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R. L. Kelly
Lawrence Berkeley Laboratory, Berkeley, California 94720

R. E. Cutkosky
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

(Received 29 May 1979)

%'e present a series of numerical and statistical techniques for interpolating and combining
("amalgamating" ) data from meson-nucleon scattering experiments. These techniques have been extensively

applied to mp elastic and charge-exchange diAerential-cross-section and polarization data in the resonance

region. The amalgamation is done by fitting a momentum- and angle-dependent interpolating surface to the

data over a moderately narrow momentum range, typically —150 MeV/c, using the interpolating surface to
shift data in a narrower central momentum region into fixed angular bins at a predetermined central

momentum, and then statistically combining the data in each bin. The fitting procedure takes into account
normalization errors, momentum calibration errors, momentum resolution, electromagnetic corrections,

threshold structure, arid inconsistencies among the data. The full covariance matrix of the amalgamated

data is calculated, including contributions of statistical error, systematic error, and interpolation error.

Techniques are presented for extracting from the covariance matrix information on the collective statistical

fluctuations which correlate the errors of the amalgamated data. These fluctuations are described in terms

of "correlation vectors" which facilitate the use of the amalgamated data as input for resonance-region

phenomenology.

I. INTRODUCTION

The best modern measurements of two-body me-
son-nucleon scattering in the resonance region
have such high statistical precision that it is im-
portant to take systematic errors carefully into
account when the data are used. Some sources
of systematic error, such as normalization error
and beam-momentum calibration error, are rou-
tinely monitored and documented by experimen-
talists, but are not always taken into account by
data analysts. Other sources of systematic error
arise from unknown experimental biases, and show

up only as discrepancies between the results of
overlapping measurements, or as discontinuities
between nearby measurements. Data analysis
itself can introduce systematic biases not present
in the original data, e. g. , by the common practice
of binning together several measurements made at
slightly different angles and/or momenta.
. This paper describes techniques designed to deal
with these problems and to produce "amalgamated"
differential-cross-section and polarization data
in an accurate and economically usable form. The
purpose is twofold: first, to resolve many ques-
tions about systematic errors and discrepant data
at an early stage of analysis which is essentially
model independent, and second, to summarize the
content of an original data set which may contain
hundreds of data extending over a band of momenta
by a fixed-momentum data set which will be smal-
ler and more manageable when used in subsequent

stages of analysis. The second purpose is similar
to that of a more commonly employed procedure,
which is to replace the actual data by a set of
"Legendre coefficients" or a similar set of param-
eters. We believe our approach is superior, be-
cause the amalgamated data are a more direct and
faithful representation of all the features of the
original data. The statistical correlations between
the amalgamated data a,re also smaller and are
more easily handled in a subsequent analysis than
are the correlations between expansion coeffi-
cients.

The general procedure begins by fitting the avail-
able data of a given type in a narrow momentum
range with a momentum- and angle-dependent
"interpolating surface. " The momentum range is
chosen to be narrow enough so that the interpo-
lating surface can be taken to be quadratic in the
laboratory momentum. In practice, this fit often
involves many parameters and many constraints.
We have developed a fast and accurate fitting pro-
cedure using a two-variable orthogonal-polynomial
technique tailored to the comparatively simple
structure of the relevant p' function. Systematic
errors and systematic discrepancies between dif-
ferent measurements are taken into account during
the fit of the interpolating surface. Once the sur-
face is determined, data in a narrower central
momentum range (in practice, about one-third as
wide as the full range ot the fit) where the surface
is particularly well determined are, shifted along
the surface to the nearest of a set of closely
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spaced preselected angles at a preselected cen-
tral momentum. The shifted data in each angular
"bin" are then statistically combined ("amalga-
mated" ).

The amalgamated data are correlated through
their common dependence on the interpolating
surface and on the systematic errors of the origi-
nal input data. The covariance matrix of the
amalgamated data can be calculated directly from
the errors of the input data using the two-variable
orthogonal polynomials mentioned above. %e have
found that the correlation properties of the amal-
gamated data can be accurately represented in
terms of collective fluctuations characterized by
"correlation vectors. " The use of these correla-
tion vectors simplifies the g function that one
would use in a fit to'the amalgamated data, and
they can also be used to correct the data for the
effect of collective fluctuations.

