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Finite-time corrections to the chromoelectric-flux-tube model
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The probability for pair production in a uniform electric field which has been suddenly switched on is
calculated as a function of time. The result is then applied to the problem of quark pair production in
confining chromoelectric-Aux-tube configurations.

I. INTRODUCTION

A rather widely accepted conjecture considers
that quarks interact at a large distance through
linearly r ising potentials. This assumption leads
to reasonable spectroscopic predictions and is very
appealing as a means of quark confinement. In
the framework of quantum chromodynamics (QCD)
linear potentials may be achieved as a result of
peculiar nonperturbative behavior of chromody-
namics at large distances: The force-field lines
are assumed to get collimated in tubes of constant
width. Thus free quarks must carry infinitely long
tubes which cost an infinite amount of energy. This
picture is supported by lattice formulations of
QC D.

These tubes, if they exist, can in fact be the
major nonperturbative factor which establishes
the gross features of hadronie reactions. The con-
stant field within the tubes can create new pairs
of quarks, thus changing the structure of the inter-
acting hadronic matter.

In a recent paper' approximate formulas for the
production of quarks by tunneling were derived
and various observable implications were studied.
The work dealt mainly with e e annihilation into
hadrons. In our opinion the results that were ob-
tained justify a more thorough analysis of the mo-
del. A small step in this direction is contained
in the present article.

This paper is concerned with one specific as-
pect of the previous treatment, namely, the im-
plicit assumption of adiabatic switching on of the
field within the tubes. It will be shown that the
fact that we are dealing with finite times leads
to some sizable changes in the numerical results
of Ref. 1.

The program of the paper is as follows: Section
II briefly reviews the flux-tube model and presents
the motivation for studying the influence of short
times. In Sec. III the basic formula of this paper
is derived. This formula gives the rate of pair
production in an Abelian uniform electric field as
a function of the time that elapsed since the field
was suddenly switched on. Section IV considers

the implications of this result on some items that
were tackled in Ref. 1. A short concluding discus-
sion is presented in Sec. 7.

II. THE FLUX-TUBE MODEL

This section presents a very brief outline of the
chromoeleetric-flux-tube model set up in Ref. 1.
The basic assumptions and approximations of the
model are listed below:

(1) The relevant scale of the processes under
consideration is such that quarks may be treated
as massive Dirac particles. The relevant masses
are the "constituent" masses (m„=m~=350 MeV,
m, =500 MeV).

(2) fn a qq system confinement is implemented
through the generation of a chromoelectric flux
tube of universal thickness for which the quark
and antiquark act as source and sink. If g is the
strong coupling constant and A the radius of the
tube one finds with the aid of Gauss's law that the
field E is given by E =g/2vA'. Constant forces
imply linear Regge trajectories. If the Regge
slope is n then

(3) The unique process that is treated quantum
mechanically is the creation of a pair by the
chromoelectric field within the tube. This field
is considered as a c-number external source in
Dirac's equation. Interactions between particles
created in this way are neglected until a point is
reached where the members of the pair are sub-
jected on their turn to the confinement hypothesis.
Then they may screen the field which created
them.

Clearly the model is well suited to deal with
e' e annihilation. The basic information needed
in order to be able to make quantitative predic-
tions is the probability of pair creation at given
transverse momentum. For a uniform field which
fills all space it is known that "
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-Bff( "lim (vacate '"r~vac)-exp V-T, (-1) d'P rln(1 —e " '~r '~'s)
P ~ oo Bm' (2)

V is the three-dimensional volume of the world
and m is the quark mass. The probability for pair
creation may be read off as

p g E 1 -ewm Igs)n
16m „-,n

(4')

This model has been used to predict the following
experimentally observable features:

(a) Jet structure in e'e -hadrons. Equation (3)
above states that the transverse momentum of the
quarks created within the tube will be dynamically
cut off by a factor of barrier penetration. It is
a rather complicated matter to relate this to the
transverse-momentum distribution observed in the
laboratory, but rough estimates turn out to be in
good agreement with the traditional value of the
average transverse momentum (-350 MeV). '

(i)) Suppression of strangeness. Because of their
larger mass it is harder to produce strange quarks
than up or down quarks. Therefore, in addition to
the known kinematical suppression~ of K's versus
m's in e'8, there also exists a calculable dynami-
cal suppression factor. With the help of Eq. (4)
one obtains a range of values which is in reason-
able agreement with experiment.

