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Pion-nucleon partial-wave amplitudes
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We report pion-nucleon partial-wave amplitudes obtained from analysis of scattering data at pion
laboratory momenta from 0.42 to 2.0 GeV/c, These partial-wave amplitudes have been analyzed using
modified Breit-Wigner, coupled-channel parametrizations. The resulting resonances and their parameters are
tabulated.

I. INTRODUCTION

For over two decades it has been clear that
baryons are not simple particles. The emerging
picture of a baryon is a system of three quarks
bound together by colored gluonic forces. Excita-
tions of baryons in this picture correspond to
flavor excitations of the constituentquarks or or-
bital excitations among the quarks andgluons.
Such excitations give rise to the full baryon spec-
trum. A better knowledge of the baryon spectrum
is essential to testing this picture, or any other
picture, of the baryon. Detailed information about
excited states of baryons gives a critical proving-
ground for dynamical models of the baryon and
provides another set of constraints on any funda-
mental theory of strong interactions.

In this paper we give results on the segment of
the baryon spectrum accessible through pion-nu-
cleon scattering: uncharged and doubly charged
baryon states with strangeness zero. The preced-
ing paper' described a partial-wave analysis of
pion-nucleon scattering at laboratory momenta
between 0.42 and 2.0 GeV/c. In the first step of
the analysis, amalgamated differential-cross-
section and polarization data were prepared at
convenient values of momenta, using techniques
presented in an accompanying paper. ' At each of
these momenta, the partial-wave analyses used
an accelerated-convergence expansion for efficient
representation of the scattering amplitude. Hyper-
bolic-dispersion-relation techniques were used
to resolve ambiguities in accordance with s-chan-
nel analyticity. The analysis resulted in I = 2 and
I= —', partial waves for angular momenta through
J=~ in the prescribed energy range.

This paper presents the nonperipheral partial.
wave amplitudes and discusses those amplitudes
in terms of their resonant structure. Each partial
wave has been parametrized using a smoothly

varying background term along with modified
Breit-Wigner resonance terms as required. The
standard Breit-signer resonance form has been
modified to include energy-dependent phase-
space factors for the pN elastic channel, quasi-
two-body channels such as 7th, pN, qN, cN, ~N,
mN*, and pA, and a nonresonant three-body mmN

channel. Our parametrization of partial-wave
amplitudes' refers to a multichannel scattering
matrix which includes couplings among several
inelastic channels. In practice, explicit param-
etrization of multichannel couplings becomes im-
portant when several resonances occur at nearby
energies in a single partial wave, or when an im-
portant channel opens within the width of a reso-
nance.

The potentials included in our formalism are
chosen to give our elastic partial-wave parame-
trizations the correct analyticity structure. An
isobar model is used to parametrize inelastic
channels. As an additional constraint, we require
our partial-wave parametrizations to be in general.
agreement with isobar production cross sections
determined by SLAC-Berkeley' and Imperial
College' partial-wave analyses of single-pion
production data. This is done by fitting our par-
tial-wave parametrizations to the determined in-
elastic cross sections as well as to the elastic
partial-wave amplitudes.

A number of analyses of resonances in pion-
nucleon scattering have been reported in the lit-
erature. The recent Helsinki-Karlsruhe' analysis
(referred to hereafter as HK) makes use of fixed-f
dispersion relations to arrive at partial-wave
ampl. itudes. Earlier analyses by Ayed, ' Almehed
and Lovelace, ' and Davies' have reported reso-
nance parameters over a similar energy range.
These analyses, Refs. 6-8, did not include some
of the more recent charge-exchange cross-section
and polarization data, and have used a number of
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alternative methods to eliminate ambiguities and
include analyticity constraints. Several analyses
have reported results at lower energies, including
a recent analysis by Zidell et aL' and a reanalysis
of low-energy data by Bugg. "

Results from an earlier stage of the present
analysis have been previously reported. " The
present results include new data and cover a
larger energy range. The method of partial-wave
resonance parametrization is also substantially
changed.

Section II of this paper gives a detailed descrip-
tion of our partial-wave parametrizations, includ-
ing a discussion of the channel-coupling formalism
and phase-space factors. Our definitions of reso-
nance parameters are presented and discussed in
Sec. III. In Sec. IV we present figures showing all
partial-wave amplitudes in which we find reso-
nances. Several partial waves, including P», P»,
Py3 Fy5 and 6», have subtle s tr ucture which is
difficult to resolve. In each of these partial waves,
parametrizations with additional resonances have
been. found. Careful further analysis of the statis-
tical confidence level of these additional states
and of possible systematic biases is required be-
fore a final accounting can be given. Thus, we
report only the more definite resonances and their
parameters in Sec. IV. We summarize our results
and compare them with other recent work in Sec.
V.

II. PARTIAI WAVE PARAMETRIZATION

The structure in individual partial waves is the
key to resonant states of the baryon. To unravel
that structure, partial-wave parametrizations
must have the appropriate partial-wave analyticity,
accommodate a smoothly varying background without
introducing artificial resonant structure, and be
able to fit a number of closely spaced resonances.

