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We have carried out a partial-wave analysis of amalgamated pion-nucleon scattering data at 35 momenta
in the range 0.429-1.995 GeV/c. At each momentum, a large set of fits was obtained, with the amplitude
represented as the sum of a fixed background and the fitted terms of an -accelerated convergence expansion.
The effects of discrete and continuum ambiguities were separated by special statistical and numerical
techniques which sort the fits into clusters. Dispersion relations on selected curves within the kinematical
region for physical scattering were used to resolve the ambiguities and to derive constraints. These
constraints, which ensure that the fitted amplitudes have a relatively smooth energy dependence consistent
with analyticity, were used iteratively to arrive at a unique set of amplitudes which fit the scattering data

throughout the energy region studied.

1. INTRODUCTION

We report here results from a partial-wave an-
alysis of mp scattering data for pion laboratory
momenta between 0,42 and 2.0 GeV/c. The cor-
responding c.m. energy range is 1320 to 2160 MeV.
Some partial results from an earlier stage of this
analysis have been reported in previous public-
ations.! This earlier work covered a more limited
momentum range, 0.8 to 2.0 GeV/c. The present
work also includes data which were not available
at the time the initial stage was reported.

The purpose of our analysis is to derive inform-
ation about the pion-nucleon scattering amplitude,
and to make this information available for general
use. It is necessary to have such information in
order to develop and test theories of hadronic
scattering. In particular, information about pion-
nucleon resonances, as extracted from the partial-
wave amplitudes, is an essential ingredient for
tests of models of baryon structure.

Our analysis process'involves several steps.
First, amalgamated pion-nucleon scattering data
were prepared in 3° angular intervals at 35 mo-
menta, using techniques described in the preced-
ing paper.? At each momentum, the amplitude was
represented by an accelerated convergence expan-
sion, and many randomly started fits were ob-
tained, as explained in detail in Sec. II of this pa-
per. Special techniques-were used to sort the fits
into clusters related by continuum ambiguities.
Section III describes the method of hyperbolic dis-,
persion relations (for forward and backward scat-
tering and four interior curves) which were used
to select the preferred fit at each momentum.
These dispersion relations were also used to de-
rive constraints which were fed back into the fitting
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at single momenta through an iterative process
described in Sec, IV. Some general characteristics
of our results are discussed in Sec. V of this pa-
per.

Partial-wave amplitudes obtained from our an-
alysis are presented in the following paper,® aiong
with a discussion of some of the implications about
resonances, A table of the amplitudes can be ob-
tained on magnetic tape by contacting R.L.K.

The data used in this analysis came from well
over 100 different pion-proton scattering experi-
ments. The combination of information from
mariy different sources representing a variety of
experimental conditions is an important feature
of our analysis. In the amalgamation stage, we
need a dense and uniform distribution of data,
even if some of them are of relatively low weight,
in order to stabilize the interpolating surface. The
comparison of data from different experiments,
as described in the preceding paper, also allows
us to identify discrepant data, and helps to elimi-
nate biases coming from unknown systematic er-
rors.

A complete listing of the input data for the amal-
gamation stage of our analysis will be included in
the forthcoming catalog of the Particle Data
Group’sreaction-data base.* The older data in our
collection were taken from previous compilations,
particularly that of Lovelace ef al.,” and were also
checked against the original sources. Newer data
were collected by us during the course of the an-
alysis. A complete annotated bibliography for
each experiment will be included with the data in
Ref. 4. The data collection and bibliography are
also available to interested parties on magnetic
tape (contact R.L.K.). Important as the diversity
of information represented by this data collection
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is, we will have to be content here with a descrip-
tion of only a few of the largest and most signif-
icant recent experiments in the data set.

The largest elastic differential-cross-section
experiment used was performed by the Bristol-
Southampton-Rutherford collaboration at Ruther-
ford Laboratory.® Data on 7*p and 77p elastic
scattering were taken at 51 momenta between 400
and 2150 MeV/c. The data are still somewhat
preliminary, although it is expected that above
600 MeV/c only the normalization is likely to
change significantly in the final results.” We al-
lowed generous normalization errors for these
data when carrying out the amalgamation, and used
only data above 600 MeV/c. For 7*p elastic scat-
tering there are two more quite large cross-sec-
tion experiments, one from earlier work of the
Bristol-Southampton-~Rutherford collaboration be-
tween 800 and 1594 MeV/c,® and one from a Mary-
land-Argonne group between 1207 and 2300
MeV/c.® Turning to elastic polarization, the 7*p
measurements are dominated by the Rutherford
Laboratory experiment of Martin et al.’® which
measured the polarization at 68 momenta between
603 and 2651 MeV/c. 77 p elastic polarization has
not been measured so exhaustively, and this re-
mains the weakest part of the available elastic
data. Three of the larger experiments are those
of Refs, 11-13. The most important charge-ex-
change cross-section and polarization measure-
ments are those of Rutherford Laboratory'*''® and
LBL.*%'7 The Rutherford measurements cover
the range 617 to 2724 MeV/c with 22 momenta
each for cross sections and polarizations, while
LBL measured cross sections and polarizations at
6 and 5 momenta, respectively, in the range 1030
to 2390 MeV/c. Most of the momenta in each ex-
periment are chosen to coincide for the two types
of data,

The 35 laboratory momenta at which amalgam-
ated data sets were prepared covered the range
from 429 to 1995 MeV/c. There is approximately
50 MeV/c between successive momenta, but the
momenta were chosen to minimize the need for
interpolation in momentum during the amalgam-
ation process, especially for the less copiously
measured data types. As a result, the momenta
are not distributed uniformly throughout the range.

II. ENERGY-INDEPENDENT ANALYSIS

In the first stage of cur analysis we make single-
energy x? fits to the amalgamated data. The real
and imaginary parts of each invariant amplitude
are separately parametrized as the sum of a fixed
“Born term” containing contributions from nearby
singularities in the cosé plane and a polynomial

term whose coefficients are the adjustable para-
meters used in the fitting.'®* The explicit form
of each real or imaginary part is

F(x)=B(x)+R@)P(z(x)), (2.1)

where x =cosf, B is the Born term, P is a poly-
nomial in the variable z(x) constructed according
to the accelerated-convergence-expansion (ACE)
prescription, and R is a fixed modulating factor.
Qur fitting procedure is a Monte Carlo method of
minimization from randomly generated starting
points to search for local minima of our x? func-
tion, X?, whichincludes not only the conventional
x2 for the fit to the amalgamated data, but also
additional contributions described in Sec. IID.
When a sufficient number of these X2 minima have
been found and stored they are machine scanned
to identify and combine clusters of statistically
indistinguishable local minima. Accurate error
matrices are formed for each cluster by combin-
ing the error matrices of the cluster’s individual
solutions with the intracluster dispersion. The
clusters formed at each energy are the basic in-
put for the subsequent energy-dependent stages
of the analysis.

In this section we describe in detail the para-
metrization of the Bern and polynomial terms in
the amplitudes, our procedures for imposing uni-
tarity constraints and for including Coulomb cor-
rections, the Monte Carlo method of locating local
minima, and our technique of cluster formation.

A. Born terms

The real and imaginary parts of the invariant
amplitudes for 7N scattering at fixed s are real-
analytic functions of x with #- and u-channel cuts
along the real axis, and with a nucleon pole in each
B amplitude at u =M?2%, The Born terms we use
include the nucleon pole, the two-pion-exchange
(TPE) contribution to the imaginary parts, and
contributions from P, p, f, and A exchange. As
described in Sec. II B, the fitted terms are analytic
and convergent in enlarged regions corresponding
to removal of both the nucleon pole and the discon-
tinuities of the imaginary parts at small ¢
(4 p® <t <16p®) coming completely from TPE. The
nucleon and TPE contributions are the most crit-
ical parts of the Born terms, while any inaccur-
acies in the remaining contributions can be more
easily compensated by the fitted terms.

In practice, we have found that the quality of x?2
fits is most sensitive to the nucleon term, which
fortunately has a well-known coupling constant so
that the pole can be included quite accurately.

The discontinuities of the imaginary parts for
4u%<t=16u® are not precisely known, but the TPE
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contributions to the imaginary parts of high-angu-
lar-momentum partial waves calculated by Alcock
and Cottingham!® (AC). are certainly more reliable
than any values that could be extracted directly
from data by energy-independent fitting. The

real parts, on the other hand, are less reliably
calculated by AC, and are better determined by
the data. We therefore want to constrain our am-
plitudes to be consistent with the AC imaginary
parts for sufficiently large L, and it is convenient
to do this by including them in the Born terms and
deleting the corresponding TPE discontinuities
from the fitted terms. This parametrization forces
the imaginary parts of our partial waves to ap-
proach the AC values for very large L, and stabil-
izes the waves at smaller L against erratic behav-
ior coming from statistical fluctuations in the data.
In practice, the fitted term is always chosen to be
sufficiently flexible so that these effects are con-
fined to L values lying somewhat higher than those
of the prominent peripheral resonances.?

With the exception of the TPE part, the Born
terms are all constructed using simple Regge
forms with absorptive corrections, and with some
modification to improve their asymptotic behavior
at large x. We use conventional trajectories, with
residue parameters chosen to be qualitatively con-
sistent with more detailed Regge models from
high-energy fits and also chosen to give low-energy
Born terms of reasonable magnitude, During the
course of the analysis we have tried numerous
variations on the Regge exchanges, and have found
that the final partial-wave amplitudes are not very
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sensitive to the precise forms used, as long as
the nucleon pole residue is handled correctly.
The basic set of Regge exchanges used for our
current results is given in Table I.

The amplitudes written in Table I all have es-
sential singularities at x =« which we will remove
before proceeding, In fact, the existence of s-
channel Regge poles implies that the physical
amplitudes have a specific power-law dependence
on x as x —«, and we will later build this feature
into the fitted terms by choosing appropriate modu-
lating factors. First, however, we modify the
amplitudes in Table I so that they become constant
at large x. This is easily done by replacing the
Mandelstam variables ¢ and « everywhere by new
variables

£=tf(2t), Zt=(tb—t)/s s

and

(2.2)

Z'Z=1‘42+(7'{_1‘42)]((2“)1 z,‘=(ub—u)/s, (2'3)

where /, and u, are the ¢{- and u-channel branch-
point locations and f(z) is a function which is equal
to unity at the origin, is approximately equal to
unity for |z|=1, and which behaves like z™* for
large z. To maintain the proper analytic structure
of the full amplitude we choose f(z) to be analytic
in the entire z plane cut along the negative real
axis. Note that #, and u,, and therefore f and 2,
are different for the real and imaginary parts of
the amplitudes in Table I. For the real parts,
t,=4p? and u, = (M + p)®, For the imaginary parts,
t, =162 is the double-spectral-function boundary

TABLE 1. Regge exchanges.

Exchange Amplitude Notation
Pomeron Bp=(61.15)e®
A, =—16&,8,"4/Dy
- =1—g im0 @, =0.5+¢t
P B, = 70£,8,47YD, fp=l-e u
5y =1+ ST
Ap=—3.8£:8,"4/Dy 0.47
= —imoy =(1-— -
f By =—58£:5,*4"Y/D, {=l+te Dy =(1= ayu)(2— o)
) _
By = [6mafg Xu/M?)e®814=H") Gy = op(u— M)
N — — 14 pmimaN
+210(1 —u/M>e’ 8™ ySg™N/D fy=lte ap=0.97
Dy==0y(1 - ay)
g 2-14.3
Ap=(12.4+5.00)e"s ASs®S/D 5 Fp= ~0.42 + ol
A ta=l=e™iTA  gp=go eyl

B =(11.6— 3.6u)e"t 5S5°2/D A

Da=—=0pa(l=ap)
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for four-pion exchange, and u, = (M + p)? is the
double-spectral-function boundary for 7N exchange.
When using these new variables we also multiply
ReB , by f[(4,— M?)/s] to maintain the correct resi-
due at the nucleon pole.

The function f(z) we use is

_1+2yz+3z/2
f(Z)_71+\/E72)4 .

The coefficients have been chosen so that f(z)~1
for |z|=1. In particular,

(2.4)

/2
lim f(z)=1 - 232 +0(2%), (2.5)
fy==%,

The function approaches 24/z as z —~, and its
only singularity other than the branch point at
z =0 is a pole at z=4 on the second sheet,

Having introduced the new variables, we form
s-channel isospin amplitudes from the exchange
amplitudes in Table I, keeping Pomeron and Reg-
geon exchange separate for the present:

B3P=BF=BP’

AR=_A +A +5A,,
BER=-B,+B,~5By-3B,, - (2.6)
Af=2A9+Af+§_AA,
BF=2B,+B,+5B,-+B,.

Reggeon- and Pomeron-exchange partial-wave am-
plitudes, 0%, andibf,,, are now calculated by nu-
merical integration, We note that TPE can pro-
ceed only by inelastic intermediate states, so that
the AC imaginary parts b2, are the “shadow of in-
elastic one-pion exchange (OPE)” in the same
sense that the Pomeron is generally supposed to be
the “shadow of diffractive production.” Thus, we
add the Pomeron and AC amplitudes to form purely

imaginary absorptive amplitudes ibe .

ibf, =ibP, +ibAS, . (2.7)

17+

For large J the amplitudes 767, are dominated
by the AC part and are relatively accurate, but
for small 7 they may become unrealistically large,
necessitating a cutoff. We use an energy-depen-
dent cutoff function ¢H(W)/2, where H is chosen to
approximate the average value of 0,,.) .10/ Ototar
for 7*p scattering when W is in the vicinity of the
mA and pN thresholds and then to approach unity
like 1+aW™ as W—», The function used is

1.48(W-1.21)2, 1.21<W<1,54
(W=1.4)/(W-0.65), W>1,54.

We implement the cutoff smoothly in J by construc-

ting new amplitudes iI;;‘J , such that b #;. 18 bounded

H(w>={ (2.8)

above by both 5#,, and by H/2, and such that
bf,, ~bf, it b, <«<H/2, Using the fact that b7,
is a monotonically decreasing function of J, we
can accomplish this with the following recursive

algorithm:

b?.la:bfu: J=2d>1, _ (2.9)
EAJ =5;4 (bfnz‘b}A(Jz.l)t)(H/z'btA(Ju)t)
I1J#

(F+1)# (bfh-B;*(hm)+(i1/2—5;“(hm) ’

J<J,.

