain avoidance of incoming

radiation, the presence of which would clearly
vitiate any definitive conclusion regarding the
actual rate of energy loss from an insular system.

Five years ago, a new approach to the problem
of gravitational radiation from freely falling bodies
was initiated. ' In this work (henceforth to be
referred to as I) we considered a static axially
symmetric Neyl. -Levi-Civita type of system com-
posed of two bodies held in equilibrium by a strut.
The strut was severed and the induced dynamic per-
turbation of the metric was analyzed. By virtue
of the static history, there was no ambiguity re-
garding the development of the field and no pos-
sibilities for incoming radiation.

The beautiful consistency of Einstein's theory
manifested itself by yielding a continuous metric
only when the breaking of the intervening stress
was properly synthesized with the induced motion
of the masses. Using the field expanded to second
order in the gravitational constant G, linearized
theory and the quadrupole formula were shown to
be valid during the stress-breaking period. How-

ever, when the stress was completely broken and
free fall began, it was demonstrated that the
third-order field was required to deduce the radia-
tion. Moreover, it was emphasized that one could
no longer proceed under the artificial assumption
of singular sources as a representation of the
bodies. Indeed, an order-of-magnitude calculation
led to the prediction of a potentially structure-
dependent contribution to the free-fall energy loss
rate which could be considerably more significant
than that which would be deduced by a naive appli-
cation of the quadrupole formula.

Two years later in a subsequent paper" (hence-
forth to be referred to as II), a nonsingular source
was constructed, and the dominant contributions
to the dynamic third-order metric were derived.
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As anticipated in I, the nonlinearities and struc-
ture played a vital role, and the energy loss rate
was found to exceed that of a straightforward ap-
plication of the quadrupole formula by a factor of
(n/p, )' where 2o. is the distance between the
sources and p, is their linear dimension. This
calculation was carried through in all detail with
every term accounted for because one could not
exclude the possibility, however unlikely, that
these large contributions would miraculously con-
spire to cancel, leaving the quadrupole formula
in the end.

Since the publication of I, and particularly since
II, several colleagues have offered an interesting
variety of criticism and suggestions for which we
are very grateful. The essential aim of this paper
is to address in some detail the most frequently
voiced criticisms of our work and clarify certain
lesser problems.

The fir st cr iticism stems from our use of the
much-maligned ener gy-momentum pseudotensor
(or "complex" in the currently fashionable par-
lance) in deducing the energy loss rate. Ever
since its introduction by Einstein, the pseudotensor
has been roundly criticized, primarily because of
its noncovariant character. Many researchers in
the field have used it and Bonnor" has presented
a justif ication of its use. However, a measur e of
energy loss which is of a considerably less con-
troversial nature has been developed by Bondi. ~
Bondi's "news function" relates directly to the
mass loss of the system and this is calculated in
Sec. II for our problem. The answer for the energy
loss rate is precisely the same as that which was
found in II.

The second criticism derives from the confi-
dence which many relativists have in the quadru-
pole formalism. " There is a tendency to trust
its application to any weak-field, slow-motion
situation. However, to condition the reader to the
fact that this trust is ill-founded, we can easily
point to interfering composite radiating systems
spaced on the order of a characteristic wavelength.
In spite of the fact that the individual radiating
components are much smaller than the character-
istic wavelength, the quadrupole formalism breaks
down for such systems due to their interaction.
Indeed such a model of two coaxial rotating rods
was constructed, '3 and this was implemented by
Braginskii' in his so-called heterodyne detector
model for gravitational radiation. Further de-
velopment and applications of this work followed, "
and recently, this was nicely formalized in a
somewhat different manner by Press. '6

In spite of warnings dating back to the time of
Eddington, ' many have not recognized any limita-
tions on the validity of the quadrupole formula to

systems which are driven by nongravitational
forces alone. Although we did state the reasons
for its limitation in II, we did recognize then and
now that a more detailed exposition is required to
by fully convincing. This is the aim of Sec. III.

In Sec. IV, we address some other criticisms
and recent work, and in Sec. V, we conclude with
a summary and discussion of future avenues of
research.

II. BONDI MASS LOSS

By a clever choice of coordinates, in particular
by employing a retarded time coordinate u which
is naturally matched to a system with outgoing
radiation, Bondi" was able to relate the mass
loss of an axially symmetric system to an angular
integral of a squared "news function" which derives
from his metric

m, = ——,' sin8d8,
0

(2.3)

where the subscript 0 denotes 9/Bu and 'ro is
called the news function.