Standard elastic partial-wave analyses restrict
their parametrizations to the elastic amplitude.
Our analysis attempts to extend the parametriza-
tion to include coupling of the elastic channel to
various inelastic channels. This is done by ex-
tending the dimensions of the scattering matrix,
including potentials which connect the elastic chan-
nel to appropriate inelastic channels. Rather than
discussing only the elastic transition amplitude,
we parametrize the t matrix [see Fig. 1(a)] to be

(2.1)

where a(b) represents the outgoing (incoming)
channel g =1, . . . , M, including the elastic channel.
Initial and final channels couple through inter-
mediate "particles" or resonances, labeled by

i, j=1, . . . ,N. The factors&&, are energy-indepen-

a -'- -'- b

fa ~ia G 1 j ~j b fb

I, ~ j l t k ~ l—-+- C
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S —St

FIG. 1. (a) Graphical description of the t-matrix
parametrization, Eq. (2.1). (b) The propagator Eq.
(2.3). (c) The scattering Eq. (A11). (d) The effective
potential (A12) .

dent parameters occurring graphically at the ver-
tex between channel a and particle i. Also occur-
ring at each initial or final vertex is a form factor
f,(s); for the elastic channel we use

(2.2)

C~y =~ &+~~i ~iaGty
0 0 (2.3)

The bare propagator, with a pole at the real value
s„ is simply

0 e]5]~
s$ —s (2.4)

The sign factor e& =+1 must be chosen to be posi-
tive for propagators which actually correspond to

The other f,(s) are defined below, in Eq. (2.14).
Though angular momentum and parity labels are
suppressed, Eq. (2.1) parametrizes a partial-wave
amplitude; l is the angular momentum in channel
a, Q, and Q, are constants. The factor f,(s) pro-
vides appropriate threshold behavior on the right-
hand cut, and also produces a left-hand branch
cut in the s plane. Constants Q, and Q, are chosen
to determine the branch point and strength of the
left-hand branch cut; in our analysis they both
have been set equal to the pion mass.

We assume an explicit model for the inelastic
phase-space factors used in our analysis. The
model is an isobarlike production model; in. fact,
our parametrization of mpf- ~mph scattering is
similar to that used by the SLAC-Berkeley col.lab-
oration in their inelastic partial-wave analysis.

The factor 6,&
appearing in Eq. (2.1) is the

dressed propagator matrix for particles i and j.
It may be written in terms of a diagonal bare pro-
pagator Q, &

and a self-energy matrix Z„using
the Dyson equation [see Fig. 1(b)]
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~rr = QrrP. (sb'r. ~

& a=1
(2.5)

The 4,(s) are "channel propagators" which are
constructed in an approximation which treats each
channel as containing two particles (which may
be unstable). We require that 4r, (s) provide the
correct analyticity structure for the elastic am-
plitude t„(s), and we also require that t, (sr) have,
in all channels, correct uniterity and analyticity
properties consistent with a quasi-two-body (iso-
bar) approximation. The imaginary part of C,(s)
is the effective phase-space factor for channel a.

To construct the C,(s) we first define a function
Q»(s). This also de'pends on masses m, and m,
and on an angular momentum l». The function
rtr»(s) satisfies

Im(t)»(s) =[f (s}]'p„(s)= F»(s). -

Here we use the center-of-mass momentum

(2.6)

tr» =f [s —(m, +m, )'][s—(m, —m, )']/4'" (2.7)

to define the two-body phase-space factor

p„(s) =P„/Vs

and the form factor

(2.8)

resonances, i.e. , which generate poles above the
elastic threshold. However, to have a simple uni-
fied formalism for treating resonances and back-
ground potentials, we simulate extra contributions
to the left-hand cuts by introducing additional
propagators with s, below threshold; for these,
e, is positive to represent a repulsive potential,
negative for an attractive potential. The factor
T» in Eq. (2.3) is the self-energy term for the
particle propagator:

with the appropriate masses being used in the
definition of p»; In rrrrN quasi-two-body channels
we use,

C,(s}= dm, 'o, (m, ') rtr»(s),
2

(2.11)

where ~ =2m„or m„+m~, depending on the iso-
bar being considered. The resonance weighting
function is

yZ. (M')/va+ f(g M2)2 ++2 [y (M2)]2] I (2.12)

x 0~ m2 dm2, 2 s, 2.13
(m„+ mg)2

where 0& and o ~ are the same weighting functions
used in (2.11). To evaluate the integrals in (2.10)-
(2.13) we found it convenient to choose paths paral-
lel to the imaginary axes.

The unitarity properties of our formalism are
discussed in the appendix. The form factor f, for
channel p is defined by the relation

where F, is given by (2.6) and where R and y are
chosen to give the correct mass and width for the
resonant quasiparticle [e.g. , the b, (1234), p, c,
~, and N*(1470)]. The poles of g, generate sec-
ond-sheet branch cuts in 4,(s) starting from quasi-
two-body inelastic thresholds.

We also include a nonresonant background mph

channel, in which o(M') =p»(M')/AP, where p»
is the mN center-of-mass momentum. In some
partial waves we included a ph channel. The p4-
channel propagator was defined by a double inte-
gral:

(2.9) Im4, =f, p, = p, , (2.14)

The factor (2.2) used in the elastic channel is a
special case of (2.9).