The Reggeon-exchange and absorptive amplitudes
are now combined by the simple absorptive pre-
scription of multiplying together the corresponding
S-matrix elements. The full Born term T-matrix
elements are then

b”*=bfh(1-25;“J*)+1‘5!““. (2.10)

B. Fitted terms and unitarization

The fitted term for each real or imaginary part
is of the form R(x)P(z(x)), where R is a modu-
lating factor and P is a polynomial with adjustable
coefficients. The variable z(x) is chosen accord-
ing to the prescription of Cutkosky and Deo'®;

z(x) is analytic in the cut x plane and maps the
cut x plane onto the interior of a unifocal ellipse,
the physical region being mapped onto -1<z <1,
This mapping extends the formal domain of con-
vergence of our parametrization into the full cut
x plane. As discussed previously, the x-plane
branch points are taken to lie at #=4pu? and «

= (M + pu)? for the real parts, and at the 47-ex-
change and mN-exchange double-spectral-function
boundaries for the imaginary parts. We refer the
reader to Ref. 18 for a precise mathematical defi-
nition of z(x) and for a description of efficient nu-
merical techniques for the calculation of z(x).

The polynomial coefficients of P(z) are not
suitable for direct fitting to the data because this
would allow no simple way to impose unitarity
constraints. Instead, we formulate the fitting
procedure in terms of “low” and “high” partial
waves, where the low waves vary freely, subject
only to unitarity constraints, and the form of the
parametrization is used to generate a linearly re-
lated set of high partial waves by extrapolation in
J. This procedure was suggested by Cutkosky and
Deo, and was described explicitly by them for the
spinless case. In this section we give the details
of the extrapolation procedure for meson-nucleon
scattering. It will be convenient to formulate the
extrapolation procedure in terms of the amplitudes
f, and f,, because of the simple relation between
their Legendre projections and the physical par-
tial-wave amplitudes, Eq. (A20). In most of this
section we temporarily suppress isospin indices;
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the same extrapolation procedure is used for /=%
and =3,

Beifore discussing the extrapolation procedure
itself, we will specify the modulating factor R
which multiplies each polynomial. We use R to
take into account, at least roughly, the influence
of distant singularities on the general shapes of
the amplitudes. R is naturally parametrized in
terms of the s-channel Regge behavior. of the am-
plitudes as x — ., Examination of the partial-
wave expansions of f, and f,, Eq. (A18), shows
that at large x, f, ~x*% "% and f, ~x* /2 where
a, are the leading s-channel J=L + 3 trajectories.
ForI=3, a =0, and o_ ~a,~ 1 while for /=3,

a, ~a_=g,. Thus, there is a variation of about

1 in the asymptotic expenents of x for the various
amplitudes. However, the characteristic energy
dependence of the exponents is more important
for our purposes than this small variation in the
absolute level. So we use essentially the same
modulating factor for all the amplitudes and choose
it to grow like x% where @ ~a, - 3. (There is a
small difference between the modulating factors
used for real and imaginary parts.) A further
clue to the parametrization of R is provided by the
behavior of P4 ,(x) at nonasymptotic values of x.
For moderately large @, appreciable deviations
from the asymptotic x® behavior develop when

|x |~ va&/2. This gives a natural distance scale
in the x plane for appreciable varidtion to develop
in R. Finally, the general form of the paramet-
rization B +RP requires that R be real analytic
and nonvanishing in the cut x plane. A simple
form embodying all these features is

\ " 1/2 %
Rv(x)=[1+(9£f:—t-‘a)—/(’-§:ﬁ-> ] , (2.11)

where o =s -1, x? and x? are the appropriate /-
and «#~channel branch points in the x plane, and
p is an index to distinguish the real (p=1) and
imaginary (p=2) part modulating factors.

Having chosen the modulating factors, the ex-
trapolation procedure is now developed as follows.
We define

J 00 =f,0) = f; pora)y 7=1,2 (2.12)

where f; 5 ., is constructed from the Born-term
partial waves given in Eq. (2.10); 1, is paramet-
rized as

nj-i
f )= ::6 [a},Th(x) +ia2,T2(x)], (2.13)
where the a?, are real coefficients,
Th(x) = RP(x)T (z?) ‘ (2.14)

and T,(z?) is a kth-order polynomial in z?(x). The
specific choice of the set of polynomials {7} can

be left open for the present; it is irrelevant to the
extrapolation procedure. The partial-wave am-
plitudes following from this parametrization are
[see Eq. (A20)]

Frs™bsstS 4os (2.15)
where
"1- 1
fra=a Zo (aiszfil/zyk+iai‘k22,[t1/2,b) (2.16)
R=

ﬂz‘l .
1l 2
+q Z (@211 2,0 ¥ 105,27 011 2,0)
k=0

and

1
zt=} f dx P, (<)T?(x) . @.17)
-1
For clarity we will temporarily index the f 7s
amplitudes in serial order as

j_ZJEfJ: }’ J:éj,%,--o L (2.18)
f?,J+1§E]?J+

and similarly for the coefficients a?,,
ag}nlgafk’ kzoyl""ynly (2 19)

b _=gb =
Sy a=ab,, R=0,1,...,m,.

In practice, it is convenient when varying the num-
ber of parameters to add or delete parameters al-
ternately from f, and f, so thatn,-n, is alwaysOor
1, We will specialize to this case so that the in-
dex of a? runs from 1 ton=n,+n,. The real or
imaginary part of Eq. (2.16) can now be rewritten
in the compact form

- n
fh=q ) B a’., (2.20)
m'=1
where
» = 7b

BZJ,2k+l_ZJ-1/2,k7

B'g,/+l,2k+l:ZfIf1/2,k!
(2.21)

4 =7P
BzJ,2k+2 ZJ+1/2,k ’

7 BY o= 2 /g
To eliminate the coefficients a? from Eq. (2.20)

we define S? to be the submatrix of B? correspond-
ing to its first » rows

St =B ., mom'=1,2,...,n (2.22)
so that
» 10 b)Yl Fb
am_; 1 (S )mm'-fm’ (2'23)
m'=
and
ffnz Z Cfn:n’ffr;’ ’ (2'24)
mi=1
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where

n

=3 B, (2.25)

m'=1
Equations (2.24) and (2.25) define the extrapolation
procedure. The coefficients a,’k have been replaced
by a set of relations between the low (m’ <n) and
high (m >n) partial-wave amplitudes. For m <u,
ct =06 . and Eq. (2.24) reduces to an identity.
We will refer to C}m, and Cfnm, as “extrapolation
matrices,” and in the rest of this paper will go
back to using the usual Js form for the indices.

The low waves can now be parametrized in ex-
plicitly unitary form, but there is no guarantee
that the extrapolated high waves will satisfy unit-
arity. We include several safeguards in our an-
alysis to eliminate this potential problem. We
always use enough low waves so that all the high
waves correspond to impact parameters lying
somewhat outside the peripheral region. The
high waves are thus fairly small, and the main
effect of unitarity is just to require that they have
positive imaginary parts. Qur parametrization is
biased towards having small positive imaginary
parts for large J, by the way in which we incor-
porate the AC contributions. In spite of this,
small deviations from unitarity do occur in some
fits if the high waves are completely uncon-
strained. To provide a constraint we include a
term

S

U=C hi J+1/2)(n, ;2= 100(n,,2=1)  (2.26)

IJs

in our x? function. The sum runs over high waves
of both isospins, and the constant C is adjusted
so that U is typically =1, This has turned out to
be quite an effective constraint on our analysis;
there are no statistically significant violations of
unitarity in the high waves when U is included in
X2, As a final safeguard, however, at the very
end of the fitting and solution-sorting procedure,
when a reliable covariance matrix has been con-
structed, a small adjustment is made to the low
partial waves to guarantee that the resulting high
waves are explicitly unitary.

In some stages of the fitting procedure it is con-
venient to be able to reconstruct the full scattering
amplitudes directly from the low waves without
extrapolating in J or reconstructing the aj, para-
meters. For this we use the f and g amplitudes
because they are particularly suitable for incor-
porating electromagnetic corrections (see Sec.
IIC). Omitting electromagnetic corrections for
the present, we can write out Eq. (2.15) for the
real and imaginary parts of the complete partial-
wave amplitude for each Js as

1
£ Ol (=0, (2.20)
J's’

Substituting in Eq. (A17) for f and g and rearrang-
ing terms, one obtains

) low
CREEED WOR

(2.28)
sind: 4
gp(x) Bp(x)"'————z st g,Js
where
1 10
BP_fBorn q 2 bJsQf,Js ’
(2.29)
siné
BP_ Born g,Js

Here fy, ., and g5, are the pure Born-term f and
g amplitudes and

QPHIS:XJ': (J’+§)(C3' s yrala

+C3"+,JSPJ’+1/2), (2.30)

g,rs z (C ,JsP./ -1/2 7 J +.JsP’J’+1/2)'

Note that the sums in the @ functions run over all
J' =3,
"~ C. Electromagnetic corrections

The f and ¢ amplitudes from which we actually
construct observables include electromagnetic
(em) corrections in the standard way:

f:fem+fN7
858 em™ 8>

where f,, and g, are purely em amplitudes, and

(2.31)

1 i
sz g ZJ: (J+ %)(eZIEJ_fJ-PJ—i/z

+e2inJ7cJ+PJ*1/2) ’ (232)

_ sing 2; . '
SN~ q ZJ: E* s f ; Pli/s —e*iBuf Pl o).

Here f,, is the nuclear amplitude for wave Js in
the channel under consideration :and %, is the em
phase shift. The em corrections are different for
each channel; for definiteness we will describe
the treatment of 7% elastic scattering in detail,
and then give the modifications necessary for
mp elastic and charge-exchange (CEX) scattering.
We use the em amplitudes of Tromborg ef al. 2
Fon=/TF €Xp(2i0,+16+iE) , (2.33)
S om =8"F exp(2ic,) .
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f7 and g7 are relativistic single-photon-exchange
amplitudes constructed from the invariant ampli-
tudes?!+22

£ 1
A7=2n0(p,~ 1)<q2—si!—1]§a(9h7§)— - M)’ (2.34)

Br= —2Ta
q*sin*(6/2) ’

where o is the fine-structure constant and .,
=2.793 is the proton magnetic moment. F is the
product of the pion? and proton form factors which
we parametrize as

F=(1-#/0.471)}(1~-¢/0,71), (2.35)

where ¢ is in GeV2. The various contributions to
the phases are

o, =argl(1+in),

6 =-nln[sin*(6/2)], (2.36)

0
E=?7L @t/Dp-F@),
“2qQ
where =a/v,, and v, is the laboratory velocity
of the pion. We use an approximation for £ ob-
tained by carrying out the integral with F set to
(1 - t/m?)™® and with m? chosen so that the approxi-
mation has the correct asymptotic form as g2 -,
This gives

Ea-n(né+3-1/6~1/282), (2.37)

where £=1+4¢%/m? and m?=0.619. In fact, this
is also a good approximation for small ¢%; if we
were to require instead that the approximation be-
come exact as g%~ 0 it would only be necessary to
change m? to 0.607,
We can now obtain the em phase shifts 2, by
numerical partial-wave projection of f, and g, .
" This cannot be done by direct numerical integra-
tion because of the singular behavior of f,, at 0°.
To handle this problem we introduce the nonrela-
tivistic Coulomb amplitude

Fe==n[2g sin®(6/2)]™ exp(2ic,+i6) (2.38)
and rewrite f, as
fem:fc+}?em . (2.39)

The partial-wave amplitudes corresponding to f
are well known, and the residual amplitude 7, . is
sufficiently well behaved at 0° to allow numerical
integration. Our prescription for calculating T
is thus to calculate numerically the partial-wave
amplitude A,  corresponding to i om and g, add
this to the Coulomb amplitude corresponding to f,
and then set ¥ ;_ equal to half the phase of the re-
sulting S-matrix element, i.e.,

5in(20 ,,/,) +2ReA .
cos(20,,,/,) - 2ImaA ,

z,.5% arctan(

) ,  (2.40)

where o, /,=argl'(J+3+1+in).

It is now straightforward to reexpress f and g
completely in terms of low partial waves, as was
done in Sec. IIB in the absence of em corrections.
One obtains the expressions®

low _ _
F2() =B2(x) +—;~ 2 Q) 6, APE4W)
. Tow (2.4 1)
Sind

2 1FAQ )

Js

&) =Bi(x) +

+§pngf,Js(x)J ’

where £,=-1, £,=1, p=3 —p (i.e., p and p cor-
respond to opposite parts), and

low
B;’b :f;:ix +f13,Born - ? ; (b}fsQ;.Js + gi’b}fspf,ls) 1)
(2.42)

. - low
sinf Fnp
Bg:gepm +g1\’},30m - q ; (b}?ng,Js + gpb}’spg,ls) )
S

@ se= 2o (7 +3)[C0S@E»)CE - 1Py
2
+¢08(22 4, )CF 4 7Pyivsl 5
Pt = 2o (7 +9)[SIn@5 5 )Ch - 1Prr_isa
J! .

+ sin(ZZD,u)Cﬁ+ ,JsPJ'+1/2] s
(2.43)

Qg,Js: EJ; [COS(ZZI’-)C}”-,Jstr’-x/z
- CQS(ZEJ’+)C.IP’+ ,JsP.,f’+1/z} )
Pg.Js = ; [Sin(zz‘l’—)cf’—,lsp:f’—1/2

-sin(22,,)Cl ., asPryl -

Equations (2.41)~(2.43) apply to 7*p elastic
scattering only. The corresponding equations
for m7p scattering are obtained by making the
substitutions

Jf:m ‘_'fetn s

O -
Sem em ?

(2.44)

ZJ’s"’—st '

Since Z,, is an odd function of the pion charge,

we can use the same @ and P functions for 777
elastic scattering as for 77p, except that we must
change the sign of the P functions. For 77p CEX
scattering we make a rough approximation which
is justified by the absence of Coulomb-nuclear
interference in CEX, and by the fact that the sta-
tistical accuracy of CEX data is generally con-
siderably less than that of elastic data. We use
~% /2 for the CEX em phase, and only require
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that the corresponding @ and P functions be cor-
rect to first order in Z ;. Thus we can use the
same @ functions, and can use P functions which
differ from the above only by having an additional
overall factor of —3.