(c) Baryon Production. A classical treatment of
the color degree of freedom shows that within the
tube there exists a competing mechanism which
tries, via production of quarks of perverse color,
to give birth to configurations of baryonic type. The
effective field strength is only half the value of
the field which leads to usual meson production
and, therefore, baryon production is dynamically
suppressed. Equation (4} may be employed and
the factor thus obtained seems reasonable.

(d) Kadronic lifetimes of mesons. If the width A

of the tube is known, one may use the model to
estimate the width/mass ratio for mesons.

In Ref. 1 Eq. (2) was used for finite times (T).
Such an approximation is rather crude. It turns
out that the tube spanned by an energetic pair of
electromagnetically produced quarks will stay
empty for 5 GeV ' on the average.

Other relevant time scales are of the same order
of magnitude and thus some doubts are thrown on
the applicability of the asymptotic equation. The

P(~p }d2P g in[1 +-2r(w +Or )Igs]
Bs'

The integrated probability (per unit time and per
unit volume) to create a pair of quarks of mass m
1s

III. DERIVATION OF THE FORMULA

In this section the following exercise is solved:
Calculate the vacuum persistence probability as a
function of time for a world governed by Dirac's
equation given that a uniform external electric
field has been suddenly switched on.

The most straightforward approach will be dsed.
We will explicitly diagonalize the Dirac Hamilton-
ian in the presence of an external electric field.
The formally unitary transformation which con-
nects the creation and annihilation operators of the
free Dirae Hamiltonian will be explicitly written
down. If U denotes the "unitary" operator then the
new vacuum ]0) may be expressed in terms of the
old vacuum ~v) by

With the aid of U one may calculate the object of
interest, namely, I(v~exp(-iKT) ~v)(.

First we have to solve Dirac's equation in the
presence of an external field. This allows us to
identify the creation and annihilation operators
which separate the problem. The equations to be
solved are

[y'- sg-m]y=0,
A =-Es, X=O,

Q~(x, t), Ps(y, t))=5'(x —y).
Here and throughout this section we use e =g/2.
The solution to (6) is

t) — t T +ltd(Ales-t)[Vt(h ~
)]

(6)

x X,c&(v, pr) exp[i(hz+p„xr)], ('I)

single phenomenological result which may be in-
sensitive to this problem is the predicted width/
mass ratio for mesonic resonances. Indeed the
measured width is extracted from the supposed
pole structure of some scattering amplitude which
reflects the behavior at asymptotic times.

The fact that we have an approximate expression
for the decay amplitude of an unstable system as
a function of time, for all times, could be turned
into some information on the scattering amplitude
for a process in which the respective system makes
a resonant contribution. One may be able to im-
prove on the standard various Breit-Wigner fits
used in such cases. It is our feeling that research
in this direction could be of some interest.
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X. XJ =5".T
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relations:

c](»pr)r

V is a 4x 4 unitary matrix given in the Appendix.
There one may also find the definition of the con-
stant spinors X,.

Equation (7) tells. us that the Hamiltonian is given
by

B = 4 p -(d 07Cj (dy pT Cj (dy pT

Clearly, one should consider c;(cu, pr) as annihila-
tion operators for v & 0 and as creation operators
for ~&0.

In terms of the spinors X, a free Dirae field has
the following representation

Pr]x &») f( )=.I* V;IW ]P P ))rPr;()r)r,),

y, (u, p,),
b](k, Pr) =

(y ) 3 4

(12)

s =f (c ) e'"c e "s =(V(V ),/]t)/,
e&(v/s)ss~e-((v/s)~

p (c ). ei()p/4s4c e-i(v/4)s4
4 J4 j j

(13}

The "unitary" transformation which connects the
g's and 5's may be split into four distinct factors:
(1) a four-dimensional unitary rotation defined by
the matrices V and W, (2) a fourier transform,
and (3}two particle-hole transformations given in
Eq. (12}. We now define the generators of these
transformations (arguments are suppressed):

s, ~f, (]t'(): e ' pie ' =(V(V );

x exp[i(xr ~ pr +e)(r)] ) (10) Thus the operator f/ [Eq. (5)] is given by

j(w/4ss js~ js2 -j(.m/4)s4 (14)
where

{0'(»P ) 0 (&',P'}]=5 ()(t -t')5'(p, -p,').
The explicit form of the functions f. .., is given
in the Appendix.

