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guarks are bound by strings attached to them. %hen two strings come close, a rearrangement of
connections or "flip-flop" takes place. This effect plays an important role in a dense ensemble of quarks,
quark matter. A phase transition from nuclear matter to quark matter occurs at the nucleon density p ( 5pp
where po is the density of the ordinary nuclear matter. The string flip-flop causes a new type of attractive
interaction between hadrons at short distances or among quarks at high density. This interaction can
produce multiquark bound states such as dibaryon or dimeson resonant states.

I. INTRODUCTION

Since 1932 when the nucleons were discovered,
a nucleus has been regarded as made of nucleons
and possibly a few number of pions. Actually,
however, nucleons and pions are composed of
quarks and probably strings that bind them,
and a nucleus must be looked at as an ensemble
of quarks and strings. In ordinary nuclei or nor-
mal nuclear matter, nucleons are well separated,
and it is a fair approximation to regard them as a
set of nucleons.

When nuclear matter is compressed, the quark
wave functions of nucleons overlap and rearrange-
ment of string connections takes place. In this
case it is no longer possible to think in terms of
nucleons. The system must be described by
quarks and strings joining them. In the present
paper this state, the quark-matter state, ' will be
investigated. In turns out that phase transition
from nuclear matter to quark matter takes place
at a density less than five times the density of
normal nuclear matter.

The Yukawa potential, the one-pion-exchange
potential, is no longer applicable in quark matter.
Instead, the reconnection of strings, the string
"flip-flop, " acts as an agent to bind the multiquark
system Thus t.here will be (metastable) quark
matter: A dibaryon resonance is an example.
This mechanism is also responsible for exotic
states such as dimeson resonances.

In the following section, Sec. II, we summarize
the interaction of quarks and strings. In Sec. IV
we investigate the quark-matter state, and the
string flip-flop interaction will be discussed in
Sec. V.

II. QUARKS AND STRINGS

From the linearity of Regge trajectories we
conclude that the potential energy acting on a
quark is linear in the distance x. The origin of

this confining potential is not yet clear. In the
present paper we take a phenomenological stand-
point and assume a model of quarks and strings2
as explained below. An example of such string
is provided by a flux of magnetic lines of force in
a type II superconductor, which forms a string of
constant line density. We assume a similar situ-
ation to hold in our case also. In quantum chro-
modynamics (QCD), color is a source of lines of
force and lines emitted from a color end on its
complementary color. Red, blue, and green form
a colorless system, so lines of force close in this
three- quark system.

The vacuum in QCD is expected to be a, super-
state and to squeeze the lines to form strings.
From a colored system a string or strings must
extend to some point in space. Only a colorless
group of quarks can form a closed system discon-
nected from others. [Strictly speaking, for a quark
system to form a closed system, it must be not
only colorless (i.e., I "'=0, Y ""=0), but also
color singlet. In the following, however, the col-
orless condition only is considered in quark mat-
ter. ] Strings are formed so that the length of
strings is as short as possible. Accordingly the
string of a R-8-6 system is F shaped, with two
strings making an angle of 120' each, if the three
quarks are placed in an acute-angles triangle. Here
we are fixing the position of quarks, i.e. , we are
considering adiabatic potential. Although this is
not a good approximation for ordinary quarks
which have a small rest mass, we shall see later
that quarks have an effective mass and the veloc-
ity is not extremely relativistic.

Regarding the applicability of the string picture
in hadrons, the following facts are noted: In a
nucleon the string potential dominates over the
one-gluon-exchange potential (see the end of this
section), so the strings are certainly there. On
the other hand, in the pion which is much smaller
than the nucleon, the potential based only on the
string no longer holds. The very small mass of
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the pion implies that here the attractive gluon
potential is the dominant one. %e c'onclude that
for interquark distance of the order of or less than
the pion radius

y, =0.4 fm,

the string-only picture fails and some other po-
tential must be considered.

So far strings were treated classically. There
are two quantum-mechanical effects that are im-
portant to us:

(1) Tearing of string. A stretched string is tom,
i.e., it makes a transition to a state of meson and
string. This is an emission of a meson and is
described by the Yukawa interaction (see Fig. 1).