D. Single-energy fits

The parametrization described above has been
used to fit data by searching for local minima
of the x? function

X?=x2+® +U+D, (2.45)

where x2 is the contribution from experimental
data, ¢ is a truncation function, U is the unitarity
constraint defined in Eq. (2.26), and D contains
constraints from the hyperbolic-dispersion-rela-
tion fits described in the following sections. In
this section we describe further the x? and & con-
tributions to X% and our Monte Carlo searching
procedure.

In x? we include elastic and CEX differential-
cross-section (DCS) and polarization (POL) data,
7*p total-cross-section data, and the real parts
of the forward elastic amplitudes as determined
from dispersion relations. We use DCS and POL
data which have been amalgamated® at the mo-
mentum of the fit. As described in Ref. 2, the
amalgamation procedure produces DCS and POL
data for all three reactions which have been in-
terpolated to the same energy and angles, which
include corrections for systematic effects, and
which have had the errors of discrepant data en-
larged. Unlike ordinary experimental data, the
amalgamated data are highly correlated and it is
necessary to take this into account in % using
the method of “correlation vectors.”?

x? also includes constraints on the forward elas-
tic amplitudes from the total-cross-section data
of Carter ef al.? interpolated to the momentum
of the fit, and from the forward real parts of
Engelmann and Hendrick® calculated at the mo-
mentum of the fit. The question of what em cor-
rections to apply to f(0°) when comparing to o,
and the forward real-part calculations is some-
what ambiguous. As an example, consider a case
where elastic unitarity holds and the total cross
section is measured in such a way that o,
= [d(| fy|?+|gxl?. It is then easy to see that
0,.;= (47/9)Imf,(0°) where f, has no em corrections
at all. We have followed the suggestion of Trom-
borg et al.?! and used this prescription throughout
the analysis. We also use Ref,(0°) to compare
with the forward real parts of Engelmann and
Hendrick.

At 687 MeV/c, x2 includes constraints on the f
amplitude obtained from the shape of the cusp,

associated with the nn threshold, in the 77p dif-
ferential cross section. We have determined Ref
and Imf at 15 angles by analysis of preliminary
data from Binnie and Sarma.?” We also use the
results of Bhandari and Chao®® for the phase of
the nn production term in the S, partial-wave
amplitude and for the phase of the f amplitude at
180°, which they obtained by analysis of the data
of Debenham et al.?®

The truncation function (TF) & is used to effect
a smooth cutoff in the number of free parameters.
We wish to use a conservatively large number of
parameters, but to avoid the erratic behavior that
could result from fitting high-order polynomials
with no a priori constraints on the coefficients.
To accomplish this we use a TF of the general
form

- (L -’;(xl’(z»)z
®= g Ky iﬁ |dz|W(§)<m ) (2.46)

where f} is defined in Eq. (2.12). The integral
runs around the periphery of the unifocal ellipse
E? onto which the cuts of //; are mapped by z°(x).
Since |2?| > 1 on E?, high powers of z” in f/;/R?
contribute more to ¢ than low powers. The co-
efficients K%, are adjusted so that the contribution
of (z%)" to & becomes appreciable for # in the
range where it is desired to effect a smooth cut-
off.

For convenience we choose the weight function
W(z) to be ‘

W(z)=-§lzz— 1|~/ (2.47)

and the polynomials introduced in Eq. (2.14) to be
Chebyshev polynomials. This simplifies ® be-
cause with this weight function the Chebyshev
polynomials are orthogonal on a unifocal ellipse
of arbitrary size:

2§ ldzl e~ U AT @) =0uNs, (.49

where
Np=20,,+R*+R™% (2.49)

and R is the sum of the semiaxes of the ellipse E.
Thus, ¢ reduces to

2= 2 KiMladnl. (2.50)
ik

For fixed £>0, N} decreases with increasing en-
ergy (the ellipse shrinks) so there is a natural
tendency for ¢ to allow more parameters to vary
freely as the energy increases. The rate of in-
crease in the number of free parameters could be
further adjusted by allowing the scale parameters
K?; to be energy dependent, but we have not found
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this to be necessary. We have used K};=0.05
and K 7 =0.02 throughout, and find that this gives
a satisfactory cutoff over our entire momentum
range.

It is useful for later applications to have a quan-
titative estimate at each local minimum of X? of
the effective number of parameters which are
actually used in fitting the data and the physical
constraints contained in U and D, i.e., the ef-
fective number of free parameters which we call
v. For purely quadratic fitting of the type con-
sidered by Cutkosky®° (and used in the hyperbolic-
dispersion-relation fitting described in Section
III and Appendix B), it is easy to show that the
contributions of the individual coefficients to the
TF tend to peak in the vicinity of the cutoff. The
coefficient which gives the maximum contribution
to the TF is about equally constrained by the TF
itself and by the other constraints in X%. A simi-
lar behavior is observed in our energy-indepen-
dent fits, and we use this behavior to estimate
the effective number of free parameters. At each
local minimum, we find the eight indices k2=«%,
for which N%|al;,|? takes its maximum values (with
fixed values of p, j, and I). Since the cutoff
generally extends over a range of 2 and can be
continuously adjusted by adjusting the scale pa-
rameters, it is more appropriate to think of &
as a continuous variable than as a discrete varia-
ble. We therefore improve the estimates of k£,
by fitting quadratic functions of % to the values of
NElal;.? near k=«%, and finding the points at which
these functions assume their maxima, say k=k:;.
These are to be identified as the values of 4 at
which @ and the rest of X? constrain af;, with
equal strength. An equally constrained parameter
of this sort we count as being 3 of an effective
free parameter. In general, some parameters
with smaller values of 2 will also be partially con-
strained by ¢, and some with larger values of &
will be partially constrained by the rest of X2
We assume that the cutoff is sufficiently sym-
metric so that these effects approximately cancel
in the count of effective free parameters and are
then left with the estimate

v= D @ +5). 2.51)

pil

The effective number of degrees of freedom re-
ferred to later is equal to the number of data
points minus v.

In practice, v varies from about 25 to 45 over
the momentum range considered here. The &
range of the smooth cutoff also varies with mo-
mentum, being sharper at low momentum where
R is large [cf. Eq. (2.49)]. At our lowest mo-

menta the cutoff is essentially the same as a
sharp truncation, while at our highest momenta
it extends over a range of about three partial
waves of each isospin.

In the initial single-energy fitting with D=0, a
Monte Carlo method was used to find numerous
local minima of X2 in parameter space. Referring
to the results of previous analyses®3? and to our
own results at neighboring energies, we defined
a region in parameter space corresponding to
large areas in the unitarity circle of each low
partial wave where solutions could reasonably
be expected to be found. Random starting points
were generated within this region, and the CERN
minimizer MIGRAD®® was used to move from each
starting point to a local minimum. In our use of
MIGRAD we supplied the minimizer with analytical-
ly calculated derivatives of X2 with respect to the
search parameters, and MIGRAD returned an esti-
mate of the covariance matrix of the search pa-
rameters at each local minimum using the variable
metric method. If local minima lying outside the
search region were persistently found, the region
was enlarged and/or moved to include the loca-
tion of the new solutions in subsequent runs. At
energies where the amount of experimental data
was particularly small and the number of am-
biguous solutions correspondingly large, it was
useful to also use local minima from a more
highly constrained neighboring energy as starting
points. This increased the chances of finding
the correct solution at the poorly constrained
energy. The searching was continued until we
stopped finding significant new solutions, and
the number of solutions obtained was large enough
for carrying out the cluster recognition and con-
struction procedures described in Sec. Il E. This
required locating 60 to 100 local minima at each
energy.

These original single-energy fits initiated an
iterative procedure described later, in which
consistency between the experimental data at a
given energy and the dispersion-relation con-
straints contained in D was achieved. Modifica-
tions made in subsequent rounds of single-energy
fitting included, beside the iterative adjustment
of the dispersion relation constraints, the addition
of new experimental data as they became available
and refinement of the Born terms, em correc-
tions, etc. In most of the subsequent runs the
local minima from the original runs were used

as starting points, in addition to a smaller amount
of running with randomly generated starting

points.
E. Ambiguities and cluster formation

The final stage of the energy-independent part
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of our program is an analysis of the distribution
of local minima of X2. It is convenient to think
of the local minima at a particular energy as
points in the multidimensional space of search
parameters (low partial waves). Discrete am-
biguities are characterized by well-separated
clusters of points with similar values of X2. The
. size and shape of each cluster is influenced by
continuum (overall phase and relative phase)
ambiguities. Some degree of ambiguity is always
present, but the seriousness of this problem de-
pends greatly on the quantity and quality of the
available data. Unitarity is also effective in re~
ducing the degree of ambiguity, as are the ana-
lyticity constraints implicit in our parametriza-
tion of the amplitudes. The remaining ambiguities
are the topic of this subsection in which we de-
scribe our techniques for identifying distinct
clusters of Jocal minima, and for determining
their size and shape. These clusters are used
as the input data for the dispersion-relation fitting
programs described later. Although the cluster
analysis was carried out both for the initial fits
with D=0 and for the subsequent fits with dis-
persion-relation constraints, most of the serious
discrete ambiguities were resolved when the con-
straints were applied. Thus, the clustering tech-
niques are really tailored to the D =0 situation,
where we sometimes found as many as 20 clus-
ters, rather than the constrained situation where
we seldom found more than one cluster.

At the beginning of a cluster scan we are pre-
sented with a set of individual points (local mini-
ma) f3ss in an N-dimensional parameter space.
With each point there are associated values of
X%, %2, etc., and a covariance matrix Upss,p'a's’
obtained from the minimizer. Before initiating
the scan we make three modifications to these
matrices. The matrix U” returned by the mini-
mizer is an approximation to the standard ex~
pression for the covariance matrix corresponding
to a local minimum of a quadratic x* function,
i.e., an approximation to twice the inverse of the
second-derivative matrix of X2, If all the ap-
proximations involved are accurate, and X* is
really locally quadratic, then U” corresponds to
a unit increment in X2. We wish to be more con-
servative than this, and to enlarge U" by an over-
all scale factor so that it will agree better with
realistic cluster sizes as observed in distributions
of local minima. For a quadratic x? function this
would correspond to scaling up the standard in-
crement by the same factor, and it is useful for
later discussion to denote the scale factor as 6X°.
The scale factor is chosen empirically and for
most of the fitting described here we have used
8X?%=5. The second modification of U”" is to multi-

ply by another scale factor equal to x? divided

by the effective number of degrees of freedom,

if this quantity is greater than unity. This is the
same prescription which has long been used by
the Particle Data Group®* to allow for biases due
to inconsistencies among the-data used in a fit.
These scale factors are typically 1.4 or less, and
in the worst cases may be as large as 2.0. The
last modification is to replace the smallest N/10
diagonal matrix elements of U" by the next largest
one. This is done because the covariance matrix
obtained from the minimizer for a particular local
minimum depends somewhat upon the details of
the search in which the minimum was found. Ma-

‘trix elements may fluctuate by as much as a factor

of 2 among several different searches all of which
reach the same minimum. (In fact, one of the
main points of cluster formation is to use a large
sample of local minima to build up more accurate
covariance matrices than those obtained from the
minimizer.) The above replacement is generally
confined to small waves with fairly high J, and
reduces the chances that anomalously small
diagonal matrix elements will cause two local
minima to appear to be statistically distinguishable
when they should actually be assigned to the same
cluster. In the following we continue to use the
notation U” with the understanding that it now de-
notes the modified covariance matrix.

These modifications of U" exemplify a general
feature of our approach to error propagation in
this analysis. Modern 7N data is sufficiently pre-
cise and abundant that the purely statistical errors
in a single fit are usually quite small. Syste-
matic errors of various kinds are larger and tend
to dominate the true uncertainties in the results.
We take systematic uncertainties into account
as best we can, using the experience we have _
built up by observing the results of many fits,
both energy independent and energy dependent.
However, quantitative estimates, such as the
exact size of 6X? or the exact number of small
matrix elements of U” which are enlarged, are
necessarily somewhat subjective. In these esti-
mates we have attempted to be rather conserva-
tive and to avoid underestimating the magnitudes
of any significant sources of systematic error.

Our aim is to produce final covariance matrices
that are realistic estimates of the true uncer-

tainties in the determination of the 7N ampiitudes
from existing data, although there will certainly
be some instances in which our error estimates
fall short of this goal. In particular, we expect
that there are significant non-Gaussian tails as-
sociated with our error estimates. It is commonly
observed in distributions of experimental data

that fluctuations of several standard deviations
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occur more frequently than would be expected on
the basis of Gaussian statistics. We suspect that
our amplitudes and quantities derived from them
will also have this property, and that it will be
particularly severe for quantities corresponding
to directions in parameter space which are poorly
constrained by the input data (such as the overall
phase, spin rotation parameters, etc.).

Proceeding now to the main stage of the cluster
analysis, our goal is to replace the relatively
large number of individual local minima by a
smaller number of clusters with central values
and covariance matrices which accurately de-
scribe their position, size, and shape. This is
done by scanning over the points and building up
the clusters during the scan. The scan is done
in two passes, the first of which builds up the
central part of each cluster and the second of
which builds up the “tails.” For clarity of ex-
position we describe here a simplified procedure
in which the points are scanned once, assigned
to clusters, and then the cluster characteristics
are calculated after the scan, using the assigned
points. A description of the complete double-
scan procedure is given in Appendix C. In the
simplified procedure, the first step is to examine
pairs of points and decide whether they are close
enough to belong to the same cluster. For this
comparison we wish to use the degree.to which
points are statistically indistinguishable as a
measure of closeness, rather than some absolute
Euclidean distance in parameter space. Let uJ;
be the 2X 2 submatrix of U" corresponding to wave
Js. Then our basic definition of the distance be-
tween two points is

Dnm2= ;ﬁ dnm,Jsz b} (2'52)
s

Qom, 302 2 (=35 G+ 20 5)
X (g =Sas) + (2.53)

The distance between two waves must be modified
if the minimizer’s estimates of »;; and/or uJ;

are sufficiently inaccurate that their sum is not
positive definite. In that case, we drop the off-
‘diagonal matrix elements of the sum and define
G 1> to be

A 152 2 (pse =S j)® (2.54)

7 (2ufs+2uzy),,

As a further safeguard against the effects of
anomalously large separations of points which
are actually in the same cluster, we replace the
largest two values of d,,, ;° by the third largest
value in the sum over Js in Eq. (2.52). This

20

modification is in the same spirit as the previous
enlargement of the smallest N/10 diagonal ele-
ments of U", but unlike the previous case it is
usually confined to poorly determined partial
waves with small J, typically S and P waves.
Two points, » and m, are now assigned to the
same cluster if D,, is less than some comparison
distance. For small X? separation |X,? -X,?|
we use a fixed comparison distance D,,,2<Dy?. If
the X2 separation is sufficiently large we relax
the criterion by letting the comparison distance
increase linearly with |X,? -X,?| in order to in-
clude the “tails” of the cluster. Except in a few
special cases, the X? separation at which we be-
gin to relax the distance criterion is chosen to be
the same 5X? that was used to scale up U", and
the general criterion used is
Dy’ (anZ _'szl - 0x®

=<1+ 20X7

Doz )Q(IXnZ_szl _OXZ) .