%e turn now to our project, that is, the evalua-
tion of

The 4x4 unitary matrix S' is given in the Appendix.
((), and ]t), are destruction operators and ]t), and P,
are creation operators.

Let a( (&u, pr) and t), (k, p„) denote the annihila-
tion operators of the interaction and free theories,
respectively. Up to phases we have the following

I

It is easy to see that

l„)=e-«w e/4«, ),(/, (., )

„e)(«s)/s ((wvts), )
l()&

Now one observes that

(15)

/4~~4~~~ +~ j ~ /@) 4~~~

840

and, therefore,

e '" 'a, ((e, pr)e'" '=a, ((u+eEt, pr).
After a few manipulations one arrives at

- i
l ) (()l -I( 4/s( (). l()p/s) sly/()r), p; /(, pr) l())

S(rap„;t) ]Wpr](rr — p, pr}]VW ] (rr+ p, pr) .

(1S)

(20)

p, (&u, pr) is a 2x2 submatrix of ft:

A straightforward computation leads one to the following expression in which discrete notation has been
used:

I&)/le '"'b»l'= ." det[t) (~, p )t)*(~,p,)] .
PT 4P

I

ni (21}
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The infinite product has the obvious interpretation
r

f (ert}r,=ex pe, f e'pvrtrvtn(f (rv, p„))
P ~ (dT'

2w'

where V denotes the (infinite space volume of the system. Thus our final result is

((v(e r"'Iv&('=expI, f rt p f ervftn((aeter(')]I.

(22)

(23)

The cylindrical symmetry of the system is re-
flected by the fact that p, (at, pr) turns out to depend
only on E =r(m'+P )ar' '. We define

P(E r, t) = —2, «c in(ldetpII') ~

1
(24)

(BP/st)(Er, t) is the rate per unit volume for
creation of pairs at given transverse energy. The
rate for creation of pairs of a given mass is

dE„'P(E„,t) =——P~(t) ~

8

m

(25)

The explicit form of p, is rather complicated and
is given in the Appendix. Asymptotically we know
that we should have [see Eq. (3}].

lim (E f) = ln(l —e "sr "s)
t~~ el 7T

We have no analytic closed expressions for

(26}
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FIG. 1. Relative probability for pair creation at given
transverse energy Ez, E z = 2&/(«') {n' is the Regge
slope). The ordinate ~ is proportional to the time t,
T=t/(2s n') /I. The four curves are, in ascending or-
der, drawn withe held fixed at 0.1, 0.2, 0.3, and 0.4.
The values of the function are rescaled by the asympto-
tic expressions of Eq. (A17). Therefore as v ~ the
curves should level off at the value of 1. It is seen that
the asymptotic behavior- is achieved only after very long
times when the transverse energy is large.

m+(p )
P.(f, P',) = v dE,'P(E „f), (27)

where P'~ is a cutoff imposed by the physical as-
pects of our problem. The relevant curves are
shown in Fig. 5. For notations see-the Appendix.

The qualitative behavior of the function P(Er, t)
is easily understood. For very short times the
first order in perturbation theory gives a good
approximation. On dimensional grounds one may
write

l(0 le 's'l0)[', , exp —constx (eE)'Vf'
m~+(p )2

dE ' . 28
m
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FIG. 2. Same as Fig. 1 only for different values of
x: 0.5, 1.0, 1.5, and 2.0. It is impossible to distinguish
between the v —axis and the first curve (x= 0.5). This
shows the strong dependence of the approach to the
asymptotic value on E z.

P(E„,t).and P (t). The integrals on u& and Er were
evaluated numerically. The function P(Er, f) is
shown in Figs. 1 to 4. The precise definitions of
the curves drawn are given in the Appendix. The
function P„(t) as defined in Eq. (25) is not drawn.
The reason for this is, as will be explained in the
riext section, that we are in fact interested in the
expression
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FIG. 3. The probability of pair creation is shown as
a function of transverse energy for different values of
time. The variables are the same as in Fig. 1 and 2.
The highest value of time corresponds to the lowest
curve drawn. The values of v are v= 0.2, 0.4, 0.6,
and 0.8. No rescalings are done. It is seen that the
decrease at high transverse energies gets steeper as
time increases. As expected, when the time increases .

the dependence of the curves on time is weakened.