4) Flip flop of s-fyings. Strings can make a
transition to another configuration provided the
latter is a possible one consistent with the color
condition. This is a kind of tunneling effect:
The strings stretch themselves, violating en-
ergy conservation, and when they touch each
other, they switch to the other configuration (Fig.
2). As we shall see in Sec. V, the transition am-
plitude is

T ~e-a'A

where A is the area the strings have to sweep i.n

making this transition.
T is not large so the mixture of g, in P„which

is given by

FIG. 2. Flip-flop of strings.

The quantum fluctuation of the strings has not
been considered. As an example of the quantum
theory of strings we take the lattice gauge theory
in the strong coupling limit. In this theory the
lowest-order correction to the energy is propor-
tional to the string length, and it merely results
in the renormalization of the coupling strength.

Up to now quarks were held fixed. If they are
allowed to move, Eq. (1) is not a correct expres-
sion of the potential energy. The confining poten-
tial must be a Lorentz scalar rather than the
fourth component of a vector. To see this let us
consider a simple case, the individual-particle
approximation. The P-shaped string is very suit-
able for this, since the center of the F is almost
equal to the center of gravity. The Hartree poten-
tial is (almost) a linear one proportional to the
distance from the center to the quark. The total

. energy is the sum of individual energy:

a"'=up+ V,

(3)

is in general small. However, when E, becomes
equal to E„aresonance takes place and the state
is a mixture of equal amounts of g, and g„ ir-
respective of the magnitude of T. After passing
the resonance, E, becomes less than E, and the
state becomes g, . As a result, for a given quark
configuration, strings are formed so that the total
length of the strings is the minimum,

„,«, =amin

In Eq. (2) the rest mass of the ordinary quark is
neglected. The equation (3) does not hold if the
one-gluon-exchange force between quarks is not
negligible (since the two-body potential energy
is double- counted).

If the potential is of vector type, the single-body
equation is

(up+as )q =E(,

which gives

p'p = (E —ar)'g = a'r'g, r - ~ .
subject to the color condition that any colored sys-
tem must be attached to a string and must not be
left disconnected. The potential energy is not a
simple sum of two-body or three-body potentials:
It depends on the configuration of all quarks.

The wave is traveling with real momentum at y- ~, so no bound state exists in this case.' In
contrast, if the potential is a scalar,

(~p+ «p}4=«
gives a second-order equation

(p'+ a'r'+ (np, arpj)(=E'g.

(4}

FIG. 1. Emission of a meson from a string. Open and
solid circles represent quarks and antiquarks, respec-
tively.

This is of harmonic-oscillator type and certainly
gives bound states. The rising potential must be
a scalar in order to produce bound states.

Another nice feature of the scalar-type potential
is the magnetic moment. From Eq. (4}, we have
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for the electromagnetic interaction

4*(~&)0 = 0* —&+p va
2E j

where A and 8 are the vector potential and mag-
netic field, respectively. This shows that a quark
with charge Q,e has a magnetic moment Q,e/2Z. '
For the proton, Eq. (3) gives X =M~/3, and the
quark magnetic moment is

FIG. 3. Flip-flop of strings of two nucleons.

System =g q+ V„„„

V = a min g x,P" ', . (5)

where ~, is the distance from the center. The val-
ue of the constant a determined from quarkonia
(spin-parallel configurations) is 0.15-0.2.' We
shall see that in a single-particle approximation
we are taking, a =0.1 is the correct choice.

III. MULTINUCLEON SYSTEM

Consider two nucleons, each having an extension
of the order z =0.8 fm.

I. y„~ &1,6 fm. When the nucleon-nucleon dis-
tance r» is larger than 2r, there is no overlap
of wave functions. The system can be described
by two nucleons and the one-pion-exchange poten-
tial (OPEZ ):

System =g N+ V»„„,„,.

which is the amount needed for the nucleon mag-
netic moments.

The conclusion is that a model of the nucleon
with a dominant string potential which is I orentz
scalar seems to work well. Further discussion of
the nucleon structure will be given in Sec. VI. The
potential energy of a multiquark system in a Hart-
ree approximation is given by

In the present paper we are concerned with the
intermediate region II.

IV. QUARK MATTER

In ordinary nuclei the nuclear density is such
that p, ' ' = 1.9 fm and nucleons can be said to be
mostly in region I. However, as it is compressed,
the string flip-flop begins to be important. In a
highly compressed state a quark is no longer con-
fined to a nucleon. It can travel within the whole
volume by reconnecting strings. It feels an aver-
aged constant potential and ean be treated as a
free particle. 'The system can be described by a
Fermi gas of quarks. This is called quark matter.