We construct the real part of rtr»(s) by using a
subtracted dispersion relation

( )
s —

srr
" ds'p„(s')[f„(s')1'rr, (s' —s) (s' —s,)

(2.10)

where s» =(m, +m, )'. We have also experimented
with modifications to rtr»(s) which have left-hand
branch cuts in addition to the right-hand unitarity
cut. However, the results are essentially the
same as those reported here, which are based on
use of (2.10), and in which the proper left-hand cut
structure is approximated by use of explicit poten-
tial terms.

In the elastic channel and the qN channel, which
are true two-body channels, we use 4r, (s}= P»(s),

where p, is given by (2.11) or (2.13) with y» re-
placed by p»(whichis real). A definition of effec-
tive phase-space factors which are similar to our
functions C,(s) has been suggested recently by
Basdevant and Berger. " We point out that even in
K-matrix fits it is necessary to include the extra
integral (2. 10} in discussing inelastic channels.
Otherwise (as in Longacre et at. '), even the elastic
amplitude will be given spurious singularities.

Not all of these phase-space factors were nec-
essary to parametrize a single resonance. The
factors included for a given resonance, or for a
given partial wave, were suggested first by the
channels found important in the SI.AC-Berkeley
and Imperial College' single-pion production
partial-wave analyses. The final criterion for the
choice of channels in any partial wave was to have
a good fit to the elastic partial-wave amplitudes,
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III. DEFINITION OF RESONANCE PARAMETERS

In this section resonance parameters are de-
fined. Partial-wave resonances are economically
described in single-channel analyses by a reso-
nance mass, width, and elasticity, or by the pole
position in the complex energy plane and its resi-
due. Our coupled-channel analysis complicates
the mathematical formalism, but we have sought
to define parameters which may be compared
directly to familiar single-channel-analysis de-

finitionss.

We begin by introducing a T matrix which has a
unitary normalization

Fab ~Pa tab ~~5

and the M-channel S matrix

(3.1)

and in most cases, to the inelastic partial-wave
cross sections determined by the SI.AC-Berkeley
and Imperial College analyses.

In the partial-wave fits, we have usually used
one attractive and one (occasionally two) repulsive
below-threshold terms coupled to the elastic
channel and generally having fixed s,. values. One
resonance term was included for each resonance
appearing in the tables, and also for one (some-
times two) additional "background" resonances
which had their s, values fixed at arbitrarily
chosen large values above the data region. The
above-threshold resonances were most commonly
coupled to three inelastic channels as well as to
the elastic channel, although considerable experi-
mentation was done on the number and character
of these channels in order to check the stability
of the results. Readers interested in further de-
tails may contact one of the authors.

I" is energy dependent. Nearby resonances, and
also more slowly varying background effects, may
further distort the shape of the resonance.

A number of alternative definitions of resonance
parameters have been investigated in our coupled-
channel analysis. They include defining resonance
parameters using the pole of the & matrix and
using the pole of the T matrix. , The pole of the E
matrix is determined by the condition

det(1+8) = det(1 +i T) =0. (3.6)

In the vicinity of the pole, the E matrix can be
parametrized as

~--'" xxE -E (3.7)

Tab ~La +a «f j ~jb +b ' (3.8)

The condition that the matrix T„has a po)e re-
duces, using Eq. (A9), to the condition

detH, ( = det[e, 5(&(s ( —. s) —Z (&]
= 0 . (3.9)

The mass ~ and width I" can be defined in terms
of the pole position s, =(m —-',iI')'. In the vicinity
of the pole we can parametrize « ' in the form

& ';=x;x(/&(» (3.10)

where the coupling vector y is an t:igenvector of
H at s=s, :

where y represents a normalized coupling vector
satisfying y~y = l.

A third method of defining resonance parameters
is to associate resonances with poles of the T
matrix. Using (2.1), (2.14), and the definition
H ' —= Q, the 7 matrix can be written in the form

S = 1+2iT. (3.2)

The & matrix is defined to be real, and in terms
of Sand Tis

«~y &0 Xg =o

and where

(3.11)

. & —8 T
1+S 1+iT (3 3)

Qx(H(, (s)x~ =h(s). (3.12)

The standard single-channel resonance param-
eters are often defined through a Breit-Wigner
parametrization of the partial-wave amplitude:

(3.4)

By use of (3.9) and (2.5) we obtain

where

(3.13)

where m is the resonance mass, I", the elastic
width, and I'„, the total resonance width. The
elasticity of the resonance is defined by the ratio

I;
e (3.5)

Complications arise from the fact that in practice

Rc ~ic Xf (3.14)

(3.15)

The g, define the coupling of the resonance to
channel c, as is clear from the expression for the
residue of T b.'

ff.b =(Z~b)'"q.qb/0'(s),



20 PION-NUCLEON PARTIAL-%A VK AMPLITUDES

where h' =dh/ds. The elasticity can be defined in
terms of the residue R„of the elastic amplitude.
By comparison with Eq. (3.4), it is seen that R„
= mT'„so that

x, = ~Z.,~/[-un(s)] (3.16)

This prescription for identification of reso-
nances and resonance parameters was found to be
preferable to the g-matrix prescription; the re-
sults were more stable, and less dependent on M,
the number of channels being parametrized. A

difficulty of this method is that it is sometimes
hard to interpret the results when the phase space
factors are rapidly varying.