To calculate the Bondi mass loss, in the con-
text of the metric in I and II, in cylindrical polar
coordinates

ds' =DdP Adr' —Bd-z' —Cd/', (2 4)

we note that the transformation to the Bondi form
[Eq. (2.1)j does not involve the p coordinate and
hence

2 e -2 U +c +c'+ ' ' ' —Q 2 s in' g e (2.5)

in the vacuum where e, the dynamic G' order per-
turbation, becomes static to order 8 ' during
freefalP and c' is the O(Q') perturbation which

ds' = —e'8 —fJ'R'e'~
I du'+2e'8 dudR]

+2''e'&dudg —R'(e'&d8'+e '"sin'Odg').

(2.1)

To ensure the outgoing-radiation condition, Bondi
expanded his variables in the form of a power
series in negative powers of g with coefficients
which are functions of the retarded time. In par-
ticular,

'r(u, ~) 'r(u, ~) —~l r(u, ~)l'

where the A ' coefficient had to vanish in order
that the other functions satisfy the outward-radia-
tion condition. By a transformation to the Acyl
metric in the static case, Bondi identified the com-
bination of functions which determine the mass and
hence finally the mass loss during a radiative
phase
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determines the lowest-order energy loss in free-
fall.

In the manner of Bondi, " the coordinate trans-
formations are expanded in powers of R (Ref. 17):

r=R sin8+'f(u, 8)+ ' ' + ",' + ~ ~ ~,'f(u, 8) 'f u, 8)

(2.6)

S=Rcos8+ g(u, 8)+ + ~ + ~ ~ ~ .'g(u, 8) 'g(u, 8)

which is precisely the result as obtained in II.
It is to be emphasized that we have found the

complete news function from nonlinear as well
as linear contributions to lowest contributing order
in G and hence our approach is not subject to some
of the early criticism of potentially incomplete
applications of the Bondi method. '

IIL FAILURE OF THE QUADRUPOLE FORMULA

The background function v is given by'

p = —G1A + (2.7)

In the usual quadrupole formalism, ' one takes
the metric form

where

(r, ,)' =r'+(z+ o.)', (2.6)

8 jk t jk +~ik

with coordinate conditions

=0, g, —= h'; —~6~hI

(3.i)

(3.2)
and hence

-2Gm 2Gm 0v = +, ('fsin8+'gcos8) +O(R ').
R R

(2 9)

Since the dipole moment of this system vanishes
for all times,

to express the field equations as inhomogeneous
wave equations"

ply 16va~k

where the effective source 7k is the usual energy-
momentum tensor T", plus nonlinear terms t', . The
retarded potentials are chosen,

Of" —Og 0

From Eqs. (2.5) and (2.2),

(2.10) d t/'
4G (r )t sg'- (3.4)

r[l —v+ —,'(c+v') +r'(-vc+c' —-', v') +. ~ ]
1 1 2 3

=R sin8 1-—+,--—+ ~ ~ . 2.11
R 2R R

Equation (2.11) is differentiated with respect to u.
From Eqs. (2.6)-(2.10), r, is O(R ') and v, is
O(R '). Moreover, since asymptotically' "

and the assumption is made that for asymptotic
field points, the 1/R can be set equal to 1/Ro, the
inverse of the origin to field point distance, and
the retardation t —R/c be replaced by t —R,/c for
slow motions as in electrodynamics to yield

y', =-—Jt (T', ). ..„dv. (3.5)

'c(8) 'c(u, 8)
R R',
'c'(u, 8)

R

it follows from Eq. (2.11) that

I
t."0—Rsln0= —y slni9+
2 0

From Eqs. (5.5) and (5.36) of II,

(2.12)

(2.13)

k (3.6)

Repeated integrations with the Gauss theorem and
the elimination of surface terms finally yields'

2G
lac =

R (~as)ret
0

(3.7)

Rather than determine the field by Eq. (3.5), the
coordinate conditions [Eqs. (3.2)] are employed in
conjunction with Eq. (3.3) to give

BG'm' (t -R)
C e p R

(2.14)

-4G3m3u
Yp 2 2

(k Pp
(2. iS)

From Eqs. (2.3) and (2.15), the Bondi mass loss
ls

16G'm'u2
0 ~4p 4 (2.16)

asymptotically during freefall and hence the news
function is

for the spatial components where

d ~= ex x dt's' (3.6)

& no= M ne ~aedyy- (3.9)

There are several reasons for the breakdown of
this formalism during freefall. First, the non-
linear contributions to vk, are field sources which

is the untraced mass quadrupole tensor. Integrat-
ing the flux finally gives the quadrupole formula
[Eq. (1.1)] where
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are noncompact and hence the 8 ' cannot be
casually replaced by R0 ' and removed from the
integral. Moreover, in a nonlinear theory, it
would be illogical to relegate such contributions
to propagation phenomena and pretend that they are
somehow divorced from the wave generatioii itself.
'/he logical approach is to allow the field equations
to determine the nonlinear matter-field coupling
and produce the net, asymptotic order-8 ' field
in successive orders in Q and hence deduce the
energy loss as in Sec. II.