We considere ordinary quarks only. There are
six kinds, u and d each in three hues. The Fermi
gas to be considered contains an equal number of
each kind.

n(uz) =n(ue) =n(uG) =n(dR) =n(de) =n(d~)

A
8 8

where n(p) and n(n) are the numbers of protons
and neutrons of the system when it is regarded
as nuclear matter. The Fermi momentum is given
by

3n' AP = (3v'p)"'=
2 V ) t V

p=—

II. y»&1.6 fm. The wave functions overlap.
The result is that a quark of the other nucleon is
nearer to the center and string flip-flop occurs
(Fig. 3). In a more symmetrical way, transitions
as given in Fig. 4 will take place. The system
must b6 described by six quarks and the string
potentials:

System =P q+ V„„„,.

III. r»&0.6 fm or y„&0.4 fm. Here the string
picture loses its meaning and the one-gluon-ex-
change potential prevails. We may say that all
quarks are in one bag' of normal phase surrounded
by the superstate vacuum:

0

FIG. 4. Resonating group structure in six-quark sys-
tem
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where V is the volume of the Fermi gas. The
equality n(q) =n(N), Eq. (6), tells us that the Fer-
mi momentum calculated as nuclear matter is the
same as that calculated as quark matter.

First we calculate the potential energy in the
individual-particle approximation. From a center
we look for the nearest red quark, nearest blue
quark, and nearest green quark and draw strings.
Stated in another way, a red quark searches for
the nearest center which can accept it. Since cen-
ters are uniformly distributed, we take the aver-
age. When particles (centers) are uniformly dis-
tributed with a density p(=A/V), the average of the
distance to the nearest particle is given by

0.6-

0.2-

0.2 0.3

PF =0.42GeV

Ep.q =0,46GeV

p =4.9p
(o =o.l )

, I

04 05 06
PF' (GeV )

—E per q (GeV )

0.7

where I' is the gamma function. In our case, the
average of the string length is

—0 89 p "j.

FIG. 5. Energy per quark as a function of Fermi mo-
mentum PF. &he minimum is given in the figure. Pz
& 0.7 GeT correspond to region III, and the present cal-
culation is inapplicable. Pz= 0.25 GeV is that of ordin-
ary nuclear matter. Below the critical point P& the
system is an ensemble of baryons.

=1.36/P„(in units GeV =1) .
The potential energy per quark is

b')„„,=arP= P P= M(P )P. -1.36a

F

(8)

In the two extreme cases,

f(P~)=M(P~) = --, P~ &&M(P~)
&.36a
Pp

,P, P„»M-(P ).
I(P„)=E„„is plotted as a function of P~ in

Fig. 5. (a is taken as 0.1.) It has a minimum at

P~ = 0.42 GeV =-I'~, (9)

The quantity multiplying p can be called the effec-
tive mass. The total energy of the quark matter
ls

Z...= + [P'+M'(P, )]"",
lpl& p&

and the energy per quark is

E„,,= IP'+M'(P„)]' 'O'P J"d'P' =f(P~) . —

gives the potential energy of a quark, is un-
changed even if the quark is near the. surface or
deeply embedded in the quark matter. Below P~
~I'~, i.e., if the volume is larger than the critical
volume, the quark matter splits into pieces and
finally reaches to 3q objects which cannot be bro-
ken further. Below the critical point, the system
is an ensemble of baryons, and the minimum (9),
(10) is the critical point of the phase transition

g B (baryon matter) g q (quark matter) .

Here we used the words baryon matter rather
than nuclear matter since in a slightly compressed
nuclear matter, there may be some ~ resonances
beside nucleons. P~=0.7 GeV corresponds to
x„=0.4 fm where the string picture loses its
meaning.

%e have been neglecting strange quarks in the
quark matter. Comparing the top energy in the
Fermi gas and the energy of a strange quark at
rest, the condition for the stability of the ordinary
quark matter against weak decay is

M, +M(P„) & LP„'+M'(P, )]"',

E„„=0.46 GeV,

p =4.9po,
(10)

where M, is the rest mass of the strange quark.
The crossing occurs at P~ = 0.46 GeV for M, = 0.25
QeV, and /~=0. 5 GeV for M, =0.3 GeV. Above
this Fermi momentum the ordinary quark matter
decays weakly into strange-quark matter.

where p, is the ordinary nuclear matter density
(corresponding to Pz=0.25 GeV).