The energy dependence of the F,(s) generally
displaces a pole from the conventionally accepted
resonance position. Furthermore, .in a multi-
channel formalism, a single resonance usually
corresponds to several poles of 7', on different
sheets of the s-plane Hiemann surface, depending
on how the branch points of the phase-space fac-
tors are avoided in the analytic continuation from
real s. We generally choose the pole reached
most directly, by analytic continuation with Res
fixed. In certain cases this condition is somewhat
a.mbiguous because a strong inelastic channel
opens within the width of the resonance. This oc-
curs, for example, in the case of the first S,y

resonance (which is strongly coupled to the qN
channel) and in the case of several resonances
which are close to the pN threshold.

The g-matrix poles are on the real axis, so the
ambiguity of analytic continuation path does not
arise. However, quite different results are ob-
tained on changing the number of channels which
are considered to be open.

In order to have a prescription which is simple,
relatively unique, and in close correspondence
with standard procedure, we use a combination of
methods 1 and 3. First, we identify a resonance
by locating the pole in 7'. Then we consider the
width to be an energy-dependent quantity involving
the phase-space factors:

I'- y, E, s, (3.17)

where F, is defined in Eq. (2.14) and

(3.18)

j./2F 1/2qP l~ F I/2B 1/2

c&

(3.19)

where 8„is a background S matrix (which is as-

In the neighborhood of the resonance, we generalize
the parametrization of (3.4} to

T., = (a., —6.,)/2i

sumed to be slowly varying but plays no role in
the following} and where the generalized. Breit-
Wigner demoninator is

D(s) = ~ —s —c g y,4,(s) . (3.20)

ReD(m') =0

and the width by

1' = ImD(m')/[m ReD'(m')].

We interpret the quantity

(3.21)

(3.22)

y,F,(m') 1'
(3.23)

y,F, m'

as the partial width in channel c, and the quantity
x„ in particular, as the elasticity. The quantities
listed in Tables I and II were obtained by the use
of Eqs. (3.21)-(3.23).

IV. PARTIAL-%AVE AMPLITUDES AND RESONANCE
PARAMETERS

Figures 2-6 exhibit the partial-wave amplitudes
from the preceding paper' along with the param-
etrizations obtained by maximum-likelihood fits
to the partial-wave and inelasticity data. The
elastic-channel amplitudes and some inelastic
cross sections were fitted using the multichannel
formalism described in Sec. II. The partial-wave
amplitudes of Ref. 1 were augmented by lower-
energy results from Bugg" and higher-energy
results from Ayed. '

The Bugg amplitudes, for I, ~ 3 (except F» and

F»}at 9 momenta with P» ~0.408 GeV/c, were
reasonably continuous with our partial waves. For
the partial waves neglected by Bugg, the ampli-
tudes shown in. Figs. 2-6 are in fact very small
for P„b ~ 0.6 GeV/c. We used partial-wave am-
plitudes from Ayed at 6 momenta above 2.0 GeV/c,
for those partial waves in which there was ade-
quate continuity. Generally speaking, the pa.rtial
waves with —,

' & J& & matched ours rea.sonably
well at 2.0 GeV/c, while other partial waves did
not. The errors on the high-energy amplitudes
taken from Ayed were enlarged to make the sta-
tistical weights of those data comparable to the

The real constants r and c are chosen so that
D(s,) =0. Note that D(s) would be proportional
to h(s) if all of the X„and hence all of the q„
would have the same phase. Although this is not
generally true, if s, is close to a branch point of
some 4,(s), we expect that the zeros of D(s) on
the other sheets will still give an adequate approxi-
mation to the entire set of poles of T„which are
associated with the resonance.

We define the mass m of the resonance by
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TABLE I. Even-parity states. Asterisks indicate status rating based on previous analyses. ~~

The letters A, E, C have the following significance. A: Alternate fits containing an additional
resonance are possible. I"' The fit does not adequately describe the observed structure.
This might be an indication that additional resonances are present, but satisfactory fits with
an additional resonance have not been obtained. C: The parameters of-this resonance depend
on continuity with the results of Ref. 6. Consistent error estimates are not possible. B is the
brightness parameter (see text).

States
L2I, 2&

Psi
Pss(1)
Pss(2)

+sr
&sz

P«(3)
Pgs
+~5

a, ~

Mass
(MeV)

1920+ 50
1234
1640 + 50
1960 + 80
1920 + 30
1950+ 20

938
1450*30
1710+ 60
1740+ 80
1680~15
1970~80

(225O)

Width
(MeV)

300 +100
124
370~ 70
300 ~100
340 + 80
340 + 60

370~ 80
100~ 50
210+ 80
120~ 25
325 + 150

„(450)

Elastic ity

0.19+ 0.04
1.00
0.20 + 0.04
0.17+ 0.04
0.15 + 0.02
0.40 + 0.02

0.65 ~ 0.05
0.19~ 0.05
0.19+ 0.05
0.62 ~ 0.06
0.06 + 0.02

(o.o2)

SU6 ~Os

[5e, 2']
[56, o']
f56, o'l*
[5e, 2']
[56,

'2
]

f56, 2']

[56, o']
[56,o']*
[vo, o'l
[56, 2']
[56, 2'l
[vo, 2'l
[56,4']