In our earlier work, it was demonstrated that
there are numerous contributions which are more
significant than those leading to the quadrupole
formula. However, to demonstrate the incomplete-
ness of the traditional method, we shall pursue a
different route in this paper. Assuming the mantle
of the advocate of the quadrupole formalism, we
shall reach a stage where any claims that nonlinear
contributions are negligible will be clearly unten-
able.

Let us even assume, for the sake of argument,
that the step from Eq. (3.4) to Eq. (3.5) can be
made. To arrive at Eq. (3.7), one makes repeated
use of Eq. (3.6) to show very easily that

(T"x~xs)
QQ

=27~8+(7 'x"xs)
y$

2(.~"—x'"~'x"), (3.10)

Integrating over all space and casually applying
the Gauss theorem yields Eq. (3.7) where the
mass density is taken as the approximation to T".
However, let us actually examine the disposal of
the second and third terms on the right-hand side
of Eq. (3.10). By Eq. (3.6) and the Gauss theorem,
the integration of Eq. (3.10) can be expressed as"

~ "dV — ~&',x x'+~& x'+~&'x, dS,

(3.11)

where the surface integral is to be evaluated over
the bounding surface at infinity as well as over
any surfaces of discontinuity which may exist in

the domain of the original volume of integration.
Consider a system of two bodies with sharp bound-
aries, in freefall. At the very least, there will be
discontinuities in the second spatial derivatives of
the order-G background potential v as is totally
familiar from classical theory. Moreover, since'

vz(1)+vz(2) outside the spheres,

v= vz(1)+vI(2) inside sphere 2,

vz(1) + vz(2) inside sphere 1,
(3.13)

where

vz(1, 2) =-
+1,2

v, (1, 2) = —
~

1—
2p3 k 3p3

(3.14)

Thus the surface discontinuities, denoted by an
asterisk, are

3Gmr', 3Gm(z+ a)'
~ 11 ~ 5 & 322 5

Po

3Gmr(z a o. )
, 12

p
5

0

(3.15)

where the z + e terms refer to the surfaces x, 2
=p0, respectively.

A typical contribution to the surface integral of
Eq. (3.11) will arise from a discontinuity in 7. ik of
the form

a a
ig ik 3g lm

, l7ft (3.16)

The calculations to analyze these and other con-
tributions to the net order Q' field have been per-
formed. As one would expect from II, there are
numerous contributions which are indeed more
important than those which one finds by the tra-
ditional quadrupole formalism. However, since
the primary goal in this section is to demonstrate
the inadequacy of the quadrupole formalism, we
will focus upon a contribution from the discontinuit-
ies of the second derivatives of the background
potential (see Appendix).

Because of the G ' factor in Eq. (3.12), O(G')
contributions to r" will arise from O(G) back-
ground times O(G') dynamic fields. These terms
compete with terms arising from the quadrupole
formalism to the same order in G [namely O(G')
terms by virtue of the extra factor of G in Eq.
(3.5)]. Clearly, from Eq. (3.12), there will be
such terms with the form'g', g™where the
superscripts indicate orders in Q. From Eqs.
(2.7) and (2.8) of 11,

[( g)(gik gim gi Jg m)]
a

aetna
(3.12)

From Eqs. (4.15) of II and Eq. (3.15), the dy-
namic part over the surface of body I is of the
order

it is clear that discontinuities will exist in the
integrand of the second integral of Eq. (3.11) over
the surfaces of the bodies and hence invalidate the
quadrupole formalism if these discontinuities in-
duce a sizable correction.

1 1 Gm(z +o.)3 G m3 (ci +z)P
G ~ 23 G p

5 ~2 p
3

and hence the contribution of such a term, to the
surface integral in Eq. (3.11) is of the order
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@mt
g7 e8 ~4 (3.19)

to Eq. (3.5), there is the additional contribution
from Eq. (3.18) of the order

$4 ",—g)x 8 d 5-
1 H P0

and hence Eq. (3.'I) is modified to

(3.20)

(3.21)

Clearly, the second nonlinear contribution domin-
ates the usual quadrupole term. It does so in
precisely the same form as we found before in II
by the direct method.