At this point stable quark matter is formed.
However, this matter has zero surface tension.
Indeed, the average distance F, Eq. (8), which

V. STRING FLIP-FLOP

We shall now give a slightly more detailed dis-
cussion of these matters. The string flip-flop
causes an attractive interaction among quark and
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string systems. If a state g, is connected to
another state g, by a transition matrix element T,
the energy is lowered by

E2 —E, E2-E, +T2
2 2

where F.. is the (unperturbed) energy of the state
In the two extreme cases,

T2
E, —E, »2T.

2 1

The second expression is the second-order per-
turbation- expansion term.

Two strings acquire an attractive interaction by
flip-flop. This is the interaction among quarks in

region II to play a role of the Yukawa interaction
in region I. The case E, =E, is most favorable
since the energy is linear rather than quadratic
in T. The state is said to form a resonating group
structure.

Lacking the correct theory to describe quarks
and strings, the flip-flop interaction should be de-
termined phenomenologically, in a similar way as
the tearing of strings is described by the Yukawa
coupling. Here we take the lattice gauge theory
and estimate the order of magnitude of T.

In the lattice gauge theory the Hamiltonian con-
sists of an unperturbed term which is the string
energy and an interaction term of order I/g' that
creates (or annihilates) a tiny closed loop of
string on a plaquette of lattice space. If one side
of the plaquette coincides with the original string,
the string is deformed through an area d', d being
the lattice constant. The whole transition is an
A/d'-step process, where A is the area the
strings sweep in making the flip-Qop. The transi-
tion amplitude is therefore

T oc =e' a = 1Dg4 d2

This is multiplied by a factor which is independent
of the coupling constant g. The exact evaluation of
this factor is difficult and is not attempted. ' The
transition amplitude T can be written as

T =acle '~,
where l is the sum of the lengths of strings mak-
ing the flip-flop and c is some dimensionless quan-
tity which in general depends on the lengths of the
strings.

Once T is given we can calculate the string flip-
flop energy of quark matter. The exact evaluation
is difficult and not worth pursuing, since the or-
iginal interaction was not defined with any precis-
ion. We shall make a rough estimate of an inter-
action energy between two centers separated by

R. This energy corresponds to a nuclear potential
between nucleons. It has a range of order x, since
for R &2K there is no overlap of quark wave func-
tions. For B=r, a flip-flop takes place when the
configuration of quarks and strings are such that
E, -E, is not large compared with T and the area
A is not large compared with 1/a'. This gives

2 a 1
V (It=~)=-c'cc

The interaction energy per center or per nucleon
ls

E~= p p~ t V„(R)d R =-c -—,P~.I a
(13)

VI. BARYONS

A baryon made of three quarks is the simplest
quark matter. From Eq. (10) a baryon has an en-
ergy

TABLE I. Possibilities for nucleon-nucleon reso-
nances.

Bound by Binding energy Size

Dibaryon OPE P
Hexaquark String

flip-flop

tens MeV
-100 MeV

-1/m, =1.4 fm
-r&= 0.8 fm

The in eraction V„ is of the Wigner type which
shows no saturation character and gives a positive

.surface tension of the quark matter. So with this
interaction the quark matter is stable against sep-
aration into pieces. However, no such stable ob-
ject is observed. Perhaps the binding energy (13)
is not sufficient to hold a nucleon from evaporation.
In the quark matter, if regarded as a Fermi gas
of nucleons, the top nucleon has a kinetic energy

2

E„„„=
2

=-0.1 GeV (P„=P~) .

The instability condition puts an upper limit of the
constant c.

Quark matter will be formed when two nuclei
collide and local high density is attained. The
translational degrees of freedom are tripled by
the phase transition and result in a change of
some statistical properties, such as the compres-
sibility or the sound velocity.

A very simple yet nontrivial quark matter is the
nucleon-nucleon resonant state formed by six
quarks. Some such resonances have been ob-
served. ' They can be either bound states of two
baryons or states of six quarks (Table I). At pres-
ent it is not clear which assignment is more ap-
propriate.
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Es = 1.38 GeV (quark matter), I~
= 1.5 —0.2 —0.2 = 1.1 GeV . (17)

although treating the three-body state as a Fermi
gas is not reasonable.