(2.55)

It can be seen from Eq. (2.53) that D,? should
lie somewhere between a lower limit of ~v/4
(if U" has been properly scaled) and an upper
limit determined by the minimum separation be-
tween clusters. Within these rough guidelines
there are large variations from energy to energy,
depending on the quality of the data, the number
and distribution of local minima found, ete. It
is usually necessary to try several values of D,?
and observe the results before settling on a final
value. Too large a value will result in all the
local minima coalescing into one or two very
large clusters; too small a value results in no
clustering at all. After assigning points to clus-
ters, we construct the central value and the co-
variance matrix associated with a cluster as
averages over its points. The formulas used in
constructing these averages are explained in de-
tail in Appendix C.

At the conclusion of the solution-sorting pro-
cedure, the central value obtained by the averag-
ing procedure for each cluster is replaced by the
result of a new, brief minimization search con-
sisting of a few steps of a modified steepest-
descent minimization utilizing the final covariance
matrix (which is not altered in this final minimi-~
zation) to help determine the direction of the
steps. This is done to ensure that the final cen-
tral value will be very close to the best local
minimum in the cluster. At this stage, small
adjustments in the low partial-wave amplitudes
are also made, using the final covariance matrix,
to ensure that all high partial waves will exactly
satisfy unitarity. .

Through a series of tests, we have checked
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that the procedure we use gives reasonable re-
sults and is stable. With reasonable choices for
parameters such as D, and X2, the number of
distinct clusters with acceptable X2 values is not
changed when new randomly started fits are
added. Furthermore, if the total weight of a
cluster is large enough, that is, if it already in-
cludes several fits with X2 values within 8X2 of
the minimum, then the central value and the co-
variance matrix are also stable.

III. SELECTION AND SMOOTHING OF ENERGY-
INDEPENDENT FITS

At each energy, the fitting and solution-sorting
procedures described above identify a number of
regions in the parameter space; within each reg-
ion the experimental data are adequately repre-
sented. The size of a region is determined not
only by data uncertainties, but also reflects the
existence of continuum (or phase) ambiguities.
These ambiguities arise because the amplitudes
are complex, so that there are more real quanti-
ties to be determined at each angle and energy
than there are types of experimental data. The
arbitrariness in phases is controlled and reduced
to a manageable extent by the fitting techniques
described earlier. Nevertheless, continuum am-
biguities persist somewhat, as of course they
should, since they do correspond to a real lack
of information from experiments.

Identification of the correct amplitudes re-
quires first, resolution of the discrete ambiguity,
and second, after determination of the correct
fit region, reduction of its size by further restric-
tion of the continuum ambiguities. Finally, we
must try to identify and correct possible biases
in the original fitting which might arise from
erroneous data, improper resolution of am-
biguities in single-energy fits, insufficient search-
ing for minima, etc. To help identify the correct
amplitudes at each energy, we use the fact that
the complex amplitudes F(E) which describe the
scattering are analytic functions of the energy E,
i.e., the F(E) satisfy dispersion relations.

In most applications of dispersion relations,
ReF(E) at a given energy E is obtained as an in-
tegral over ImF at all energies. This approach
is applicable to the forward C amplitudes, and
we include calculated values of ReC(t=0) (Ref. 26)
among the data used in single-energy fits. For
other amplitudes F, however, ReF and ImF are
known with similar accuracy and over the same
limited energy region, so that the usual dispers-
ion-relation approach is not suitable. We use
general methods of functional analysis to develop
an expansion for F in terms of functions whose

energy dependence is consistent with the dis-
persion relations. This expansion is used to con-
struct a smoothed fit to F(E) which then provides
the starting point, as we describe below, for solv-
ing the problems mentioned in the preceding para-
graph.

There are many suitable candidate amplitudes
F(E) for application of dispersion relations. We
choose to employ dispersion relations for the
amplitudes B and C'*) along hyperbolic curves
in the Mandelstam plane (HDR). We have pre-
viously used the C'*) amplitudes along four such
curves in a determination of the ¢ term for 7N
scattering.®®

We avoid the use of partial-wave dispersion re-
lations (PWDR) in this stage of the analysis be-
cause of our general philosophy of separating the
partial-wave analysis itself from the study of the
properties of individual partial waves. The
analyticity properties of the HDR amplitudes are
also slightly simpler than those of partial waves;
in particular, they automatically incorporate s-u
crossing symmetry. Another important reason
for preferring HDR is that because of practical
limitations of computer memory size, it is im-
possible to take exact account of all the error
correlations in a simultaneous dispersion-relation
fit to a large number of amplitudes. However, in
HDR fits along curves which are fairly well
separated in the Mandelstam plane, we can rea-
sonably assert that at least the correlations be-
tween amplitudes on different curves are weak.
This assertion is the basis of the iterative scheme
described in Sec. IV for handling these correla-
tions in an approximate way. In PWDR the cor-
relations between all the fitted amplitudes could
be large from the outset.

We also avoid the use of fixed-t dispersion re-
lations (FTDR). These have been used in photo-
production®®~%8 and in 7N partial-wave analy-
8is.3%" Compared with HDR, FTDR avoid having
a left-hand cut with a complicated, unknown dis-
continuity; instead, there is a right-hand cut
region where the amplitude can only be obtained
by extrapolation of the partial-wave expansion.
As discussed for photoproduction by Wessel®” and
Noelle,?® use of our expansion would allow this
extrapolation to be valid in principle, but the
convergence would be slow and the extrapolation
errors would be large. These problems with
FTDR have their most serious effect in the back-~

~ ward-scattering region, where the fixed-¢ lines

escape from the physical region. Since in this
region the data are known to vary rapidly (and
sometimes also erratically) as the energy and
angle are changed, accurate treatment of this
region is important. In the HDR method, the
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curves stay inside the physical region, so the
dispersion-relation input from nearby energies
is derived as directly as possible from experi-
mental information.

In the HDR fits, data from our energy-indepen-
dent analyses have been supplemented by results
from Bugg*' (10 momenta, at 0.427 GeV/c and
below) and from Ayed®? (we used the results from
35 momenta, at 0.490 GeV/c and above). As the
momentum range of our analysis has been pro-
gressively extended, the overlapping results from
these groups have been dropped. Errors on the
amplitudes from Ayed above our momenta were
multiplied by 4 (and by a larger factor on curves
1 and II) so that their results would give only a
very weak constraint on the extrapolation of our
results to higher energies. We also use thres-
hold values of F and —idF/dq obtained from Bugg
et al.*? scattering lengths.

A. Hyperbolic dispersion relations

The curves on which we consider dispersion
relations include five s-u-symmetric hyperbolas
which pass through the threshold point and are
completely defined by ¢,, the value of ¢ at their
vertex (s=u), and by x.,, the cosine of the asymp-
totic scattering angle. The values of these pa-
rameters are listed in Table II along with x,
=cosf,,, at B =1 GeV/c. Curvelis actually a
degenerate hyperbola, a pair of straight lines:

v 4AM(t - 13/, vES-—u. (3.1a)

The other curves are described by the general
formula

12 = @2 +0%0 /1, =02 (0 =0y, (3.1b)
where k
b=(1=x.)/(8+x,), yu=4Mu.

Along with these five curves, we include as a
“curve zero” the forward-scattering curve (f=0).
Since the C*)(0) amplitudes have been included
directly, only the B*) (0} amplitudes are treated
by the methods of this section.

On the five nonforward curves,; the amplitudes
¢ B V(s —u), and BY/(s —u) are analytic
functions of ¢ with branch points on the real axis.
The physical 7N threshold is at {=0 and the a7

TABLE II. Hyperbolas used for dispersion relations.

Curve 1 2 3 4 5
t u 24 2.5u% 3u’ 48
X oo 0.857 0.4 —0.1 ~0.7 -1.0

x(1 GeV/c) 0.814 0.263 -—0.231 —0.687 1.0

20

threshold is at {,,=4u4% On curve I, the second
intersection with the 7N threshold occurs at £,

.= 8Mu3/(4M ~ |1); on the other curves it is more

distant than ¢,,. There are no kinematical singu-
larities associated with the vertices of the hyper-
bolas because we consider even functions of

(s =u). For

0<i<i,=minlt;q, ton),

curve I intersects the nucleon pole twice, the
other curves intersect it once (for s>u). On the
other curves there is aiso a second intersection,
but with ¢>¢,,, except for curve V (the backward-
scattering curve), on which the second inter-
section is at t=«. The amplitudes are thus all
analytic in the cut { plane, with a cut along the
physical region ¢ < 0, a second unphysical cut for
t=1,, and either one or two poles for 0<{<#,.

.Each of the 20 nonforward amplitudes F(¢) is
represented in the form

F@)=fot) +Zaha(t), (3.2)

where f(i) is a “Born term” which includes nu-
cleon and delta [i.e., A(1230 MeV)] pole terms
as well as the leading 1N threshold singularity.
The expansion functions #,(f) are generated from
the kernel function H (¢,¢') associated with a Hil-
bert space of analytic functions, and the coef-

ficients a, are determined by minimizing the sum

of x# and the norm of the expansion as described
in Appendix B. The construction of f, and H is
outlined in the following subsections; the same
construction method, except for minor differ-
ences, was used by Chao ef al.%°

Although each of the amplitudes is considered
as a function of {, for the development of con-
venient representations for f, and H we first
define auxiliary functions of ¢ which approximate
the Mandelstam variables. We define a function
3(t) which resembles s(f) in the s-channel physical
region but in which the kinematical singularity is
pushed to £>1,:

() =[5 +lag ~b )P rey, (3.3)

where ag, by, and ¢, are constants on a given
hyperbola chosen so that 3(£)= s(f) in our energy
region. For constructing the Regge factors for
t-channel exchange terms, we introduce

)y =tfld-21), (3.4)

where f(z) is defined in Eq. (2.4). Ford(t) we use
a rather complicated expression to match well to
u(t) on the backward curves and in addition to ar-
range that # will approach a constant for large (.
With @ =a, - b,t, we have

@t )=ug+ @ —uy)flc, ~d, @), (3.5)
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[ A large number of adjustable constants were used
because it was convenient to build in the desirable
properties sequentially, not because they were all
needed to obtain a sufficiently good match to u(¢).]
On curve 0 (forward scattering) there is no un-
physical region, so the treatment can be simpli-
fied. We use the variable T =16 M3u? (s —u)2
The two amplitudes F (f) [either B or B*/ (s —u)]
are represented in the same general form of
Eq. (3.2), but with some minor differences in
the construction of the functions f,(f) and H(F,7’).
The F(f) on curve 0 have a physical cut for 7< 0,
but no right-hand cut. Thus, we do not use the
functions §, {, and @ in the forward direction.

B. Construction of the Born term

The nucleon contribution to f, has the general
form N(t) R(¢) + corrections. Here N(t) is the
elementary pole contribution with an added con-
stant to match a form appropriate to axial-vector
coupling at the threshold ¢ =0:

CN(0,B™))=—4Mg?/[ p(dM? - p?),

N(0,B"))==uN(0,B")/2M,
, (3.6)
N(0,C¢*)=pN(0,B™)/4M?2,

N(0,C¢7?)=pN(0,B¢™) .

On the five nonforward curves, the factor R(¢) is
a Regge factor which has the general form given
in Table I, with trajectory and residue functions
constructed using §(¢) and @(¢); it is normalized
to unity at the intersection of the curve with the
locus of the nucleon pole which occurs at the
smaller value of {. The signature factor is modi-
fied so that it will be real analytic and so that the
leading S-wave threshold imaginary part will not
be present:

£(t)=1+cos@m—i W3/ %sind 7 , (3.7

where & = a(@) and

W=[3(t) -3(0)]/[3(t)+30)]. (3.8)

The corrections are added terms dropping faster
than §* which compensate for the fact that R(¢)
is not constant for ¢ > 0. We construct these
correction terms so that on curves I and II the
correct residue will also be obtained at the sec-
ond intersection of these curves with the nucleon
pole locus, and so that the threshold values given
by Eq. (3.6) will be reproduced exactly. On curve
I we also match this threshold value at ¢ =¢,.

The delta contribution to f (¢) has a Breit-Wig-

ner resonance form written in terms of 5(¢), which
has P-wave threshold behavior and a pole corre-
sponding to s=(1.21-0.50{)> GeV? and the partial-
wave residue (0.035-~0.038;) GeV. Also, the re-
spective values for B*? and B~ of 0 and 200
GeV™? were matched at =0 on all curves, and at

t =t,on curve I, These parameters, along with
the partial-wave residue, were chosen to give a
good fit to the Bugg amplitudes.*’ The entire con-
tribution falls as §7° at high energies. ‘

The leading nN -threshold cusp term [ propor-
tional to (t —¢,)'/2, where ¢, is the value of ¢ at
which the hyperbola crosses the nN threshold] is
also included in f,. This term has a coefficient
whose modulus is determined from the 7n-produc-
tion cross-section slope measurement of Binnie
et al.*® and whose phase has been determined by
Bhandari and Chao.?® The cusp term is made to
vanish at the 7N threshold so it will not contribute
strongly to S-wave scattering near threshold, and
the term is made manifestly real analytic by in-
clusion of an extra nN threshold factor in the im-
aginary part, as in Eq. (3.7) for the nucleon
signature factor £. The contribution of the nN
term is made to fall off as $™* at high energies.
This term is not significant in the HDR fits, ex-
cept for C'~) within about 100 MeV/c of the nN
threshold, and for C**’ over a somewhat smaller
range. '

Since the forward amplitudes decrease weakly
as s increases, we use the simple nucleon pole
without an additional damping factor. Then N(T)
automatically satisfies Eq. (3.6) and drops off
as s”! for B and as s™2 for B, The A-pole
and 1N -threshold terms are similar to those used
for the nonforward amplitudes except that weaker
damping factors are used; the asymptotic form is
given the same power of s as the nucleon pole.