One might argue that the quadrupole formalism
could be restored merely by smoothing out the
boundaries. There is certainly no question that'
surface discontinuities will be avoided by smooth-
ing the boundaries to the extent that matter per-
vades all of space. However, this would no longer
constitute the freefall problem that we have in
mind. Burke" has mentioned the possibility that
this very assumption might have been the source
of errors in some earlier works.

One might wish to smooth the boundaries more
abruptly to retain the separateness of the bodies.
However, on purely physical grounds, it would
be inconceivable that such a cosmetic alteration
could change the basic qualitative character of
the radiation which was established for bodies
with sharp boundaries. To establish this in full
rigor would require that one enter into the mathe-
matical niceties of smoothing functions where one
must confront new boundaries with new continuity
considerations. On physical grounds, one can be
confident that the basic character must remain un-
altered. Moreover, in the approach of our earlier
work, ' it was found by the direct method that the
large contributions arise from volume integrals,
the character of which would clearly be unaltered
by minor variations of the boundary distributions.
It is comforting to observe the appearance of the
large contributions, indeed of the same orders in
the physical parameters, by these different
avenues of analysis.

(v*~md)x dS
1

f3

Q ~

'0 G'm't'-Jt, , [(p,' —p')p'cos'p]dpdp,
0 0 0

(3.18)

where the spherical surface element dS=p, rd rdp/
(n +a) for sphere I has been expressed in cylindri-
cal polar coordinates. Thus in addition to the
usual contribution of the quadrupole formula term

IV. FURTHER CONSIDERATIONS

Gb' = vb+7 (4.1)

[see II, Eq. (3.14)]. In order to account for the
background curvature in the spirit with which many
criticisms are directed, one would have to intro-
duce contributions of the form pb' and, in addition,
bb' and hence change Eq. (4. 1) to

Gb +vb +bb =vb+7.' (4.2)

or

C]*b' = (source), (4.3)

where " denotes the curved-space wave operator.
Clearly, however, the difference between the use
of and * involves higher-order corrections.
Terms of the form vb' and bb' are relevant only
for the fourth- and fifth-order iterations respec-
tively.

Recently, Hosenblum" has claimed that he has
found an energy loss exceeding that given by the
quadrupole formula by a factor of 2.3 for the small-
angle scattering of freely gravitating point singu-
larities. Although it is of course gratifying to
have one's results in a certain sense corroborated,
we must caution that Hosenblum's claims should
be treated with considerable reservation. Firstly,
the use of singularities for sources is fraught with
pitfalls. They have certainly contributed to the

In our work, we have solved for the second- and
third-order fields by combining the field equations
to yield inhomogeneous wave equations for the
successive orders with a flat-space wave opera-
tor. That Einstein's theory presents us with wave

'
equations enhances our confidence in its inherent
logic. This was shown by Bonnor, "building upon
the work of Rosen and Shamir. " Some critics have
argued that the waves propagate in a curved back-
ground and hence the flat-space wave operator is
inappropriate. Indeed, there is no question about
the fact that the background is curved. In fact the
waves themselves add to the curvature. In strong-
field situations, this could present considerable
obstacles. However, we have built upon the prem-
ise that the field is everywhere weak and hence an
iterative procedure in developing the field to suc-
cessive orders of accuracy is justified. The cur-
vature of the background has been taken into ac-
count. In fact, we have had to go even further and
take into account the curvature contribution of the
second-order dynamic field. The important point
is this: In an iterative procedure, their contribu-
tion, which always involves elements other than
the order of field which is being sought, belongs
on the right-hand side of the d'Alembert equation,
symbolically expressed as
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history of conflicting claims in the radiation prob-
lem. Secondly, as was shown in I, it is precisely
when one reaches the level of freefall gravitational
radiation that one must have some knowledge of
the structure of the source to proceed with a
meaningful analysis of that radiation. Moreover,
the effect of the background field intensity is mani-
fest in the dependence of the dominant components
of the radiation on the linear dimension of the
sources. When those sources are allowed to
shrink to point singularities, the extent of the
radiation which one might wish to deduce could
hardly be described as meaningful.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have attempted to allay some
of the misgivings of our critics. We have demon-
strated that the energy loss of our freely falling
two-body system as calculated by the Bondi method
is precisely the same as that which was found
earlier. " The commonly held conviction that the
quadrapole formalism is universally applicabIe to
all weak-field slow-motion sources has been shown
to be untenable, since it has been pointed out that
even in the non-freefall domain, one can construct
such sources for which this is not the case."'"*"
That the formalism could break down in the free-
fall case should therefore come as a somewhat
lesser surprise. We have pursued this formalism
within the context of our problem and have shown
its deficiencies. The unjustifiable removal of the
g ' from the integration over noncompact source
terms was first discussed. This was followed by
an analysis of the surface integrals arising from
the application of the Gauss theorem which are
never considered properly in the standard treat-
ments. We then demonstrated that they harbor
precisely the kind of large contributions which
have been found before by a more direct route. "
The role of source structure is evident in freefall,
a result which clearly casts doubt upon the claims
of proponents of point singularity sources.