By solving the Hartree equation (4), we have an

energy of a baryon

Es = 3/2. 6a =1.53 GeV (Hartree} . (14)

The Hartree approximation for the three-body
problem is not a good one either, but we accept
this approximation to be consistent with the pre-
vious arguments.

There are several corrections to the baryon
energy:

(1) One gluo-n exch-ange potential. This vanishes
for heavy-quark matter due to the saturation char-
acter. For a baryon it gives an energy

1
E, = -2n, — = -0.5(jt.,=-0.2 GeV, (15)

m, =-0.2 GeV. (16)

Incidentally, the magnetic moment of the proton
due to the pion cloud i.s'

f 4 M,
4m 3m m,

4k 3kx, » —, , G kd'k

= 0.05 nuclear magnetons,

and is very small. The nucleon magnetic moments
are mostly due to the quark configuration as was
discussed in Sec. II.

Using Eqs. (14), (15), and (16), the energy of an
ordinary baryon is

The strong fine-structure constant n, has not been
obtained precisely. It should be slightly larger
than the value used in charmonium binding, a,
=0.2-0.4, where the size is about half the baryon
size. The value o., =0.4 is used in Eq. (15).

(2) Pion emission and reabsorption. While the
string flip-flop as discussed in Sec. V does not oc-
cur in a single hadron, the other type of quantum
effect, the tearing of strings or the pion emission,
is possible. In quark matter such a transition is
suppressed or greatly modified due to the exclusion
principle, but for a single baryon it can be de-
scribable by the Yukawa interaction with (pseudo-
vector) coupling constant f. The self-energy of a
nucleon due to N= N+7t is

2 3 1 y4~E =-f —,)t, , G'(k)d'k

where G(k) is the form factor of a nucleon emitting
a pion. If G(k) is taken equal to the proton electric
form factor,

We have been neglecting the spin dependence of the
interaction. Equation (17) should be compared with
some average of ordinary baryon masses, M„and
M ~, which is about 1.1 GeV. This justif ies the
choice a =0.1 GeV'.

VII. CONCLUSION AND DISCUSSIONS

Introducing the notion of the string flip-flop
which takes place when two nucleons come close
together, the energy of the quark matter was cal-
culated. The phase transition from baryon (nu-
clear) matter to quark matter will occur at a den-
sity less than 5p, . The attractive string flip-flop
interaction is expected to lower this critical point.

The string flip-flop interaction acts as a major
agent to hold a dense multiquark system. It will
produce metastable quark matter, the simplest
example being the dibaryon resonant state. In a
similar way we can think of quarkonium matter
that'consists of high density quarks and antiquarks
bound by the string flip-flop. The simplest non-
trivial one is made of qqqq making a resonating
group structure as given in Fig. 2. It decays into
two mesons with a wide width. If the flip-flop at-
traction is sufficiently strong to form a stable
multiquark-antiquark system, it correspond to
the "pion condensation. " For quantitative argu-
ments, the precise form of the flip-flop interac-
tion must be specified, either phenomenologically
or from a more fundamental interaction.

The form (12) suggested by the lattice gauge the-
ory cannot be taken as it stands. When two strings
are aligned on a line, the area A is zero no matter
how the two are separated. This produces a long-
range potential of the form 1/R" between hadrons
in contradiction to observation. Actually the ex-
pression (12}no longer holds when the width of
the area A is less than the lattice constant d. A

linear term in the string length is needed in the
exponent besides the term proportional to the
area.

In Sec. IV, the Fermi gas consisting of ordinary
quarks with saturated isospin was considered.
This is sufficient for the medium-sized quark mat-
ter in laboratory experiments. Quark matter may
also be found inside stars. In such a large-scaled
case, neutral quark matter must be considered
and strange quarks must be included as has been
discussed at the end of that section.

In the present paper the Hartree approximation
was introduced, and the problem was reduced to a
single-quark problem. This treatment tends to
overestimate the energy for a few-body problem.
This may be a reason for the necessity of the
small constant, a=0.1 GeV . It is possible to eval-
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uate the potential energy among quarks in a more
exact way. However, the form of the interaction
energy for two- or more-particle systems in a
relativistic theory is somewhat ambiguous.
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