Therefore the approximation gets better numeri-
cally as the energy E~ increases. The asymptotic
value is overshot and approached slowly from
above (for Zr larger than some value). This re-
flects the physical fact that for finite times, energy
need not be conserved and thus the volume of
states the system may decay into is larger than
for the asymptotic case.

We should remark that our numerical analysis
has been cheeked by observing the t-0 and t- ~
limits. In these regions the exact results are known

[the missing constant in Eq. (28) is easy to cal-
culate].

We are now prepared to proceed to investigate
the possible influence of these results on the items
discussed in the previous section.

IV. QUANTITATIVE IMPLICATIONS

The results of the previous section will now be
used to calculate the average transverse momentum
of the quarks produced within the tube, the ratio
between strange and nonstrange quarks and the
relative probability for production of baryonic con-
figurations. We will not deal with the width to
mass ratio of meson resonances because the ef-
fects of finite times on it should be rather small,
as we already explained.

It should be clear that what we are going to do

is not the correct treatment of the problem even
with respect to time dependence. In reality the
field is not switched on suddenly. What the appli-
cation of the results of the previous section will
do for us is that it will give us an upper bound on
the errors which are to be expected on account of
the time dependence of the fj.e].d in the tube. With
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FIG. 5. The probability for creating quarks of a

given mass divided by its aymptotic value. The lower
curve describes nonstrange quarks and the upper curve
is for strange quarks. All other parameters were taken
at some reasonable value which is irrelevant for our
illustrative purposes. The ordinate is proportional to
time. The curves should level off at 1 for i —~ .

0.20-
7s

QQQ l I t I l
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FIG. 4. Same as Fig. 3 only for different values of v:
v=1.0, 1.6, 2.2, and 2.8. The curves are not very
different from one another signaling the approach to a
limit.
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this "worst case analysis" policy in mind we de-
cide to calculate the quantities we are interested
in for the first pair that is produced. This pair is
created in the tube that connects the two quarks
which resulted from the initial photon (we are
dealing with e'e - hadrons). Since it is the first
to be created it will be most sensitive to the finite-
ness of the time that elapsed since the field and the
tube were produced.

The tube mentioned above will stay empty (except
for the chromoelectric field it contains) for a time
g if nowhere along its extension was a pair pro-
duced. Let the index f denote flavor and mi the
respective constituent mass. For high enough
energies the ends of the tube move with the velocity
of light. Then the probability that nothing will
happen in the expanding tube for a time t at least
1s

t

, exp —vA' P (f - ix i, P )ax
my

t I

=exp -2mA'g dt P (t,p'r) =G(t}. (29)
lw f 0

We should now comment on the cutoff P~. This
reflects the fact that the width of the tube is finite.
It ensures that one excludes the possibility of
creating quirks with such a large transverse mo-
mentum that they would escape from the tube even

G(t), exp (- mA t QP''
fffy

On numerical grounds the transverse-momentum
cutoff has a negligible influence on the asymptotic
limit. For finite times, however, the situation is
different.

Using Eq. (29} the average "lifetime" of the
"empty" tube may be calculated:

(f) = — t dt = G(t)dt .dc
0 d~ 0

(32)

If we replace G(t) by its asymptotic form we find

(33)

Table I compares the average times given by

before materializing. ' This qualitative argument
is easily turned into a semiclassical estimate for
an upper bound on P~, P~'":

pm' (30r
1r

In numerical evaluations we used P ~ =qp~'" where
was varied around the value q = l. Thus we are

able to get a feeling about the sensitivity of our
results to the transverse shape of the tube.

For f- ~ we have [see Eq. (4) and (A17)]

TABLE I. The average time that elapsed until the creation of the first quark pair in the tube ((t)). All units are in
powers of GeV.