The techniques described here have been deve-
loped in the course of an extensive mN partial-
wave analysis, and have so far only been applied
to ~p elastic and charge-exchange cross-section
and polarization data. In most of the following
description we use somewhat more general lan-
guage appropriate to any elastic or two-body in-
elastic meson-nucleon cross- section and polariza-
tion data. The generality of the description is
somewhat illusory, however, because our methods
are designed for situations in which there is a
large amount of high-precision data, and this is
currently true of only a few meson-nucleon reac«
tions. In principle, the technique could also be
extended to deal with other types of data such as
spin-rotation parameter measurements in meson-
nucleon scattering or measurements with the vari-
ous combinations of polarized targets and polarized
beams possible in photoproduction or pp scatter-
ing, but we will not consider such possibilities
here.

II. PARAMETRIZATION OF THE
INTERPOLATING SURFACE

The purpose of the interpolating surface is to
accurately approximate the true physical values
of the measured quantities for which we are amal-
gamating data. We emphasize that this surface
is only an intermediate tool, and is not to be
thought of as the final result. Before considering
its full energy and angular dependence, let us
discuss the angular dependence of the interpolating
surface at fixed energy. The differential cross
section at fixed energy, ~, is a sum of squares
of real and imaginary parts of,invariant amplitudes
all of which are functions of x (=cos&) analytic
throughout the cut x plane except for singularities

along the real axis. The polarization itself is a
quotient, but the polarized cross section, IP, is a
bilinear form in the real and imaginary parts of
the invariant amplitudes multiplied by an overall
kinematic factor of sin~. It is the quantities I and
IP/sin8 for which we actually form interpolating
surfaces in the fitting procedure described in the
following sections, and their fixed energy behavior
can thus be represented by analytic functions of x with

singularities at the same locations as those of the in-
variant amplitudes. Specifically, an interpolating
surface for meson-nucleon scattering at fixed energy
has right- and left-hand cuts starting at the t- and
u-channel thresholds and may have poles and di-
poles corresponding to baryon exchange (the same
analyticity domain as that of the invariant ampli-
tude Re&). For an elastic reaction, I and IPjsin8
also have a singularity at x = 1 corresponding to
Coulomb scattering, but we omit this from the
interpolating surface. Coulomb corrections are
taken into account separately and are discussed in
Sec. III and in Appendix A.

The parametrization we use to represent the
angular dependence is a polynomial in the angular
variable z of Cutkosky and Deo. This variable is
defined in terms of two points on the real axis of
the x plane denoted as x, and -x which lie to the
right and left, respectively, of the physical region
(x, & l). The variable z is then defined by the
requirement that it map the x-plane cut along
(x„~)and (-~, —x ) onto the interior of a unifocal
ellipse with the cuts mapped onto the periphery,
the interval (-x, x.) mapped onto the real axis,
and the points x=+1 mapped onto z =+1. This map-
ping stretches the physical region in the forward
and backward peaks while compressing it in the
wide-angle region, thus tending to produce flatter
structure in z than in x and to thereby reduce the
number of terms required in a polynomial expan-
sion for a good fit to the data. As discussed in
Ref. 3, the most rapidly convergent polynomial
expansion of a scattering amplitude is a sum of
explicit pole terms and a polynomial in z with x,
and -& located at the tips of the physical t- and
u-channel cuts. We adopt here a simpler and more
flexible version of the parametrization in which we
omit pole terms and treat x, and -x as phenomen-
ological parameters representing "effective" cut
positions at which the strengths of the right- and
left-hand singularities (including poles) first be-
come appreciable. The reason for omitting expli-
cit pole contributions is twofold, first because it
is more complicated to include pole contributions
in observables than in amplitudes, and second be-
cause the fitting problem we are dealing with here,
unlike the problem of determining an amplitude
from data, has no continuum ambiguity and the
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constraining effect of the known residue of a bary-
on-exchange pole is consequently less important.
The reason for not requiring the strict optimal
convergence prescription for x, and x is that it
may happen that the main features of the angular
dependence of the data are controlled by singulari-
ties which are stronger and more distant than
those which determine truly asymptotic conver-
gence rates. In m+ scattering, for example, the
right-hand cut begins at t =4m, and is weak there,
while the nearest t-channel resonance-exchange
poles lie on unphysical sheets at f = (m, + il', /2) .
%e have found in practice that acceptable fits can
be obtained with values of x+ corresponding to in-
termediate values of f =(m, —&,) . For the left-
hand cut, on the other hand, the strong nucleon
exchange in ~'p ela, stic and 7l p charge-exchange
scattering must be taken into account by using a
value of x corresponding to g =- m&, while for
v p elastic scattering we can use u=(m~ —I'&) .
A typical example of the mapping for m'p scattering
at 2 GeV/c is shown in Fig. l.