The logic of the iteration method was emphasized
and it was demonstrated that flat-space rather
than curved-space wave operators were called
for.

It must be stressed that neither our work nor
that of anyone else to the present time has mean-
ingfully predicted the gravitational energy loss
from quasiperiodic sources such as binary stars.
Our results pertain to problems of the collision
type with freefall times r limited to"

7'«o. '/Gm.

coming radiation which we have surmounted by
choosing a well-defined static history.

To shed light on problems of the binary-star
type, we hope to develop a variant of the present
work. The proposal is to consider an initially
stationary configuration of fluid in two hemispheri-
cal envelopes which are initially joined together.
At a certain time, a perturbation is induced to
sever the bond and the constituents separate into
freefall orbit. Indeed this could be regarded as
a model reconstruction, albeit idealized, of the
actual birth of a binary system. Because of the
emission of gravitational radiation, no binary
system can be envisaged to have existed as such
in the arbitrarily distant past unless it was being
supplied by energy from outside, such as by in-
coming radiation. Choosing the stationary history
in our next phase of work would appear to be the
truly natural path.
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APPENDIX

In deriving the quadrupole formula, the harmonic
gauge is employed in conjunction with Cartesian
coordinates. However, in our own work, cylindri-
cal coordinates were used to exploit the symmetry
and the coordinate conditions which diagnalized the
metric rather than harmonic coordinates mere cho-
sen to simplify the metric. Thus, a transforma-
tion of coordinates is required to demonstrate the
breakdown of the quadrupole formula. The metric
describing the dynamics of the free-fall system is
given by

ds' = exp(2 v +d)dt —exp(2y —2v +a )dr '
—exp(2y —2 v +b)dz'

—p' exp(- 2v +c)dP',

where v and y are the static vacuum Weyl func-
tions of O(G') and O(G'), respectively, and a, b,
c, d are the time-dependent dynamic functions.

A transformation from the metric (Al) to that of
Ecl. (3.1) using the fact that

Earlier work of others ignores source structure
and is plagued with problems of avoidance of in-

r' =x'+y', y =tan-'(y/x)

[henceforth (x', x', x') =(x,y, x), x'=t] yields

(A2)
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where the presuperscript n represents the value
of A', „ to order t"":

components, respectively. The surface integral
(A5) may now be evaluated as the sum of surface
integrals over the hemispheres:

I ~
=I ~(1) +I„~(2)

'h ~=0, neP

k 0 =d+2V

'h„=(x'+y') '[(2y+2v'+a)x'+cy'],

k33 =2p+2V +5
~

'622 = (x'+y')-'[(2y+ 2v+a)y'+cx'],

'h„= —xy(x' +y') [a + 2@ +2v' —c],

(A 2)

7"" (1)x~n„(1)dS,
S~

+ v+' 2 x~n, 2 dS, .
S2

(Ar)

The unit normals may be easily determined from
the explicit representation f(x, y) =z,

and all other metric components of O(G') are zero.
The introduction of the harmonic condition can be

performed' by making an infinitesimal coordinate
transformation x' =x' + $' which induces a transfor-
mation in the metric of the form h,.~ =h, , —$,. „—$„,,
This freedom enables the harmonic condition to be
satisfied. A complete calculation to account for
all terms would require the $,. contributions as
well.

Applying the harmonic condition on Eq. (3.12)
yields contributions to v' of the form

&wu (gr0, gfm gem g el ) (A4)

Henceforth we shall restrict our attention to the
discontinuities resulting from the second spatial
derivatives of the O(G ) Newtonian potential, i.e. ,
those resulting from Eqs. (3.15). Therefore only
contributions of the form (I/G)('g', „'g'™)will be
analyzed here.