Quark mass
mf

Regge slope Tube radius
A

Pc ipmax

7l

Asymptotic
approximation

Sudden
approximation

m„= m~= 0.35
m, = 0.50

m„= m, =0.30
m, = 0.45

0.9

1.0

0.9

1.0

2.5

3.0

2.5

3.0

2.5

3.0

2.5

3.0

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1,00
1.25
0.75
1.00
1.25

7.15
6.64
6.50
5.65
5.43
5.39
8.96
8.19
7.96
7.00
6.65
6.58

6.04
5.62
5.50
4.77
4.59
4.56
7.23
6.64
6.46
5.67
5.40
5.34

5.91
5.05
4.60
4.33
3.76
3.44
7.37
6.22
5.62
5.33
4.58
4.17

5.21
4.49
4.11
3.87
3.39
3.13
6.26
5.35
4.87
4.61
4.01
3.69
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Eqs. (32) and (33) at different values of the param-
eters of the model.

The pair which has been created after a time
(t) will have its location along the tube distributed
according to p(x) dx:

p(x) =C gP /((t) —lxl, p;), lxl&(t). (34)

For the asymptotic ease we have

p(x) =c'(«) —lx I) (35)

A similar equation gives (Pr). The results are
listed for comparison with the asymptotic values
in Table II. It is observed that the numbers ob-
tained within the sudden approximation are strong-
ly dependent on the semiclassical cutoff which re-
sulted from the finite width of the tube. Thus the
dynamical suppression of the high P~ quarks re-
sults not only from the barrier penetration factor
(as was the case in the asymptotic approximation)
but also from the finite width of the tube. In order
to avoid confusion let us stress that the influence
of the width of the tube is in the opposite direction
to what one would expect on the basis of the uncer-
tainty relation: An increase of the radius of the
tube causes an increase in the average p~ and not

These two distributions are compared in Fig. 6.
Some typical values of the parameters have been
assumed, and the range of x has been rescaled.
Both distributions have been normalized. We see
that the contribution of the finite time corrections
is to produce a flatter distribution, almost uni-
form. It is an intriguing question whether this
effect could yield also an asymmetrical distribu-
tion (in the sense that the tube would prefer to
split, after screening takes place, into two. parts
of unequal length). We cannot resist the tempta-
tion to raise the extremely far-fetched conjecture
that some similar effect may be responsible for
the observed asymmetry in nuclear fission.

At this point it should be remarked that, in
principle at least, it seems that the e'e —hadrons
data could be analyzed in such a way as to yield
some information on the distribution of the location
of the first pair along the tube. In our opinion this
point deserves further investigation.

The averages over transverse momentum are
done taking into account the joint probability for
the first pair to be produced at time t and at loca-
tion x, lxl&t:

(c„')=RvA'Q I dtcc)
f 0

(u ~)'
x P((m/'+p ')' ';t) p 'd'p

0

(36)

~~0.70

~ @so

~ 080
N
~~ Oo40

Q ohio

0+0

O.IO

a decrease. Our relation between pr'"and A [Eq.
(30)] is a semiclassical result.

The relative probability for the creation of
strange quarks versus nonstrange quarks is given
by N, /N„, =r/(l r) wher-e

r =2~A' dt G(t)P. (t, P„'). (37)
0 , S

Table III compares the present results with the
values obtained within the asymptotic approxima-
tion. The differences are serious but not alarming.

If the quarks cr'eated within the tube have a dif-
ferent color from the original pair one should ex-
pect to find baryons emerging from the reaction. '
Quarks of a perverse color are produced by a
field weaker by a factor of 2 than the field which
produces mesonic configurations. Therefore
perverse color is relatively rare and this is the
a Poste&'oui justification for the neglect of the
color degrees of freedom until now. Using this
fact we may infer that the production of baryons
is dynamically suppressed:

=2x2gg dgc/ g I g, P~ .
0

(38)

The extra factor of 2 in Eq. (38) counts the number
of perverse colors. By scaling arguments one
observes that

(39)PB (t pc ) 2 3/2P &/2 (2 1/2t 21/2pc )ny & T 2 tttg

Notice that p~ for baryons is now smaller by a
factor of 2 than the value given in Eq. (30). The
values of Ns/N„are exhibited in Table IV.

OAK
-NO -.60 -.m Zo ZO ge

RELATIVE POITION OF FSSION POINT ALONG TUBE.

FIG. 6. The distribution of the relative location of the
new pair along the tube. The triangular curve is drawn
for asymptotic time and the second curve is drawn
for a time equal to the average time of the tube. The
area under both curves is equal to unity. All other
parameters are irrelevant for our illustrative purpose.
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TABLE II. The r.m.s. transverse momentum of the first quark Pair((Pr )t~2). AII units are in Powers of Gey.