Notes

ojc+Of Q

)jc$ )Jc

C

3.2
0
2.5
3.0
2.8
1.7

1.6
3 2
2.9
1.4
3.9
2.8

weights of the data at momenta just below 2 GeV/c.
It has generally been quite hard to fit the in-

elasticity data" in conjunction with the elastic
amplitudes. We have usually ended up using the
inelasticity data only qualitatively, and we note
here two points where there are difficulties even
at the qualitative level. Our D» amplitude be-
comes nearly elastic near 1900 MeV, and is
similar to the Helsinki-Karlsruhe (HK) (Ref. 5)
amplitude in this respect. However, the inelas-

ticity reported in Ref. 3 does not have such a dip,
but remains significantly greater. Secondly, al-
though the HK analysis reports different D35 reso-
nance parameters than we do, there is agreement
between us and also with Ayed' that this partial
wave does have significant inelasticity above
1800 MeV; our disagreement arises, in part,
from the fact that the HK inelasticity does not
have a dip around 2000 MeV. The inelasticity
data cannot help to resolve this question because

TABLE II. Odd-parity states. The notes have the same meaning as in Table I.

States
Lgr, 2z

S»(1)
Ssi(2)
s„(3)
D»(1)
D»(2)
Ds5
&sz

s„(1)
s»
D»(1)
D»(2)
D»(3)
D»(4)
D~s

Gge

Mass
(MeV)

1620 + 20
1850 + 35
2150 + 100
1730 + 30
2010 + 100
1930~ 20

(22oo)

1540 + 20
1640 + 30
1525 + 15
1670 + 25
1830+ 50
2100 + 80
1680 + 15
2150 ~100

(2zoo)

Width
(MeV)

140 + 20
130+ 40
230 + 80
300 +100
240+ 60
280 + 90

(35o)

270 + 50
140 2 40
125 + 25
80+ 4Q

125 + 50
300 +100
180~ 30
300 +100 .

(330)

Elasticity

0.25*0.04
0.08 + 0.03
0.10+0.04
0.12 + 0.04
0.05+ 0.02
0.12 + 0.03

(o.o5)
I

0.45 + 0.06
0.60 + 0.05
0.56 + 0.06
0.10+0.02
0.06+ 0.03
0.13~ 0.05
0.35 + 0.06
Q.16+ 0.07

(o.1o)

SU6 && Os

[70, 1 ]
he, 1 ]
[70, 1 ]*
Evo, 1-]
[56, 1 ]
[56, 1 ]
[vo, 3-l

fvo, 1 l

Evo, 1-]
[vo, 1-]
fvo, 1 ]
[5e, 1 ]
fvo, 3-]
Cvo, 1 ]
[vo, 3 ]
Evo, 3-]

Notes

*** AC
C

2.6
4 0
4.0
3.1
4.3
3.1
4.0

2.1
1.9
1.5
3.4
4.1
3.6
2,0
3.0
3.4
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00 IM(PS 1) .00- 1M(

[.50-

—.50
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—.25
I

0 .25 .$0 iiDO
I I

RE(P31)

1400 1700 ZOOO

ENERGY (MeV)

0 I I I I I I I I I I I I I 0 I I I I I I I I I I I I ~

2300 —.$0 —.25 0 .25 .50 1100 1400 1700 ZOOO 2300
--1100 RE(P33) ENERGY (MeV)

- 1400
7IN ELASTIC P31 AMPLITUDE

00
mN ELASTIC P33 AMPLITUDE

--1700 00

--2000

--2300
ENERGY (MeV)

ZSOO--
ENERGY (MeV)

.+0 M(PSS) .eo- 1M(r37)

.30-

—.30, —.16 0 .16 .30 11DO
I I

RE(F35)

1400 1700 ZOOO

ENERGY (MeV)

0 I I I I I I I I I I I

ZSOO —.30
I

0 I I I I I I I I I I I I I
—.15 0 .1$ .30 1100 1400 1700 2000 2300

1100- - RX(F37) ENERGY (MeV)

l; 1400
7|N ELASTIC F35 AMPLITUDE mN ELASTIC F37 AMPLITUDE

000

--2300
ENERGY (MeV) ENERGY (MeV)

FlG. 2. Even-parity I= 2 partial-wave amplitudes for Jap . The data points for real and imaginary parts are the
results from Ref. 1. The curves show fits obtained by the method described in the text. On the projections of fits
onto the Argand plots, the energy dependence is indicated by arrows which have bases at multiples of 50 MeV and a
base-to-tip length of 5 MeV.

I

the D» amplitudes were omitted in the SI.AC-
Berkeley analysis. '

Data on the magnitude' and phase' of the qn
threshold production amplitude mere used in fits
to the S» partial wave.

Estimation of errors in partial-wave analysis
is very hard, a.nd a great deal of attention was
given to this problem in Ref. 1. One aspect of
this problem which is especially hard to treat is
that the errors do not have a Gaussian character.

This arises in part from propagation of non-
Gaussian errors in the data, and in part from the
nonlinear nature of the energy-dependent partial-
wave fitting. Since the fitted observables are
complicated nonlinear functions of the partial-
wave amplitudes, the likelihood function is only
roughly approximated by a Gaussian function. In
fitting the derived partial-wave amplitudes as a
function of energy, me attempt to take this into
account by modifying the X' function.