To provide damping, the factors must have a cut,
and since there is no unphysical cut, they must

be complex on the physical cut. We use an inverse
power of :

w=1-i(-F/10)1/2

and subtract a compensating term so that the
threshold behavior of B‘*) will correspond to P
waves.

C. Construction of the kernel function

The expansion term in the expression (3.2) for
F(t) is assumed to lie in a certain Hilbert space
of analytic functions. This function space is de-
fined, first, by the domain in which the functions
are required to be analytic, and second, by the
norm in the space, which depends on how large
the functions are within the domain and on its
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boundary. The choice of Hilbert space defines
a natural sequence of expansion functions and also
determines the way the expansion is to be trunca-
ted, as in our use of the truncation function, Eq.
(2.46), for the energy-independent fitting. A Hil-
bert space of analytic functions is also defined un-
iquely by the reproducing kernel function. When
the data are related linearly to the fitting function
it is easy to exploit the power and flexibility of
the kernel function method®°*** (see Appendix B).
This is the situation for the HDR data.

The kernel used in fitting the nonforward am-
‘plitudes is written in the form

H(t,t')=[}H1(t,t’)+H2(t,t’)][Z G; (t)G; (t’)*] )
(3.9)

where the individual terms are chosen to provide
various features which are desirable on empirical
or theoretical grounds. As a technical aid in con-
structing the term H,(t,¢’), we map the cut phy-
sical sheet (including part of the ¢ > ¢, cut) as well
as a part of the second sheet (up to the curve
drawn in Fig. 1) onto the interior of a strip. The
second-sheet region is chosen so that it contains
the A pole but no poles from other known reso-
nances., Inclusion of this region implies neglect
of the singularities associated with physical pro-
duction thresholds (except for nN), which is justi-
fied for the present work because these effects
are weakly energy dependent and small in compar-
ison with uncertainties in the input data. The use
of a kernel associated with a strip is based on the

t plane
°r3 p

\
~1 Gev2 e 0/]au?

1
3

FIG. 1. Conformal mapping for curve 3 used in de-
fining Hy(¢,¢’). The curve in the ¢ plane is on the sec-
ond sheet. This curve is mapped onto the real axis in
the w plane. The curve in the w plane is the locus of the
physical region for #N scattering, #<0. The location of
the poles for several prominent resonances is shown on
both planes. The notation used is the following: P
=P33 (1.23 GeV), D=D;3 (1.51 GeV), F1=Fy; (1.69 GeV),
F3=Fg3;(1.95 GeV).

assumption that as s increases, similar intervals
of Ins correspond to a similar amount of varia-
tion in F.,** The second term H,(¢,t’) is added in
order to account in a simple way for the cut ¢ >¢,.
Finally, the modulating factors G, (¢) are chosen
to accommodate significant variations inthe scale
of the various amplitudes on the different curves
as ¢ is varied.

The construction of the strip mapping is obtained
in several stages. First, we introduce a variable
o(t) which varies approximately like s on the
curves, but which has a simpler dependence on ¢:

o(t)=at + B (at +so)1/2—sol/2], (3.10)

where s,=(M+p)? is the threshold value of s (used
here to set a scale for the distance of the artificial
singularity introduced) and where a =~ 2/(1 ~x.,)
and g (see Table III) are chosen s¢ that on the
curves

do

do _do
ds

=— =1,
t=0 4S

t==c

Next, the right—hand'cut in the o plane is opened
up with a square-root mapping, and the further
transformations

z= e‘“y/z{(o'l/2+%iM)1'7

+[(01/2+ip)2-—00]“"7’/2} ,

(3.11)
t=alzg -ic)*+b

are applied. We use y=0,05; this corresponds to
requiring resonance poles to satisfy asymptotically
|Ims| = 0.05 Res, but this relation applies only
for Res far beyond the region covered in our analy-
sis (see Fig. 1). The parameter g, governs the
value of Res at which the second-sheet region is
narrowest; with o,=0.9M? for curve I and o,=M *
for the others, this occurs for Res=~3M? on all
curves. The parameter p is taken to be M/2.

The other curve-dependent parameters are listed
in Table III. The value of ¢ was determined by re-
quiring the point

TABLE III, Mapping parameters for Egs. (3.10) and
(3.11).

Curve B a b c
0 0.161 0.036 2.07
1 0 0.214 0.006 1.94
2 0.56 0.211 0.021 1.93
3 1.11 0.208 0.024 1.91
4 1.53 0.207 0.025 1.90
5 1.42 0.207 0.023 1.91
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s=s, =(2.75-0,15¢) GeV?

to map onto the real { axis, b was adjusted so that
the second-sheet nucleon pole would be located at
a positive value of £, and a was chosen so that

0= —5, would map into {=-1,

The location of the point s, was based on an esti-
mate of the position, obtained after the first round
of energy-independent fitting and HDR smoothing,
of the resonance pole likely to be nearest the real
axis. The second D,, resonance was used for this
estimate; it was known to be the most critical, but
its width was not known very well. However, a
small mistake in the value of Ims, is not as ser-
ious as it might seem at first. In fact, the first
round of HDR fits employed different mapping
parameters from those quoted here, so that the
mapping brought the D;, well into the upper half
¢ plane. Since the HDR results are used indirectly
and our studies of partial-wave amplitudes are
based on the results of refitting to observables,
as described later, any bias against narrow res-
onances produced by oversmoothing is reduced.
As a result, we were not prevented from finding
a resonance that was narrower than expected.

The mapping onto a strip of width 7 is given by

w=21In[ £2/2+ (1+£ )27

(see Fig. 1). In the strip we use the elementary
kernel function**
i

Ho(u),w')=~‘—‘r('———/;‘)‘

sinhz (w —w (3.13)

modified as follows:

Hw,w')=Hw,w') -(1-A)K,w)K, ' )*/K, ,

(3.14)
where
3 *
Kl(w')z(ﬂfﬂu_) ) ,
dw w=wg

(3.15)

K,= K, (w) ,

m w=wo

and w,=w(t =0), This modification reduces the
threshold derivatives of H by a factor A, and com-
pensates for the fact that dw/dq is rather large at
threshold. We use A =0.3 for C and A=0.05 for
B; the extra reduction for B is introduced because
the scale for d.B/dq is very small in comparison
to the scale for B near threshold. (Only S waves
contribute to the derivative, while P waves con-
tribute to the threshold value of B with large co-
efficients.)

The cut ¢ > ¢, is generated by a kernel function

(3.12)

which corresponds to square-root singularities
on a unit circle*:

3 —vv'*

Hw,v')=vv'*+3(1 —vv'*)%n T

. (3.16)

To make the nearby part of the cut somewhat
weaker than the more distant part (which includes
the p and the reflected A), we add two terms

Hy(t,t')=AlHw,,v)+H,,vy)], (8.17)
where
__(t __t)l/Z__M
v )=y (3.18)

and ¢, =t,, t; =4t,. The relative scales of H, and
H, are determined by A,; we take A,=4 so that
H, and H, give similar contributions for 0< ¢ <¢,.

We use three modulating factors G; (¢) rather
than a single one in order to have greater flexibil-
ity in accommodating the quite different variation
with energy associated respectively with ¢t~ and
u-channel Regge exchanges and with more central
effects such as given by parton interchange. These
three functions are nonvanishing real-analytic
functions of { with branch cuts for ¢t >¢,. The
forward term G, (t) is taken to be a Regge-type
function of { and § which matches the scale (but
not oscillations or phase variations) of the Pom-
eron term (for B* and C‘*’) or the p-exchange
term (for B2 and C*™?) in the fit of Alcock et al.*®
The backward term G,(¢) is a Regge-type function
of % and § which matches the scale of A exchange
in the same fit. Finally, G,(¢) is a function of §
which drops off as §™* for large S. For the cros-
sing-odd functions C¢™) and B‘*’, an extra factor
(s —u)/3(t) is included in all three modulating
functions.

The kernel for the forward amplitudes is taken
to have the form

HE,T')=H,ET)GE)GET")* . (3.19)
The term H, is omitted because there is no cut
for 7> 0. To construct H, we again use Egs.
(3.13)—=(3.15); the mapping to the strip is obtained
by use of Eqs. (3.11) and (3.12) with o= —-%/(8 M)
and with the parameters o,=M?, p=M, and y
=0.025,

Since the forward amplitudes do not decrease
rapidly at high energies, a strong damping factor
is not required. For B‘~’, we take, simply, G=1.
For B'*?, to compensate the symmetry factor
(s —u), we use

G@)=3(s —u)(y + 2712 /(y + T2/ ?)? (3.20)
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with ¥ =12 Mu. Note that this function is complex
in the physical region 7 < 0, It approaches a con-
stant at high energies.

D. Resolution of discrete ambiguities

To resolve the discrete ambiguity at each ener-
gy, we must choose the correct sequence of fit
regions at successive energies—the correct
“path.” We do this partly by eye, and partly by
an automated comparison with a previous set of
HDR fits.

For each of the amplitudes F(¢), we drop the
. input data at a set of n(z=1,...,5) contiguous
momenta, and obtain, from the remaining input
data to the HDR fit, predictions for F at these
momenta, These predictions are then compared
with the single-energy fits, as described below.
The predictions for each amplitude are independ-
ent, but for a given amplitude the predictions at
nearby momenta are strongly correlated. The
correlation distance (in terms of s) is about twice
the distance to the curve in Fig. 1 from the real
axis, which corresponds to a range of about 3—-4
neighboring momenta,

For each initial momentum ¢ and n< 5 we con-,
sider sequences S; ,= (K;,...,K;,,-,), where
K, denotes the Kth fit region found at the jth mo-
mentum. We then compute x*(S;, ,) for agreement
of the sequence of fits with the predictions. This
x” takes into account, for each kK, the correla-
tions between different amplitudes on the same
curve, and for each amplitude, the correlations
between the predictions at different momenta.

To save computer time, if n> 2 we do not exam-
ine all possible sequences S; ,, we consider only
those sequences (K,,...,K;,,.,) in which the
subsequence (K;,...,K;,,.,) is among the better
S;, n-1 and the subsequence (K; ,,,...,K;,,_,) is
among the better S;,, ,_, found in previous cal-
culations for sets of n —1 contiguous momenta.

In general, we limit the S;, ,., to about 20 having
the lowest values of 7, but also require that their
x® not differ from the best value by more than
about 500 [ the expected value of x*(S;, ,) is 44n].
To guard against the possibility that the results
might be distorted by a poor estimate of the co-
variance, we also make calculations of x? in which
the fit covariances and prediction covariances are
not weighted equally.

Longer-range correlations from the HDR fits
are checked by making an initial selection of a
path through fit regions at all energies, and using
these as data for new HDR fits from which predic-
tions are derived. The final path is one which is
stable as this procedure is repeated.

The selection of the best path was most difficult

at the earliest stage of our analysis, when we used
energy-independent fits made without input con-
straints from HDR, because then there were many
diffuse fit regions at each energy. Using contin-
uity and using comparison with HDR fits to the am-
plitudes of Ayed as a weak constraint, two quite
distinct plausible paths were chosen in the region
0.82< P, < 1.437 GeV/c. HDR fits to both of these
paths gave predictions which led, after a few
rounds of reselection and fitting, to a unique path
which was different from both initial guesses.

Results from the alternate-path-comparison
program are usually unambiguous-—for most mo-
menta (j), the best S, » for various ¢ and n us-
ually include consistently one particular fit region
K;. The K; selected in this way have been, at
almost all momenta, either the fit which gave the
lowest x® in the energy-independent fitting or else
the second lowest. If the alternate path compari-
son was ambiguous, which in practice meant that
X*(S;, ») calculated with two different K; were
nearly equal, we examined the behavior of partial
waves with prominent, noncontroversial struc-
ture. In almost all cases of ambiguity a satisfac-
tory resolution was to combine the two fit regions
into one larger one; our general approach, in
cases of difficulty, has been to enlarge the errors,
so that HDR fits at neighboring momenta would
not be strongly biased. Most ambiguities disap-
peared after the cycle of HDR fitting-path selec-
ticn was repeated a few times.

At a few momenta HDR fitting alone was not
enough to resolve the situation. At these mo-
menta new energy-independent fits, using pre-
dictions from the HDR as additional input data,
gave results which were more consistent with the
behavior at neighboring momenta.

E. HDR fits and continuum ambiguities

As examples of HDR fits, we show in Fig. 2
the C**) and B‘*) amplitudes on a typical interior
curve, number III. The B‘*) amplitudes on the
forward curve are shown in Fig. 3. We also show,
in Fig. 4, the C(r*p) amplitudes on the back-
ward curve. The moduli of these amplitudes are
determined by the cross sections for backward
elastic scattering of n* and 7~, while the phases
are determined by our fitting procedure. A rela-
tion among the amplitudes is also obtained from
the cross section for backward charge-exchange
scattering, However, the 180° cross sections for
elastic and charge-exchange scattering usually
involve a significant extrapolation from angles at
which measurements were made. The HDR fits
on the backward curve therefore provide a check
on the extrapolated 180° cross sections derived
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FIG. 2. The C*’ and B‘*’ amplitudes on curve 3. The energy scale is labeled in MeV, but the scales for C and B
are in GeV~! and GeV~?, respectively (see Appendix A). “The data points for real and imaginary parts are the values
obtained from the single-energy fits. The errors shown are the diagonal errors after compensation for the effect of

HDR constraints [Eqs. (4.8)]. However,

at several energies where this procedure led to errors which were large and

highly correlated to an unusual degree, we have plotted instead the uncompensated error multiplied by two. The fits
shown take into account the effects of error correlations among the amplitudes. On the projections of the fits onto the
Argand diagram, the energy dependence is indicated by arrows drawn at 100 MeV intervals, with the length of the

arrow proportional to the rate of change.

from the fitted partial~wave expansion in energy-
independent analyses, as well as on the fitted
phases. This point is discussed further in Sec. V.
To a large extent, fits such as those shown in
Figs. 2—-4 are determined by simple continuity
and smoothness requirements on the real and im-

aginary parts separately, but the cut-plane an-
alyticity also allows both parts to change rapidly
as the energy is increased, if the changes are
related. Sharp turns to the left (anticlockwise
loops) are tolerated, while turns to the right are
inhibited. These restrictions on the energy de-
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FIG. 3. The B *) amplitudes in the forward direction. (See also the caption for Fig. 2.)

pendence of amplitudes serve as additional -infor-
mation, provided by the dispersion relations,
which constrain the continuum ambiguities.