Quark mass
mf

m„= m, =0.35tf
I

m, = 0.50

Regge slope
A

0.9

1.0

Tube radius
A

2.5

3.0

3.0

pc /~max

n

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

Asymptotic
approximation

0.209
0.261
0.284
0.244
0.281
0.292
0.204
0.253
0.278
0.237
0.275
0.288

Sudden
approximation

0.238
0.314
0.375
0.291
0.373
0.442
0.224
0.291
0.347
0.270
0.344
0.406

m„= mg ——0.30
m, = 0.45

0.9

1.0

2.5

3.0

2.5

3,0

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

0.215
0.264
0.287
0.248
0.283
0.294
0.189
0.239
0.265
0.223
0.262
0.275

0.242
0.315
0.375

'

0.293
0.373
0.440
0.214
0.282
0.338
0.261
0.336
0.398

TABLE HI. The dynamical strangeness-suppression factor (N, /N~). AQ. units are in powers of GeV.

Quark Dlass
mf

Regge slope Tube radius
A

pc /pm8x

Yl

Asymptotic
approximation

Sudden
approximation

m„= my= 0.35
m, = 0.50

mg= my= 0.30
m, = 0.45

0.9

1.0

0.9

1.0

2.5

3.0

2.5

3.0

2.5

3.0

2.5

3.0

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

0.29
0.29
0.29
0.29
0.29
0.29
0.26
0.26
0.26
0.26
0.26
0.26

0.32
0.32
0.32
0.32
0.32
0.32
0.28
0.28
0.29
0.28
0.29
0.29

0 44
0.48
0.51
0.49
0.53
0.57
0.40
0 44
0.47
0.45
0.49
0.52

0.46
0.50
0.53
0.51
0.56
0.59
0.41
0.46
0.49
0.46
0.51
0.54
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V. DISCUSSION

The direct 'result of this payer is a quantitative
estimate of the numerical errorsonemightexpect
on account of nontrivial time development of the
tube. It is hoped that the results in Sec. III might
be useful in future investigations of the flux-tube
model. The approximate time development of the
system has to be known in order to set up a com-
plete semiclassical picture of quark production in
e'e - hadrons. Viewed from a different angle
Sec. III gives an explicit and complete solution of
an exactly soluble unstable system.

Even with this work taken into account the flux-
tube model is far from being exhausted. The
complete scenario of the cascade has to be designed,
and it is to be expected that the extraction of ob-
servable predictions by detailed calculations will
be a complicated theoretical and numerical mat-
ter. On different lines there is an impressive
number of approximations which have been made,
the treatment of which does not present any diffi-
culties in principle. For example, one might cal-
culate QCD perturbative corrections to pair pro-
duction within the tube, or finite width effects. On

the other hand, in the framework of the model there
exist not less numerous approximations the treat-
ment of which is an open problem in QCD (e.g.
chiral-symmetry breaking and dynamical quark-
mass generation). The model rests also on some

assumptions which may be classified somewhere
in between the two extremes discussed above.
Progress is being constantly made in various works
in this direction. For example, although the de-
tailed mechanism of confinement is not yet known,
it is believed that definite statements about the
large-distance quark interaction may be made.
Such statemements may be derived on the basis
of the well-known magnetic superconductor analogy. '

To summarize, there is a lot of work left to be
done before the flux-tube model may be either
accepted or rejected.
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APPENDIX

1. The spinors X,.

The spinors satisfy the equations
T'

X& Xy =&~~

0 0
X3 ~X X4=~ X. »Xl g X12

3
'Y X2 =X4~

TABLE Dt'. The dynamical factor of suppression of baryons (Nz/Nz). All units are in powers of Gep.

Quark mass
mf

Regge slope
A

Tube radius
A

pc /pmQK Asymptotic
approximation

Sudden
approximation

m„= m&= 0.35
m, =0.50

m„= m„= 0.30
m, =0.45

0.9

1.0

0.9

1.0

2.5

3.0

2.5

3.0

2.5

3.0

2.5

3.0

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

0.14
0.14
0.14
0.14
0.14
0.14
0.13
0.13
0.13
0.13
0.13
0.13

0.19
0.19
0.19
0.19
0.19
0.19
0.17
0.17
0.17
0.17
0.17
0.17

0.25
0.28
0.31
0.28
0.32
0.34
0.23
0.26
0.29
0.27
0.30
0.32

0.29
0.31
0.34
0.31
0.34
0.37
0.26
0.29
0.31
0.29
0.32
0.35
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where the y" are Dirac matrices.