'I
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FIG. 3. Odd-parity 1= z partial-wave amplitudes for J& j See also the caption to Fig. 2.

q
—F( 8'.] —F.

i,j =j.
(4.1)

We denote the usual y2 contribution from the
data on a given channel amplitude at a given
energy by

for the inelastic cross sections for specific chan-
nels, their range is n =1. We replace the con-
ventional y' function (which is just the sum of 6'
over channels and energies) by modifying the like-
lihood function g to allow for longer tails than are
given by a Gaussian:

where D, are the data, F, the parametrized fit,
and TV is the weight matrix. Here i and j have a
range ~ =2 when we consider the real and imagin-
ary parts of the elastic amplitude at energies where
the inelasticity is non-negligible. Otherwise, for
the elastic amplitude at very low energies, or

-21nig(per energy, channel)] =~',
where, for 42& Q ',

Q2

and otherwise

(4.2)

(4.3a)
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3' =b. '+ln(1 +6,' —6, ') + —'[ln(l+b, ' b. ')]'

(4.3b)

The transition value is taken to be

(4.4)

where N is the total number of data and p is the
number of parameters.

The form used in Eqs. (4.2)—(4.4) has been
chosen to have the following properties, which
are easily verified. The modified likelihood func-

tion has continuous first and second derivatives
with respect to the E,. at the point where &' = &,'. A11.

positive moments of 6' have finite expectation
values. The correction (4.3b) is applied only if
the confidence level is below about 15%, and it is
important only if the confidence level falls below
a few percent. Since this modification affects only
about 15% of the data, the modified X' function is
not significantly harder to calculate.

Tables I and II list the resonances and resonance
parameters determined by Eqs. (3.21)-(3.23).
For the P waves and for E» and Gyes the tables
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FIG. 5. Odd-parity I= z partial-wave amplitudes for I& P. See also the caption to Fig. 2.

list only preliminary results. Additional struc-
ture may also be present. For the other partial
waves, all the resonant structure for which we
have evidence has been tabulated.

The uncertainties on resonance parameters
listed in the two tables are somewhat subjective.
We have combined the range of values obtained
with different parametrizations with previous
estimates from a Monte Carlo procedure. In Ref.
11, we varied partial-wave amplitudes within
Gaussian distributions determined by the partial-

wave uncertainties, and then refitted. We have scaled

these estimates in accordance with the size of the er-
rors on the partial-wave amplitudes in the resonance
region.

The Sxz and Pii partial waves are both quite
erratic, especially above 1800 MeV, and are also
highly correlated with each other. In the fit to the
P» partial wave, shown in Fig. 4, we found reso-
nances at 1450 and 1710 MeV. However, since the
fit is quite poor, we are not able to estimate er-
rors reliably, and we do not know whether other
meaningful structure might be present. In the
P3$ p P$3 p E]5 and G» partial waves, in addition to



20 PION-NUCLEON PARTIAL-%A VE AMPLITUDES 2849

.20- IX(G39) .20- at(G19)

.15- .15-

.10 .10-

.05-

—.10
I

—.06
I

0
0 .06 .10 1100

I I

R+G39)

a

I I I I C' I I I

1400 1100 2000
ENERGY (XeV)

2300 —.10
I

—.06 0
I

1100 -"

0
.06 -10 1100

I I

RE(G18)

1400 1100 2000 2300
ENERGY (leV)

1400

y I'
P
I

1100-'

-F000

2300--
ENERGY (MeV)

mN ELASTIC G39 AMPLITUDE
1400- g

2000--

2300--
ENERGY (MeV)

mN ELASTIC G29 AMPUTUDE

.20 lM(8311) .20- M(819)

.15

.10
(
10-

.0$'

—.10
I

0 i a i s s i i s i 1 i s s

—.05 0 .05 .10 1100 1400 1100 2000 2300 —.10 —.05
1109-- RE(R311) ENERGY OteV)

0 . .05
l-"1100

.10 1100
I

RE(E19)

I I I I I I I I I I I
1400 1100 2000 2300

ENERGY (XeV)

1400--
nN ELASTIC H311. AMPLITUDE

1400-
n'N ELASTIC H19 AMPLITUDE

1100- 1100-

2000- 2000-

2300-
ENERGY (ReV)

~ro--
ENERGY (Mev)
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the fits shown, we also have fits (with substantially
decreased y') in which the listed resonances are
accompanied by other, weaker resonances. In
these two-resonance fits, the parameters of the
stronger resonance are somewhat altered. Fur-
ther analysis is required for resolution of the
structure in these partial waves.

The fit in the third P» resonance region is not
good and the parameters are not well determined.
In the D» partial wave, the parameters of the two
resonances are especially uncertain because the
two resonances seem to interfere in such a way

that the width of the first and the mass of the
second are highly correlated.

Tables I and II also list several other features
of observed resonances. One column gives a
conjectured SU, xO, multiplet assignment for each
resonance. Some of these assignments are quite
speculative, and should be considered to be pri-
marily a means of comparing the number of ob-
served resonances with the number expected in
various models. As a guide to the difficulty of
identifying resonance states, we give for each
resonance a brightness or magnitude parameter
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defined to be

fr=a, —ln
I

(2Z+1)'"(2f+5)'"I
&c.m.

(4.5)

with Bo chosen to fix the normalization so that B
=0 for the h(1234) resonance. The argument of
the logarithm represents an average contribution
of the resonance to the p'P elastic and charge-
exchange amplitudes. As for stellar magnitudes,
a larger magnitude B corresponds to a fainter
resonance, a resonance which is necessarily more
uncertain.