%'e now wish to evaluate those contributions to
d ~ which are neglected in the usual derivation of
the quadrupole formula, namely

(A6)

which from (A6) yields

A(1) =p, '[xi+yj +(p,' —x' —y')' 'k],

A(2) =p, '[xi+ yj (p,' -x'——y')'~'k].

The evaluation of the surface element may be
carried out using the x and y variables for a de-
scription in the parametric representation of the
two hemispheres, i.e. , each hemisphere S„S,is
mapped in a one-to-one fashion onto the circular
disc D =f(x, y)

~

x'+y' ~ p, 'J. If dT =dxdy is the
surface element on the x-y plane resulting from
the projection of dS, (or dS, ) onto that plane, than
dS,. =dT secy,. where y,. is the angle measured be-
tween the unit normal A(i) and the unit coordinate
vector k. (See Fig. 1.)

(A 5)

where 7'~' is a value of the discontinuity of v' on
the surface S~ over which the integral is evaluated.

Since the discontinuity of v ~ exists on the sur-
face of the spherical bodies, the surface integral
will be evaluated on those surfaces by splitting
each sphere into two hemispheres. The following
analysis will be carried out on sphere 1 but a sim-
ilar analysis follows for sphere 2. The figure
shows how the surface of sphere 1 is split into two
hemispherical surfaces S, and S, which have ex-
plicit representations Sp

dT

+( 2 xa y2)zl2 (A6)

respectively.
The unit normals to the two hemispherical sur-

faces are taken to be in the outward direction; thus
A(l) and A(2) have non-negative and nonpositive z

FIG. 1. Separation of sphere 1 into two hemispheres
{radius po, center (x, y, z) = (0, 0, -0, )].
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Therefore,
PpdX dg

dS, =sec@,dT =,
V pv & 3

dS2 = sec@,dT =- sec@,dT

—PpdX d$
(p

2 x2 y2)&12

Therefore, using (AQ) and (A10) in (A7),

I(&) — gB p 2 ~2 y2 -&~2

(1 &i&x +7
&& &y) +7

&& &]dx dy

(A10)

[note that v~» above, in Cartesian coordinates, is
v*» of Eg. (3.15) in cylindrical coordinates], and
the value of v" on the hemispheres is

G2m3(p 2 x2 y2)3/2f 2

(1) n2p '
0

G2ms(p 2 x 2 y2)3/2t 2

y g'FcL ~ 0
(2)

Qf P0

(A14)

Choosing for example x~ =x' =x, Eqs. (All) be-
come
~ Grnt

[(p ' —x' —y')(x'+yx)
(gg ~2p 8 0

0

I(2) = Xt' p
2 X2 y2 -1/2

x (r'(, &x+r~(2&y)+a~(2&]dxdy.

(A 11) +x(p 2 x2 y2)s/2]dxdy

G2m3t 2

I (2)
eg ~2p [(p ' —x' —y')(x'+yx)0

0

—x(p,
' —x' —y')'/']dx dy .

(A15)

+2v* (2c —g)—Xg
~ &2 @2 +@2

(A12)

where a +c =»&. Since we are interested only in
the energy flux, the expression (A12) retains only
the time-dependent O(G') terms of. (A3).

We now evaluate a typical expression (e.g. ,
v*»b) noting that b =d since to lowest order in

p, /o, , && = b —d =0. —

From Eqs. (4.15) of ll and Eg. (3.15)

We are now in a position to determine the dis-
continuity v'~' . Choosing the term
(1/G)('g" &„'g'") while making use of (AS) yields

x2 x2 y2
1+ —v+ —+c

G " x'+y' x'+y')
2 2 X2

22 2 + 2 2 + 2

Rather than performing the integration over the
Cartesian coordinates x, y, we use polar coordi-
nates p, P in the plane

x =p cosQ, y =p sin&]&,

and the integrals over the disc D become

G2~3t 2 2Ã Pp
gg(1) [(p,' p)p'(—cos'P +cosQ sing)

0 0 0

+p' cos&f&(p,
' —p')' ']dp dQ

6G2m3t 2 G2m3t 2

(p. ) =
0 0

Gmtjg(2) [(p,' —p')p'(cos'p +cosp sing)
0 0 0

—p cos(f)(&t&o —p ) ]dpdy

d=-Gm(z +u)' G'm'(z +u)
, 33 p

5
0 0

(A13)
Gpplt 6 Guilt

( ')=
e2p 8 Po =

Q2p2
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