2. The matrix V

The arguments of the parabolic cylinder functions
mill be suppressed according to the following con-
ventions:

The notation for the functions of the parabolic
cylinder is that used in Bateman. ' The following
notations will be used:

e» n'/4 (A3)

E
2eE '

E,~ P, =me"'&,

P, =P r exp[~i(o. r+ w/4)] =P'*iP'.

(A2)

With these conventions the matrix V is given by

(~/c)g )1/2 S-)(/4) v] yp

-e 6~+»~~D
V

e6~+» nZD'V

pD Q
V

fvf"'e 'rD„,
fvf'"e'n)„,

Ae6ra+

he 6TD+

fv f(/'he'r+' &8„,
- fv f'/' pie 8 &+' p(rg„

f v f

1/2 g pcs
8

f
v

f

1/2 i icS- 8 r ip(rD-cp

-a +e6&D,

-h*e &D„

(A4)

We denote

E +k=E~'"
The matrix W is given by

w = -', (m/z')'/' w',

3. The matrix W

(A5)

e I+'+f "& -he6r'"+»~r -he 6& ' ""r
6 ~+@

ge6r- +' r (A6)

e6 P+y e-6~+@ -e-e ~-&

ge6 ~-y+» ~~ I e- ~-y f a~ p e p y+» e~ I e- ~+y+» n p

VW =e».

Then f, is given by

f (pi) =Id'p cdp p/(» p, )cp;,(» p, )p, (» p„) .

(A7)

(A8)

The generator of the Fourier transform is given
by f,':

./, (c,) = —
p I d p„dpc'j(pp,)',

4. The generators of the unitary transformations

~~ is a unitary matrix. Hence there exists a
Hermitian matrix Q such that

The generators for the particle-hole transforma-
tions f, and f, are

/(p )=g J~ ppc(p(p, (»p )p&(» p )

0

f4(ci) =
J d 'J/r d&f &i(»Pr)~i((dp -Pr)

+c,((d, -pr)c, ((()p p&}]e(P„}~

5. The matrix p,

We first introduce some notation:

eEt
k~ =(d +

x eE ——+~ cfk pT ' A9
8' k'
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m'
g =Zany zeE '

(A11)

As explained in the text (Sec. IV) we are actually
interested in the case where the range of trans-
verse momenta is cut off by some number depend-
ing on the field strength and the tube radius [see
Eq. (30)]. Let us denote by s, the quantity (p'r)'/
(2eE). The functions defined in the text can be
expressed in terms of dimensionless quantities:

E, +k~=Ere'", $ =y, +y, g=y

It is convenient to define the following functions:

F„(u,) =D,„(a+~ )D,.„(aa,)

(2eE) "'
F"(E„,f)=,= ~d(x, r),

[2(«)'1"'2'.(f,P', ) = + ~d, (~;z,),

+xD,„,(aS. )D.. .(a+a, ),
G„(k,)= h*v x [D;„(A*bgD;„,(h b, )

-D,„(I+a, )D,„,(ay )].
(A 12}

where

(A16)

The 2x2 matrix p, is proportional to the unit
matrix 1,:

i/s &-@/s)x

2[y+Lx(z~+T&)+' & (z~ T&)&]&I 4

x [e F, +e ~F,*+i(e"G, +e "G*„)]1,—= pl, . (A13)

+gc

(P,(r; z, ) =
) (P(x, ~)dx.

For i -~ one should find [see Eqs. (3) and (4) in
the text]

6'(x, r) - -2 ln(1 —e '"),
Using the dimensionless variables previously

defined one can write the following expression for
the vacuum-persistence probability:

~ ) g e -2 en'(1 e ~ange)1

n =1

(A17)

i&~le '"'l~&l'

eE&' 1
=exp Vt — —

I dx db ln p
' A14

2 j .7 (P(x, ~) x (A18)

Applying perturbation theory one finds for z- 0,
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