Finally, a number of comments appear in the
tables. For resonances which have appeared in
other analyses, we list the status rating of the
resonance, as it appears in the Review of Particle
Properties. " The effect our own analysis might
have on the status rating has not been taken into
account. Notes A. or E attached to a resonance
indicate that additional structure may be present
in the partial wave, but the partial-wave data do
not permit resolution of the structure at this time.
Note Q indicates that only a portion (usually the
lower half) of the resonance falls within our par-
tial-wave data; in such cases our data are rea-
sonably continuous with the higher-energy partial-
wave data of Ayed, ' and we have relied on those
higher-energy points to some extent in determin-
ing resonance parameters.

Table III lists the pole positions and residues for
each of the resonances appearing in Tables I and
II.

The resonance shapes are modified, in some
cases quite strongly, by low-energy background
terms in the fits. These background effects have
characteristic regularities which are apparent
in Figs. 2-6. The low-energy background for
partial waves with j=2k+1+&/2 for a given n =+1
and a given isospin I and parity P has similar
properties for k = 0, 1, and 2. (Only half of the
& =2 partial waves are shown in Fig. 6.) For n =-1,
/=+1, there is attraction for I =-,' and a strong
repulsion for I =-,'. For rg =+1, there is attraction
for I = -,', 8 = + 1 and I = —,', P = -1, and repulsion
for I= &, P = -1 and I= &, P =+1. Effects of
this general nature are to be expected on the
basis of long-range forces arising from meson
and baryon exchange. Baryon exchange is respon-
sible for the dependence on yg. At low energies
the dominant contribution is expected to be given
by nucleon and b, (1234 Me&) exchange, and to be
more important for even parity than for odd parity,
as is observed.

The input partial-wave data from Ref. 2 may be
obtained on magnetic tape from R.L.K.

V. DISCUSSION

As can be seen from Tables I and II, our analy-
sis provides new determinations of parameters for
a number of well-established baryon resonances.
In addition, we find some evidence for several
states which were quite speculative or nonexistent
in previous analyses. These include a second S3y

TABLE III. Pole positions and residues.

State

Odd-parity states
Pole position Residue

(Me V) (Me V) State

Even-parity states
Pole position Residue

(Me V) (Me V)

S„(1)
S„(2)
S3((3)
D»(1)
a»(2)

1597— 60i
1844 — 71i
2135 —134i
1691—146i
1997—115i

1908—113i
2094 —147i

-6 —15i
7 — 1g

-9 —13i
24 — 2i
—0.3 — 5i

13 + 2i
2 — 72

~»(1)
~»(2)
&33(3)
+3(
+3~

1871—100i

1209— 50i
1547 —115i
1933-140i
1865- 133i
1892 —124i

—0.6 —18i

35 —38i
-18 —11i
—10 —27i

20 — Gi

43 —24i

&~3(1)
D~3(2)
D„(3)
D(3(4)
Di5

Ggg

1465 —128i
1639— 70i
1510— 57i
1660— 38i
1818— 61i
2053 —154i
1663— 75i
2111—154i
2169- 145i

48
3

34
4.

3
24
33
24
15

—67i
—58i

8i
0.3i
3z

—10i
—11i
—12i

7z

~«(2)

&&3

&~5

Hgg

1369- 89i
1692 — 44i
1702 — 79i

1666— 56i
1899—104i
2180- 200i

—48i
+ O.li

8i

31 —15i
3 — 6i

37 —211
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state at 1850 MeV, a second D» at 2010 MeV,
third and fourth D„states at 1830 and 2100 MeV,
and possibly a G»(2200) state.

In regard to the SU, x03 classification of reso-
nances, we find the nonstrange members of a num-
ber of multiplets. We observe candidates for all
the expected nonstrange members of the [56, 0']*,
[to, 1 ], and [56,2'] multiplets. We observe a
strong D»(1930) resonance, which is attributed
to the nonminimal [56, 1 ] multiplet, and we also
find somewhat weaker evidence for D»(1830),
S„(1850), and D„(2010) states consistent with
this multiplet. The statistical significance of these
three resonances is not high, about three standard
deviations or perhaps even less. Unlike some
weak resonances found in fits to even-parity par-
tial waves, these resonances do not lie near other
stronger resonances or strong inelastic thresh-
olds. Thus, the interpretation of the fits is not
confused by overlap with other structure. We
have many members of the [70, 3 ] multiplet, but
these states above 2050 MeV depend on using the
older results of Ayed' in conjunction with the
amplitudes from Ref. 1.

The recent HK (Ref. 5) analysis, which also
made extensive use of analyticity properties, has
reported resonances with masses up to 3 GeV.
The forms of the analyticity constraints used by
HK were substantially different, as were the
treatment of the experimental data and the methods
used to identify resonances and determine their
parameters, so a detailed comparison with these
results is of interest. Both the HK analysis and
our analysis report a clear resonant structure in
the Py7 partial wave near 2 GeV, which could be
attributed to the ['lo, 2'] multiplet of SU, xO, .
Their S3y amplitudes below 2 GeV are similar to
ours, and they also identify a second resonance as
a component of [56, 1 ]. We agree on the proper-
ties of the previously known 4* resonances, and
in the Q and 0 waves where HK find masses in the
range 2.2-2.5 GeV, our amplitudes are consistent
with the low-energy sides of these resonances.