At interior scattering angles, the relations be-
tween the amplitudes, the observables, and the
continuum ambiguities are more complicated than
they are at 180°. However, it is possible to un-
derstand in a general way how the HDR constrain
the ambiguities without examining the explicit re-
lations.
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Continuum ambiguities show up as large, highly
correlated uncertainties in the amplitudes, ob-
tained in the energy-independent fitting, which the
HDR use as input data. We treat the correlations
between amplitudes on the same curve by an itera-
tive scheme described in Sec. IV. Correlations
between amplitudes on different curves are ig-
nored; this is equivalent to giving the continuum
ambiguities an artificially enlarged scope, andis
reasonable if A6, the angular separation between
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FIG. 4. . The C(r*p) amplitudes for backward scattering. The square moduli of these amplitudes are proportional to

the backward elastic DCS. (See also the caption for Fig. 2.)
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curves, satisfies A6= n/J, where J is the highest
angular momentum of a partial wave with a signi-
ficant uncertainty,

A quantitative measure of the degree of correla-
tion between the amplitudes on a given curve can
be obtained from the eigenvalues of the 8X8 cor-
relation matrix., Typically, the largest eigenvalue
is about 20 times the smallest eigenvalue. The
large eigenvalues correspond to continuum am-
biguities, while the small eigenvalues correspond
to combinations of amplitudes which are directly
constrained by well-measured observables.

Our HDR fits to a given amplitude require about
5 as many independent coefficients a, as there
are data. On the average, therefore, the errors
are reduced by about 1/v'3 by fitting, and the HDR
predictions at a given momentum have errors
about 1/v2 times the errors on data at neighbor-
ing momenta.*® (At the higher momenta, these
predictions have greater relative uncertainties
than at lower momenta.) In the iterative fitting,
use of the predictions for three amplitudes also
reduces the errors on the fourth by a similar fac~
tor. Since we fit each amplitude separately, we
do not obtain correlated predictions for different
amplitudes. For each amplitude, we find that
predicted real and imaginary parts at the same
momentum generally have about the same error
‘and are weakly correlated. This is an indication
that each component depends, although in a some-
what complicated way, on both the real and im-
aginary parts at the other energies.

Since the prediction errors for real and imagi-
nary parts of a given amplitude are nearly equal
and uncorrelated and also somewhat smaller than
the input errors, the HDR predictions effectively
constrain the long axes of the error ellipses from
the energy-independent analyses, but not the short
axes. In other words, the HDR predictions have
more weight than the combination of other effects:
which limit continuum ambiguities in fitting at a
single energy, but less weight than the actual ex-
perimental data. This would be a basic require-
ment of any reasonable analysis procedure. Al-
though the HDR constraints were not, in general,
strong enough to pull the single-energy fits away
from the data, the HDR predictions have been
useful as an indication of possible systematic er-
rors in some of the data.

IV. ITERATIVE FITTING PROCEDURE

We use an iterative procedure to approximate
the effect of simultaneously fitting to all data by
amplitudes which incorporate Mandelstam analy-
ticity. The main part of the iteration cycles be-
tween single-energy fits (Sec. II) and single-curve

fits (Sec. III). However, even on a single curve it
is not practical to fit all amplitudes simultaneous~
ly, so we take the correlations between the am-
plitudes into account by another iteration method,
in which each amplitude is fitted separately as
described in Sec. IIl,

A. Amplitude correlations in HDR

The correlations between the amplitudes on a
given curve are treated approximately. The data
for a given amplitude are adjusted to take into
account the results of HDR fits to the other am-
plitudes. This adjustment is made separately at
each momentum.

For any given curve and momentum, let X de-
note the vector of amplitudes obtained from the
single-energy fits (X has K real components) and
let W be their K X K weight matrix (inverse co-
variance matrix). Here K =8 for the nonforward
curves, but for the forward B amplitudes K=4.
Also, let P denote the vector of predicted ampli-
tudes and V the corresponding weight matrix ob-
tained by using the data for the curve at all other
momenta in the HDR. Since the HDR treat each
amplitude separately, V has a block diagonal
form with 2X 2 blocks. The vector of fitted am-
plitudes F minimizes the quantity, written in
matrix notation,

2= (F=-X)"W(F -X)+(#~-P)'V(F~P). (4.1)

Considering any of the four complex amplitudes
C™) or B, we use the subscript a to denote the
corresponding 2-dimensional subspace, and use
the subscript & to denote the orthogonal (K - 2)~
dimensional subspace, Thus, X,, P,, and F, are
vectors with 2 components and refer to the given
amplitude, while X,, P,, and F, have K - 2 com-
ponents, comprising the other amplitudes. Like-
wise, W,, and V,, are 2X2 submatrices of W and
V, W, and V,, are (K —2)X(K —2) submatrices,
and W,, is a 2X (K —2) submatrix, etc. (V,, = 0).
Using this notation, we can write the equations
for minimization of (4.1) as

Wyo (Fo=X )+ Wy (Fy =X,) +V o (F, =P,)=0,
(4.2a)
Wy (Fy =X )+ W, (Fy =X, )+V,, (F, =P,)=0.
(4.2b)
The HDR fit to the amplitude ¢ is made inde-
pendently of the other amplitudes, and the infor-

mation from other momenta is incorporated intc
P, and V,,. Therefore, at the given momentum,

v F, minimizes a quantity
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X?;zz(Fa _Ya)TSaa(Fa —Ya)+(Fa —Pa)TVaa(Fa "'Pa)y

(4.3)

where S,, and ¥, are to be chosen so that (4.3)
will be consistent with (4.1). Apart from a con-
stant, x*, is the minimum of x* (4.1) with respect
to F,. Thus, solving (4.2b) for F,, we obtain

Fy =X, = =Ry, [ W (F, ~X,)+V,, X, —Pb)]’
(4.4)

where

Ryp = (Wop + V)" (4.5)

Substitution into (4.2a) and comparison with Eq.
(4.3) gives the result

S =W _WabRbbWba?

aa

(4.8)
Y, =X, "S';}; Way By Vi (P ~-X,) .

To start the iteration, we take V=0; then Y,
=X, and S;} is the 2X 2 covariance matrix for X .
Using thése input data, we obtain from the HDR
values for P and V,; these, when used in Eqgs.
(4.5-6), give new values for Y and S, and so on.
We find that three or four steps of this iteration,
when safeguarded against oscillation, are adequate
for convergence. .

In cases where there is a discrepancy between the
data and the HDR predictions, the iteration is mod-
ified by an error-stretching prescription. For a
particular energy and for the amplitude a, the
2% 2 weight matrix V,, for the prediction is re-
duced when the combined x? for (fit) - (prediction)
at the two neighboring momenta exceeds a critical
value 2. These values of y* are obtained from
Eq. (4.3), minimized with respect to F,; the re-
duction is by a factor 7, =x,2/x?, and we use y,°
=8. Then for a given energy and curve, if x*>K
[where 2 is given by Eq. (4.1), minimized with
respect to F] the KX K matrix V is multiplied by
r=(K/x*'/? and also the four 2X2 matrices S,
as given by Eq. (4.6) are multiplied by 7. Thus,
the factor 7 is used both to reduce the effect of
correlations and also to enlarge the errors direct-
ly. Note that after the iteration converges, 7
~(K/X?/3, where 3?2 is the value that would have
been obtained without any error stretching.

B. Dispersion-relation input to single-energy fits

In cycling between HDR fits and single-energy
fits, the principle is similar to the one used in
Eqgs. (4.1)-(4.6). However, a modification is made
to compensate for the fact that the x® surface for
the energy-independent fitting is, in general, very

poorly approximated by a quadratic function. In-

stead of the “predicted amplitudes” obtained by

removing the entire effect-of the input data, we use

the “fitted amplitudes,” because these provide

more stability against the effect of statistically

insignificant local irregularities in the x* surface.
The term D in Eq. (2.45) is given by

D=} (5, =PV, (5, -P,), (4.7)

where the sum extends over all 22 (complex) HDR
amplitudes, and where the &, are the fitted am-
plitudes evaluated on the curves by summing the
partial-wave expansion without electromagnetic
corrections. As remarked above, we take 13,,
=F,, where F, is the HDR fitted amplitude, rather
than P, =P,. To ensure that the predictions for
observables would be given a small weight in com~
parison with experimental data on the observ-
ables, and also to compensate for the approximate
treatment of correlations in the dispersion-rela-
tion fits, the weight of the prediction is reduced by
a factor: V, =aV,, (in general, we use a=0.3~
0.5).

Single-energy fits, with the term D included in
X% were made as described in Sec. II. Searches
for minima of X?were started from positions of
minima found previously, in which the term D
had been absent or had been obtained from earlier
estimates of P and V. Also, new randomly chosen
points were chosen to replace earlier fits at which
the starting values of D were more than 10 times
the expected value. Searches which started from
recycled fits usually terminated quickly, with the
presence of the new information being accommo-
dated by a minor adjustment of the partial-wave
amplitudes. In addition, however, many fit re-
gions would disappear completely when HDR con~
straints were included in X2

The new single-energy fits, incorporating the
effects of the constraints, are sorted into fit re-
gions by the procedure described in Sec. IIE.
Then the method of Sec, IIID is used to select the
correct path through the fit regions at successive
energies. The set of best fits (lowest X2value),
one from each of these selected regions, consti-
tutes our results—our values for the partial-wave
amplitudes. The errors on these amplitudes are
given by the size of the fit region, estimated by
the covariance matrix U as determined by the
method of Sec. IIE,

In the next cycle of HDR fitting we use as input
amplitudes in Eq. (4.1) the best-fit quantities:

X =g. This ensures that X corresponds to an ade-
quate fit to the experimental data; because of the
irregular nature of the x* surface, this might not
otherwise be true. Although the biases cancel on
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the average when best-fit amplitudes are used as
input to the energy-independent and dispersion-re-
lation fitting, the final results at nearby energies
may be somewhat more correlated then they would
be if another prescription were adopted. The am-
plitudes & have a covariance matrix U derived
from the partial-wave covariance matrix U. The
weight matrix W used in Eq. (4.1) is corrected for
the effect of the input HDR information as follows

W=W,-V/ox* , (4.8)

where W, is the inverse of the K XK submatrix of
U for the amplitudes on a given curve, and ox? is
the scale factor defined in Sec. IIE.

There is no guarantee that X? - D will have a
positive-definite second-derivative matrix at the
point where X? is minimum; hence W is sometimes
not positive definite. This could conceivably cause
difficulties in Eqs. (4.1)—(4.6), but since the in-
stability is clearly avery local property (X? - D would
certainly rise again after moving some distance
in the unstable direction) it is physically reason-
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able to impose a positivity constraint on W. Our
constraint is that the smallest eigenvalue of W
should be at least as large as 0,001 times the lar-
gest eigenvalue (the eigenvectors are not altered).
The computation of eigenvalues is made using the
diagonal errors of the components of & to define
the metric.

V. RESULTS AND CONCLUSIONS

In this section we discuss the quality of our
single-energy fits and show some sample com-
parisons with data. In the following paper® we
discuss the partial-wave amplitudes and the deter-~
mination of resonance parameters. Graphical dis~
play of the individual partial-wave amplitudes is
deferred to that paper, where the amplitudes are
shown along with the fits used for resonance
parameter extraction, Our partial-wave ampli-
tudes for J< 39/2, along with the error matrices,
are available to interested users on magnetic
tape; inquiries should be directed to R.L.K. In-
quiries about use of our computer programs may
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FIG. 5. The upper plots show the values of x2 per datum for our best fits to amalgamated elastic (g) and charge-
exchange (X) cross-section and polarization data at each of our 35 momenta. The lower plots show the overall value
of x2 per datum and the effective number of parameters at each of the momenta.
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be directed to R.L.K. or R.E.C.*"

The quality of our single-energy fits to amalga-
mated data is illustrated in Fig. 5. The upper
plots show that the fits to elastic data are gen-
erally satisfactory, but that the charge-exchange

_data are difficult to fit at many of the momen-
ta. This is in spite of the fact that the errors
of the charge-exchange data are often signifi-
cantly enlarged in the amalgamation procedure.
The effects of the “pull” of the charge-ex-
change data on the elastic fits are indicated in
‘Table IV. The problems with charge exchange
arise primarily from the data of Brown ef al.'** 15
and are similar to the difficulties experienced by
Pietarinen.*® If the data of Brown et al. are cor-
rect, one is led to the conclusion that there is
significant structure in the charge-exchange am-
plitudes which is absent from the elastic ampli-
tudes. This might be due to a breakdown of iso-
spin conservation, but the data of Brown ef al.

are also difficult to fit in the data~amalgamation
phase of our analysis where no isospin constraints
are present. Another possibility is that the errors
of the data are underestimated due to the presence
of unknown experimental biases. We have looked
for specific problem regions in the data that could
be blamed on unkncwn biases, and have been unable
to find anything very distinctive. It appears that if
the difficulties are due to biases they are of a
rather erratic character and result in an overall
level of scatter in the data which is larger than
would be expected on the basis of the quoted er-
rors.

The overall values of x® per datum shown in
Fig. 5 are not much larger than those for the
elastic data alone, because theré are generally
many more elastic data than charge-exchange
data. Overall values of x® per degree of freedom
are typically about 20% larger than x® per datum,
The effective number of free parameters v, de-
fined by Eq. (2.51), is plotted vs momentum in Fig.

5, and increases from approximately 25 to 45
over the range studied. As discussed in Sec. IID,
this variation in v is obtained with fixed scale

parameters in the TF.

Figures 6—9 show our best fits to all the amal-
gamated data at 820, 1030, 1437, and 1995 MeV/c.
We have chosen to show four data sets which in-
clude both charge-exchange cross-section and
polarization data, so the quality of the fits in these
figures is somewhat worse than average. The
overall value of x? per datum is 2.0 at 820 MeV/c,
which is the worst of any of our 35 data sets,
while at 1030, 1437, and 1995 MeV/c the values
are 1.4, 1.7, and 1.3, respectively. The relative
precision of the six different types of data shown
in the figures is typical of the whole resonance
region,

An important aspect of our use of amalgamated
data is the allowance for highly correlated sta-
tistical fluctuations in the data. In the course of
a single-energy fit one obtains fitted amplitudes
for these fluctuations which can be used to cor-
rect the data for their effects, in a manner sim-
ilar to the renormalization of experimental data
using a fitted scale factor. This procedure is
described in Sec. IX of the preceding paper?
where the correction is defined in Eq. (9.34).