In those partial waves (E», P», P», G») in which
we may have some evidence for additional struc-
ture, the HK amplitudes are qualitatively quite
similar to ours. A second resonance was reported
in the E» partial wave by HK, but not in the other
three partial waves.

There are substantial differences in the D35 D$3,
and P33 waves. HK also have a D35 resonance near
1930 MeV, assigned to [56, 1 ], but with a much
small. er elasticity. In the Dy3 partial wave, the
parameters of the second resonance are different,
and HK do not report a third. In the P33 partial
wave, the parameters of the second resonance
near 1640 MeV are different, but there is again

rough agreement around 1900-2000 MeV, where
a third resonance occurs.

There are somewhat smaller differences in the
remaining amplitudes. HK do not report a second
g) 33 r es onance, but do report a third S» re sonance
at 1880 MeV [56, 1 ] and a third P» resonance at
2O5O Mev [VO, 2'].

In summary, we have reported the resonance
structure and resonance parameters for the un-
ambiguous partial waves in a pion-nucleon par-
tial-wave analysis between 0.42 and 2.0 GeV/c
pion laboratory momentum. Our results, for
states usually attributed to even-parity 56-plets
or to odd-parity 70-plets, are in general agree-
ment with previous results. In addition, there is
substantial evidence for an odd-parity 56-piet.
There are P» and I'» resonances which can be
accommodated most easily in even-parity 70-plets.
Further study is needed to clarify certain other
even-parity, partial waves which might have states
associated with 70-plets.

APPENDIX: PROPERTIES OF THE RESONANCE.
PARAMETRIZATION

In this section, we first show that the scattering
matrix for t,r, defined by Eq. (2.1) satisfies the
unitar ity condition

Imt„= t,*,p,t,b, (Al)

p, being the phase space for channel c. We begin
by replacing Eq. (2.1) by

tab fayar H ir yrbfb' (A2)

The summation convention is used here for re-
peated particle labels. Using FI '=C and the identi-
ty ImH ' = (i/2) (H '* -. H '),

Imt, ~= f;ytr(H r)gr(ImH-)r, (H r)~jy, ~f, . (A3)

With the identity ImH=-ImZ = y, f,'p, yt we-get

Imt, r,
——g f year(H )ir yr f,p, f~ytr(H )ryyrrf r, r

(A4)
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or

1mt, »
= g t,*,p, t,b. (A5)

The Dyson equation (2.3) for the dressed pro-
pagator may be written, suppressing matrix
indices, as

G =(H —BtA 'B) '—= (H) (A13)

respective m:&yg off-diagonal submatrices. We
denote by P the Mxm submatrix of the coupling
matrix y.

The previous condition II =G ' now gives a set
of four matrix equations which can be solved in
terms of the submatrices giving

or

GO +GONG (A6) where

(GO)-1 G -1+g

Defining the inverses

(A7)

and

A = e„(s„—s) —P P,4,Pt (A14)

H =G
' and H' = (G') ' = e, 6„(.s, —s),

Eq. (A7) becomes

II =II —Z.

(A8)

(A9)

(A 10)

Then 7.„also satisfies the equation, shown
schematically in Fig. 1(c),

The matrices H, 6, H', and C" ar, e Pfx + di-
mens ional matrices.

Let us define v„ to be the matrix element t„
with the coupling factors in Eq. (2.1) removed:

I

tab fa~abfb '

(A15)

Z Z=Z+BA 'B ~ (A 16)

Thus, the extended Dyson equation becomes

H =H —Z. (A17)

The coupled-channel scattering matrix now may
be written

The definition of the self-energy matrix in the
coupled channel case may be extended in the same
manner:

Y,q
= U,~ + U„4~7,~, (A11) t.b=f.(y.'Gyb+P, F'yb+y, F Pb+13bEPb)fb. (A18)

where U„ is the. potential connecting channels g
and b [Fig. 1(d)]:

By defining new (energy-dependent) coupling con-
stants

U
~ . i fde 5.~= z r;. .jj

(A12)
yb =yb —&'& 'Pb=yb+ Qy, @.P.'& 'Pb (A19)

With this potential the elastic partial-wave ampli-
tude would have only a right-hand cut, except that
poles below threshold can approximate the proper-
ties of a left-hand cut.

In fitting the data in an energy region which con-
tains one or two resonances, it is often computa-
tionally convenient to determine separately and
treat as a fixed background the terms which cor-
respond either to distant resonances or to poten-
tials (left-hand cuts). This is done by separating
the matrices O', Il', G, and JI into submatrices
with n or m (n+m =N) rows and columns. We
continue to use G, H, etc. , to refer to the ygx~
submatrices, and denote by A and E the m xm
remaining diagonal submatrices of the original
H and G, respectively, and by B and I their

Eq. (A18) becomes

t.b =f.y'G»fb+f. P'. & 'Pbfb (A20)

The first term in Eq. (A20) is the resonant part of
the scattering amplitude; the second term is a
unitary background contribution to the scattering
amplitude. The factors appearing in the background
amplitude include the same phase-space factors
4, as the resonant amplitude, as well as similar
propagators. These background terms are thus
ensured of having proper threshold and analyticity
properties. By choosing the propagator parameters
s„outside the region of the resonances under con-
sideration, the background terms are made to be
smoothly varying.
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