The data shown in Figs. 69 have been corrected
in this way, and the x? contributions arising from
the constraints on the correction amplitudes were
included in the values of x? per datum discussed
above. The correction amplitudes are often quite
significant, indicating the importance of allowing
for this kind of error. In the case of quantitatively
poor fits (y* per datum % 1.5) it is a fairly common
occurrence for a large fraction of the y® excess

to arise from the presence of a large amplitude
collective fluctuation. Such fits would, of course,
be still worse if one did not allow for the possi-
bility of collective fluctuations.

An interesting example of this kind of effect
occurs in the fit to charge-~exchange polarization
data at 1030 MeV/c shown in Fig. 7. The amal-
gamated charge-exchange polarization data at this
momentum comes from measurements of Brown
et al.*® at 1027 MeV/c and Shannon et al.'” at
1030 MeV/c. This is the one momentum where a

TABLE IV. X2 per datum for each of the six data types summed over subsets of the 35 data
sets analyzed. The top line includes all the data sets. The second line includes only the 20
data sets which contained data on both charge-exchange cross sections and polarizations. The
bottom line includes only the 5 data sets which contained no data on either charge-exchange

cross sections or pelarizations.

Subset 7*p DCS 7*p POL m p DCS 7 p POL CEX DCS CEX POL
All 1.08 1.12 1.08 1.25 1.65 2.09
CEX 1.14 1.14 1.14 1.30 1.75 2.09
CEX 0.88 1.03 0.93 0.94 oee tee
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FIG. 6.

clear systematic disagreement exists between
these two experiments. The disagreement is in
the angular range —0.2>cos6>~0.8, where Brown
el gl.obtain a positive polarization and Shannon
et al. obtain a negative polarization. As discussed
by Brown et al., alikely explanation for the dis-
crepancy is that this momentum was incorrectly
calibrated in one or both of the experiments. The
energy dependence of the polarization is such that
either adownward shift of the Brown et al. momentum
by 30 MeV/c or an upward shift of the Shannon

et al. momentum by 30 MeV/c would make the two
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Single-energy fit to amalgamated data at 820 MeV/c. DCS units are mb/sr.

data sets more compatible, Our amalgamation
program does in fact resolve the discrepancy
along these lines, producing amalgamated data
which lie between the two experiments in the con-
tested angular region, and obtaining recalibrated
momenta of 1010 MeV/c and 1050 MeV/c for
Brown et al. and Shannon et al., respectively.
However, the amalgamated data also have a cor-
related error structure which allows for a collect-
ive correction reflecting the sensitivity of the data
to the momentum calibrations. When these data
are fit simultaneously with other types of data at
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the same momentum, a large amplitude collective
shift develops which contributes 19 to x* and dis-
torts the data in the backward hemisphere so that
it becomes similar to the original data of Shannon
et al. This version of the data is shown in Fig. 7.
One must regard the details of this particular fit
with some caution because x* per datum for the
charge-exchange polarization is 1.9 and the var-
iance of the correction amplitude obtained by the
amalgamation program was evidently too small,
but it does illustrate rather clearly the importance
of allowing for collective effects.

In Ref. 3 our partial-wave amplitudes are com-
pared with results from other analyses. Here we
only comment on a few points pertaining to the in-
variant amplitudes and to observables. At 0.4
GeV/c, our amplitudes match smoothly to those
of Bugg.*! In our previous publications' some
differences with the results of Ayed®? were noted,
and these differences persist in the work reported
here. The differences at the higher energies have
become even more pronounced; there is a sharp
discontinuity (about 5 times our estimated error)
between the Ayed C amplitudes and oursat2 GeV/c,
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for cos6~0.8. We are in general agreement,

in this respect, with Hohler ef al.,*° who have
noted that the amplitudes of Ref. 32 are not con~
sistent with fixed-¢ dispersion relations.

Our amplitudes seem generally to be in qualita-
tive agreement with the Karlsruhe-Helsinki am-
plitudes.?® In the backward direction, however,
which Pietarinen has examined in detail and where
we are able to make an explicit comparison with
his results,*® there are some sizable differences
which appear to be related to different ways of
treating the data, In Fig. 10 we show our fitted

DCS at 180°, along with the DCS reconstructed
from Pietarinen’s backward C‘*’ amplitudes.
The fit shown in Fig. 4 has been used to smooth
and interpolate between our single-energy fits.
From a study of the HDR fits, we have indications
that for P,,, = 0.7 GeV/c some of our fitted 180°.
7*p and 7”p DCS may be too large, perhaps by as
much as 0.1 mb/sr.*® A discrepancy of this mag-
nitude is not inconsistent with the errors in the
data, at least if the effects of systematic er-
rors are taken into account. However, the dif-
ferences with Pietarinen at higher momenta are
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more sizable and also more serious.
The differences in the CEX DCS at P,,, ~1 GeV/c

appear to be related to the backward dip in the

DCS which can be seen in Fig, 7. These differ-

ences are therefore probably related to different

ways of extrapolating from interior angles to 180°.
The differences in the 7*p DCS appear to be

" related, in part, to selection of different data,

and in part, to a different treatment of the nor-
malization and momentum errors in the data
along with somewhat different methods of extra-

polation. Pietarinen seems to have relied primar-
ily on the 180° DCS of Rothschild et al.,*! and he
has not used the recent Bristol-Southampton-
Rutherford (BSR) data.® In forming the amalga-
mated data, we have found that the 7*p data of
Rothschild ef al. are not consistent with the BSR
data or with most other data near the backward
direction,® °' 52754 but can be made consistent if
an upward shift of several percent is allowed for
in both the 7" and 7~ beam momenta. As we dis-
cussed above in connection with CEX POL data at
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1030 MeV/c, such shifts can be accommodated
automatically by our fitting procedure, If a mo-
mentum shift is applied to the Pietarinen curve
and the result also renormalized upward by a few
percent, most of the disagreement disappears.

Throughout this energy region, the 7*p DCS near
180° shows a great deal of structure; this is illus-
trated in Figs. 8 and 9. Our use of the new BSR
data may contribute to the differences we have
found in this structure. Different methods of fit-
ting can also lead to different shapes for the fitted
structure, which can have a substantial effect on
the value obtained at 180°. The near-backward
region of 7*p and CEX scattering is sensitive to
the presence of the # -channel nucleon pole, which
we have included explicitly in our single-energy
fits. This is a possible reason why, in comparison
with Pietarinen, our extrapolations seem to be
more different for 7*p and CEX than for n°p.

Pietarinen’s 180° amplitudes are also quite dif-
ferent from ours in phase. Given the differences
shown in Fig. 10, this is to be expected, as we
have both used dispersion relations which have the
effect of relating moduli and phases.

The most significant conclusion we are able to
draw from the quality of our single-energy fits is
that it is quantitatively difficult to fit the charge-

exchange cross-section and polarization data of
Brown et al.; and that it is difficult to reconcile
these data with existing elastic-scattering data.
Although these data represent a tremendous ad-
vance in our knowledge of the charge-exchange
process, we believe that more data of comparable
precision are needed to clarify the present situa-
tion. Concerning elastic measurements, the weak-
est area in the existing data is 77p polarization
which has not yet been subjected to an exhaustive
modern measurement of the sort now available for
m*p cross sections and 7*p polarization. Finally,
one should not lose sight of the continuing need

for spin-rotation parameter measurements® which
have not yet been attempted anywhere in the res-
onance region.
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APPENDIX A: NOTATION AND CONVENTIONS

Except where otherwise specified, we use units
in which ZZ=c =1 and express all quantities in GeV
units. The nucleon mass is denoted by M and the
pion mass by u.

The general form of the 7N scattering amplitude
in terms of the invariant amplitudes A and B is®®

M=, (p,)(A+By Quyp,), (A1)

where @ = é(q1 +¢,) and p ,p,,4,,q, are the initial
and final nucleon and pion four-momenta. We also
use in this paper the invariant amplitude C (some-
times called A'):

M(s-u)p (A2)

C=A+m .

For the moment, we refer only to scattering in a
single elastic channel, or in a state of definite
s-channel isospin.

Evaluation of Eq. (Al) with Dirac spinors of de-
finite helicity yields the following helicity ampli-
tudes (we choose ¢ =0):
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M, = [A + (f—:-g‘;—ﬂj>3] cos(8/2),
(A3)

M ’_:[(s é;;l‘/nsl u2>A +(s mfjg MZ)B] sin(6/2).

These are related to the helicity amplitudes f,, of
Jacob and Wick® by

M
Jei=gays M

Equation (Al) may be reduced to two-component
form by expressing the Dirac spinors in terms of
rest-frame Pauli spinors X. In this paper we use
two sets of two-component amplitudes given by

Fri= XMf+i0 Ag)X;, (A5)
where 7= (d, X d,)/ |d, % d,|, and by
Fri= X+ G 2,5 2, )X - (AB)

The relations between the various sets of ampli-
tudes are

f..=fcos(6/2) - g sin(6/2)

= (f,+f,) cos(8/2), (A7)
f..=fsin(6/2) +g cos(6/2)

=(f,~f,) sin(6/2), (A8)
f=fi+f,cosb,
g=—f,sinf. (49)

Convenient expressions for observables in terms
of these amplitudes are

ImC(O) ImM (0°) 47

= 0 A10
Otot Do Pran 7 —Imf(0°), ( )
To- e 2= 1P+ L2 ]2, (A11)
Pfl—-:zrm(f,,ff_) 2 Im(fg*). (A12)

The partial-wave expansion of the helicity ampli-
tudes is®”

1
fu:";; (y+1 H d:-o’ (A13)
where
1
L= tfs), (A14)

and f;, is the partial-wave amplitude for scatter-
ing with total angular momentum J and parity
(=1)¥%, where L=J+3. The normalization of
frs is

exp2i0,;, —1
fs i,-L—%i—i—-' (A15)

(A4)

From Eqs. (A7) and (A8) and the relations

_cos(6/2)

, P
dJ J+§I (P.'.L/’z‘PJ-J/z)

Pyt Poiss
2cos(6/2)
(A16)
P, - P
, ____LL__..__.L_L.-;_
“PhasatPryye)= 2 sin(6/2)

a0 - sin(6/2)
BRI
one obtains

f‘_lz (J+1/2)(fJ-PJ-1/2 "f.nphl/z)a
17 (A17)
:sine

22 ol ys=FaF i)

1 ’ £ 'I‘
f1=—2 (f.r-P.hl/z-fhP-f-x/g),
77 (A18)

I
fz:;L (fJ,P:ux/z—f.r-P:r-l/z)'
7

The partial-wave projections corresponding to Eq.
(A13) are

*1
- j d(cosd)f,,d?,. (A19)
-1

From this follows

f“:% [1 d(coSO)f1P sy 2+ P re1y2) - (A20)

The relations between physical s-channel reac-
tion amplitudes and s-channel isospin amplitudes
for any of the amplitudes discussed above are

F(”'P"”*P):Fslw

F(rp-np)=3F,,+5F,,,, (A21)

Frp—-1n)=(V2/3)F,,,~F,,).
The relations between s-channel isospin ampli-
tudes and crossed-channel isospin amplitudes used
in this paper are all contained in Eqs. (2.6). In

the HDR fits we use s-u crossing-symmetric
amplitudes defined by

F(np ~m*p)=F W xFC),

F(rp—-n'n)==V2F®, (A22)
where F is now A, B, or C. These amplitudes
obey the crossing relations

A‘*’(s,u):iA(*’(u.,s), .

B®)(s,u)=%B%)(u,s), (A23)

C®s,u)=2C%u,s).

Finally, we give the complete expressions for

the nucleon-exchange amplitudes referred to in
Sec. III B before Egs. (3.6):
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w__8& g _
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where g%/4m=14.3.

APPENDIX B: FITS TO DATA GENERATED BY A
KERNEL FUNCTION

We summarize in this appendix a number of
formulas, mostly taken from previous work, 304458
which pertain to the applications of reproducing
kernel techniques to the fitting of experimental
data. The reproducing kernel H(¢,¢’) of a Hilbert
space A is a Hermitian kernel which belongs to A
when considered as a function of ¢ at fixed ¢’. With
respect to the inner product of the Hilbert space
A, the kernel function H possesses the reproducing
property

H(-,1),N=f1t), feA. (B1)

- For an arbitrary linear functional f; =1 f the as-
sociated function

CH,W=[LHC,H]*=HE, I} (B2)
generates the value f,: ‘
Hey =L f- (B3)

An example of H, is given by the function K (¢),
associated with the threshold derivative operator
d/dq, which has been used in Eq. (3.14).

The data correspond to real and imaginary parts
of invariant amplitudes F evaluated at real points
7 <0 on the lower side of the physical cut; we de-
note by 7* the corresponding point on the opposite
side of the cut., All of the functions fe A are real
analytic, i.e., they take on conjugate values at 7
and 7*, [The kernel H(¢,#') is a real-analytic
function of ¢ for real ¢#’; more generally, its
analytic continuation satisfies H(¢, ¢/)*=H (t*, #'*).]
The two functions

H, (&)=3[H@E, ) +H(E, )],

H ()= 5ilH(t, 7) ~ H (2, )] (B4)

are real-analytic functions which generate the real
and imaginary parts of a function f€ A at the point
7. We shall henceforth label by a single index a
the N data d,. This single index a is also used to
label the corresponding functions H,, (¢).

We choose the function f(¢), which is interpreted
as the “best fit in A” to the data, by minimizing
the quantity
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X2=x2+Alifl%, : (B5)
where
X :Zb Ay =)Wy = 13), (B6)

where the truncation function is proportional to the
norm

iA1= (f, 1) (B7)

and where X is a scale factor which we shall deter-
mine by a maximum-likelihood prescription. The
function f(#) which minimizes (B5) is necessarily

a sum of the form

f®)=)" H,(t)e,, (B8)

because any other function f (t) which took on the
same values at the data points (and hence led to
the same ¥*) would, as a consequence of Eq. (B3),
differ from f(f) as given by Eq. (B8) by a function
Af=f-f which was orthogonal to f. We would
therefore have ‘I[fllz>llf||2. By using (B8) and (B3),
we obtain

IlfIIZ:Z; SaHugs) (B9)
where
H,,,,:IaHb(t) (B10)

is a real symmetric matrix.

A standard technique of least squares involves
expanding in functions which are orthogonalized
with respect to the weights of the data. An espe-
cially convenient set of such orthogonal functions
is given by the linear combinations

Fo) =3 H,(Oyq (B11)

for which the values at the data points

Fou=2 Hopltng ' (B12)
D

satisfy the eigenvalue equation
EHabWchca :')/"‘F“‘ . (B13)
be

We normalize these functions so that
ZFaaWabee:(sag- (B14)
abd

Their norms are then given by

(Foy Fg)=(r*y 1044 . (B15)

In practical applications the numerical effort can
be reduced by noting that it is sufficient to calcu-
late a limited number of the eigenvectors F,, de-
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fined by Eq. (B13), and furthermore, it is really
more important in practice to satisfy the ortho-
gonality relation (B14) than it is to have precise
values for the eigenvalues y*.

The best-fit function is

f#)=3_C,F, @), (B16)

where, by substitution into Egs. (B5)-(B7) the C,
are required to minimize

X?=)" Dy =Co ) +2), Ca?/va (B17)
o L3
with
Dy =) d,WapF oy - (B18)
ab
This gives
Dyve
=T . B19
Ca X+ Vg (B19)

Another way to obtain Eq. (B19) is to minimize
the mean-square deviation from the true value

Fa=0_DoF,, : (B20)

at an arbitrary point. We consider the covariance
matrix

Eab :<(fa —fa)(fb —fb»

=§ FooF gDy = Co) Dy = Gy ) . (B21)

We require that the expansion coefficients C, de-
pend linearily on the data:

Ccv :Z Faa'Da'
T
D Too Dy +8,.), (B22)
g
where
(By8) =0, (B23)

The true expansion coefficients are of course un-
known, but we may assume that in some average

sense the D, are independent and that the individ-
ual norms also have the same scale:

UIDFoll»=x"",
<EaD5> = 50;5‘}’“ /)\ .

(If E is averaged over the data points, the as-
sumption that the D, are independent can be omit-
ted.) Substituting Eqs. (B22)-(B24) into Eq.

(B21) we obtain

(B24)

Eab:Z FioF b

xaB’
X [Py Tope
+ (Oqa = Taa)Oos = Coplva/A].
To minimize any diagonal value E,, we require
Tou =000/ M+v,), (B26)

which is equivalent to Eq. (B19).
Note that our formula for the covariance matrix

(B25)

E,, :Z FooFpava/M+74) (B27)

includes more than the effect of fluctuations in the
data; if we just included these fluctuations we
would have obtained [y,/(x+7,)]? as the coefficient
in (B27). The extra contributions represent an
estimate of the truncation error, thatis, an esti-
mate of the degree to which Eq. (B19) has reduced
the contribution of the true coefficients D, to the
expansion.

The scale factor A determines the effective
number v of terms used in fitting; this is, rough-
ly, the number of terms for which y, 2A. A more
precise estimate of v is given by the expected value
of X

voN - <X2>=N—<Z: (D, _ca)2>

=N =) (DN (A4 7g S (B28)
As in Egs. (B23)~(B24),
(D% =(Dy®) +{A% = (vq +1)/2 (B29)
and hence

v=y (1= (7] va/(A+7,) . (B30)

The value of the truncation function is obtained
by using Egs. (B15) and (B20):

@ =AY DAhye/ (%)% (B31)
[+]
Using also (B29), we obtain

(@) =) va/ (M +74)=7. (B32)

If the y, are ordered in a decreasing sequence,
then the terms in the sum (B32) will also decrease
steadily. Because of fluctuations around the
average, however, especially if the Born approxi-
mation is really a qualitatively good representa-
tion of the data, the terms of (B31) would not
usually decrease steadily until 3, SA. Also, if the
orthogonality condition (B14) is not satisfied (as
in the energy-independent fitting described in
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Sec. II). we do not have such a good estimate for
the effective number of terms needed to fit the
data as is given by Eq. (B30). In this case we
interpret v as being, roughly, the point where the
terms in the sum for ® begin to decrease strong-
ly, as in Eq. (2.51).

To determine the value of A used in the HDR
fits, we use the maximum-likelihood procedure
suggested by Chao and Pietarinen.®®* We assume
that D, may be considered a Gaussian variable
with (D,? given by Eq. (B29). The quantity L
= =2 1n (likelihood) is then given by

D 2\ ?\+'y>
L= (——l——+ln——°-‘- +L (B33
Za: A+ Yy Yo o’ )

where L, is a constant. Sometimes, to increase

A and hence reduce v in fitting an amplitude which
seems subject to systematic errors, we subtract
volnx from this expression for L, where v,is a
parameter characterizing the likelihood function
for ». The equation for A, obtained by minimizing
L, is

XY DoPya/ M+ ve )2 =v ey, (B34)
[+]

where v is given by Eq. (B30).

As an alternative to minimization of X2 as given
by (B5), one can consider two alternative defini-
tions of the “best-fit” function F. The first al-
ternative would be to minimize x?, subject to a
constraint ||fll><M,. The second alternative would
be to minimize [|fl|?, subject to a constraint x*< x2
where XZ might be defined as corresponding to
some given confidence level. These two alterna-
tives are formally identical to minimization of
X2, with X (in the first case) and ™! (in the second
case) being a Lagrange multiplier. (Note that x2
and [[fl[? are monotone functions of A.) The pro-
blem of choosing X is then replaced by the pro-
blem of choosing M, (or x2). When no convincing
a priovi arguments can be given for the choice of
M, or X3, we prefer the symmetrical formulation
implied by the use of Eq. (B5) and the use of the
maximum-likelihood principle.

In the single-energy fitting of Sec. II, we have,
in effect, actually used a hybrid approach in
choosing the scale factors in the truncation func-
tion ®. By examining fits at a number of energies
where the data were plentiful and reliable, we
chose scale factors which gave reasonable con-
fidence levels. Then we required that the scale
factors be slowly varying with energy, and in fact,
were able to use constant scale factors [see the
discussion following Eq. (2.50)]. This is almost
the same as choosing the & s to be slowly varying
with energy, except that the &’s are allowed to
fluctuate somewhat in response to the characteris-
tics of the data.

APPENDIX C: FORMATION OF CLUSTERS

As outlined in Sec. IIE, our solution-sorting
procedure identifies the distinct regions of the
parameter space within which the data are well
represented by the parameters; this is done by
forming clusters of points which correspond to
individual fits. The sorting procedure associated
with a simplified single-scan technique was out-
lined in Sec. IIE. We describe here how we
characterize the location, size, and shape of each
of these regions, or clusters, by constructing a
central value and a covariance matrix as a weighted
average over its points. Finally, we describe
the more efficient double-scan procedure which is
actually used in practice.

Having assigned points to clusters, we next
construct the central value and covariance matrix
associated with each cluster as a weighted average
over its points. As a first guide toward an ap-
propriate weighted average, consider a statistical
model in which X? is quadratic and the parameter
values within a cluster are normally distributed
with a covariance matrix equal to twice the in-
verse of the second-derivative matrix of X2 Let
us also model our sampling procedure as the
generation of uniformly distributed random points
in parameter space. Estimates of the mean
values and covariance matrix of the distribution
are then given by

1 )
f#-’a:_ﬁz W Sfpss (c1)
n
and
1 —
VPJI,P’ Jrs :—“—/'Z wn(f;Js _fp.r;)
n
X(f:, Jr s —f—pl J's'), (Cz)

where

wy = exp[-3 (X" = X1, ] (C3)
and

W=)_ w,. (C4)

n

This simple model differs from the actual situa-
tion in several important respects. First we
consider effects which can be included by modify-
ing the weight functions w,. An actual cluster
spans a region of parameter space in which X* has
complicated nonquadratic behavior, in fact, X?
generally has many local minima within a cluster.
As stated previously, one result of this is that
the size of a cluster is not associated with a unit
increment in X?, but with a larger increment,
8X®. This scale factor can be built into the weight
functions by using an exponential similar to Eq.
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(C3) but with an extra factor of (6X?)"* in the ex-
ponent. We also need to adjust the weights to
take account of the Particle Data Group (PDG)
type of scale factor, s=x? per degree of freedom.
Within the limited range of X? significant for a
single cluster, the main dependence of X* on s is
one of simple proportionality, X>~cs. To scale
the cluster variance matrix by s we need to in-
clude a factor f(s) in the exponent of w, such that
the variation of X? within the cluster AX*=cAs is
replaced by A(X?f(s))= cAs/s. The factor f is only
to be applied for s >1, so we also require that
f(s)=1for s <1 and obtain

F(s)- (lgﬂ) 6s = 1). (C5)

The modified weight function which includes both
the 6X? and PDG scale factors is then
-1

Wn = exP{W [anf(s”) - szlnf(smln)]} . (CG)

It is also necessary to reconsider the model of
the sampling procedure that lead to Egs. (C1) and
(C2). We do not simply generate uniformly dis-
tributed points in parameter space in our Monte
Carlo searching procedure, but rather find the
distribution of local minima reached from such
a set of points by the minimizer. The general
tendency of the minimizer is to move toward the
center of a cluster (more precisely, toward the
point of absolute minimum X? which lies near the
center), so that (C2) will tend to underestimate
the covariance matrix even when used with the
corrected weight functions of Eq. (C5). The size
of the underestimate depends on how successful
the variable-metric minimizer usually is in
moving across the cluster in a search for the
absolute minimum, before getting trapped in a
local minimum. Observation of the results of the
Monte Carlo search procedure indicates that the
corrected minimizer estimates U” of the local
covariance matrices provide a reasonably con-
sistent measure of this effect. The fact that this
is comparable to the cluster size itself is not un-
expected because most of the volume in a multi-
dimensional region is concentrated near the sur-
face, and since the search regions are consider-
ably larger than a single cluster we know that the
minimizer must be able to move through distances
comparable to several cluster “radii” in order for
the clusters to be formed. To correct for this
effect, we add the average of U” to the intracluster
dispersion as expressed by Eq. (C2).%°

Finally, we increase the cluster size for clusters
of low weight W=1 to guard against statistical
fluctuations. Replacing W by W — % in the denom-

inator of the covariance matrix estimate increases
the estimate by a factor of 2 for clusters of low
weight, and has negligible effect if W> 1.

To sum up, we use the weight functions of Eq.
(C6) in calculating cluster averages. These are
used in Eq. (C1) to calculate the central point of a
cluster. The algorithm used to calculate the
covariance matrix of a cluster is

w —
Vp.rs,p' Jrs :-V_V_:—‘g (Tpls,ﬁ’ Jrgt U[u's,lz' J's ) ’ (C7)

where

1 - -
Torsyp ors :’{V"; wo(fprs ~foa) Uy re=Fprs )s
(C8)

1 o
Upls.p’ J':’zwz :wn pIs,p I s
n

This completes the description of the simplified
procedure in which points are first scanned and
assigned to clusters, and then combined. In the
procedure actually used, we increase the efficiency
of the process by building up the clusters during
the scan and by doing the scan in two passes in
which the central parts of the clusters are formed
first, and then the tails. Suppose we have scanned
n -1 local minima on the first pass; some have
been combined into clusters and some have not so
that we have a collection of 2 <#n -1 points (clus-
ters and local minima) with which to compare the
nth local minimum. On this pass the comparison
with the mth point, say, is only carried out if
|X,? - X,,2| <6X?. This greatly reduces the amount
of computation necessary during initial cluster
formation. If none of the 2 previously scanned
points satisfies the conditions for combination with
n, then n is added to this set of points and the
scan proceeds to the (z+1)th local minimum. If
a local minimum m satisfies the conditions for
combination with n, then the two minima are
combined and this pair of minima is replaced by
the resulting cluster. Although they will be added
later as in Eq. (C7) it is necessary at this stage
to keep track separately of the T and U contribu-
tions to the covariance matrix of the new cluster
as well as the total weight W. The values of X2,
X%, s, etc., for the local minimum with the small-
er value of X? are also recorded as the values
associated with the new cluster.

Now consider what happens when we compare
to a previously formed cluster m. In the X® com-
parison X, ? is the previously found minimum value
within the cluster. In the comparison distance
calculation we replace the matrices 2u™;, by the
corresponding submatrices of V™, (Note that these
matrices coincide for a cluster consisting of a
single solution.) If the criteria for combination
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of n and m are then satisfied we combine them
and obtain new cluster weight, mean, and covar-
iance matrix estimates. The new estimates are
obtained using Eqs. (C9)~(C12) below for the
special case in which one cluster consists of a
single solution and has unit weight.

In the second pass we drop the condition [X,2
- X,?| <0X?, compare points in sequence as in the
first pass, and combine all pairs of points which
satisfy (2.55). The distance is now defined with
2u™ and 2u" replaced by the appropriate sub-
matrices of V™ and V", and with cluster para-
meters, such as X, % s, etc., being defined as
the values obtained for the minimum-X? solution
in each cluster. Suppose that two clusters with
weights W,, and W, satisfy the conditions for com-
bination. Then it is easy to show from the defining
equations (C1), (C4), (C6)—~(C8) that the new com-~
bined cluster has weight,

W=W,+ W, (C9)

where

W, W, exp{%(z [Xzzf(sl) - szlnf(smln)] ’
l=morn (C10)
and

X?,.=min(X,2, X,2), (C11)

min

and that the new mean and covariance estimates
are

fp.rs (W’ pJ’:+ Wr’xf;.r:) ’

— ’ yn
UPJ"‘pz Jr‘:“ (W pl;,p’l';'+WnUsz,p' J,‘,),

1 (C12)
TN:.»' Jrs :ﬁ; (W;T?Is.b' It W,', T:Js.ﬁ'l's' ) ’

WW"(fPJs fp.rs)(fb'l’:' fﬁ’J’s')'

The foregoing is an essentially complete des-
cription of the cluster formation process. Cer-
tain modifications are sometimes made in special
cases, mainly having to do with further subdivision
of the comparison process into several different
passes because of computer memory size limita-
tions and problems with missed connections bet-
ween close clusters. It is apparent that because
of the sequential nature of this procedure, the
results depend to some extent on the order in
which the initial local minima are processed. We
have verified through numerous tests that this
dependence is quite weak, and that in the great
majority of cases the clusters are well-defined
and well-separated objects in parameter space.
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