%e have made several tests which verify that the
prescription for x, is well matched to the charac-

teristics of the data. In particular, in tests in
which we used x, =~ (in which case z =x, so that
our expansion is equivalent to the usual one) our
fits were generally less satisfactory and also re-
quired more terms. Choosing x, to correspond
to t== 4m, also tended to give less satisfactory
results.

The energy dependence of the surface is handled
more simply because we always fit data over a
rather narrow range. The energy range is always
chosen to be sufficiently narrow so that quadratic
interpolation is sufficient and the surface is taken
to be of quadratic (or lower) degree in the labora-
tory momentum q. %e introduce the normalized
variable

6'0

where q is a weighted average beam momentum
for all of the input data. The parameter qo is
chosen to match the amount of momentum-depen-
dent curvature of the surface required by the data;
for wp scattering qo is usually about 300 MeV/c.
The surface can now be represented in the form

N l80
n'/AN ~„

2m'N

180

X+
o'

zk 4~ '~

lx plane

z plan

(2. 2)

where f„(z) is a polynomial in z. In principle, the
relation between z and x is energy dependent, but
we neglect this small effect within the momentum
range of a single amalgamation and use a fixed
function z(x) appropriate to the central momentum.
In the following discussion we allow & to be either
0, 2, or 2, although K= 2 is by far the most com-
mon case encountered in practice. The higher-
order coefficients of the polynomials f, are con-
strained to' be of comparable magnitude by the
"truncation function" of Eq. (3.8). Thus, for
&=2, qo is the momentum range over which the
surface develops a large amount of angle-depen-
dent curvature.

Threshold singularities are not introduced into
the interpolating surface. itself, but are handled
in a manner similar to the Coulomb corrections.
This is discussed in Sec. III and in Appendix B.
The only threshold that has been treated in detail
so far is the 'gn threshold at 687 MeV/c, but it
should also be possible to include the co~ thresh-
old at 1092 MeV/c.

FIG. 1. Conformal mapping of the x plane onto the
z plane for 7t +p scattering at 2 GeV/c. Nearby pole and
branch-point singularities in the t and g channels are
shown, and the "effective" branch points +x~ are indi-
cated. The distortion of the physi. cal region is shown
by a dashed line which is drawn with equal intervals of
0.1 in the x plane and with the corresponding mapped
intervals in the z plane.

III. DEFIMTION OF THE X FUNCTION

The interpolating surface is fit to experimental
data by minimizing the function

X2 X2+ C

where g contains the constraints imposed by the
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data and 4 is a "truncation function" (TF) (Ref. 5)
which imposes a smooth truncation on the number
of parameters used in the fit. In this section we

give detailed definitions of X and C.
The available world data of a particular type in

a narrow momentum range typicallp consists of
several "blocks" of data from different experi-
ments covering various regions of. scattering
angle at different momenta. %'e denote each data
block by a Greek subscript, and denote the ith datum
of block & as D, &. The inverse-square statistical.
error of D, &

is called zo, &
and the value of the in-

terpolating surface f(a„,y, ) at datum ei is desig. -
nated by f, ». [For the moment we ignore the finite
momentum spread of the beam. See E»l. (4. 2) for
a more precise definition of f„.] Each data block
has an overall normalization error and a corre-
sponding fitted scale factor. For later conven-
ience, we chose to construct g using the recipro-
cal of the normalization scale factor &, rather than
the scale factor itself. Thus the renormalized
datum ei is D„/X, As. long as the normalization
error is small conpared to unity the error in X,

is the same as the original normalization error.
Each data block also has a measured beam mo-
mentum p, with a calibration error and a corre-
sponding fitted beam momentum q, . Note that the
definition of f, » given above uses the fitted mo-
mentum q, . Nonanalytic effects (Coulomb-scat-
tering and/or threshold effects) which are not
allowed for in the interpolating surface are taken
into account by calculating an explicit correction

2 , )'
s» ~s» - s

+gw, „(g —1)(}»„-1)

++w,'„(q, —p, )(q„-p„), (&. 2)

where s, &
——1 for cross-section data. The ma-

trices ze, „and m, „are the inverse covariance. ma-
trices of the normalizations and beam momenta,
respectively, with correlations taken into account
by appropriate off-diagonal elements.

A simpler, approximate g function obtained
froin E»l. (S.2) is much more convenient for actual
computations. Let

s] — e] 63 ~

Then the sum over individual data points in g
can be rewritten as

term for each datum c„which includes these ef-
fects. The calculation of the correction terms is
described in Appendices A and B. They are to be
subtracted from the renorrhalized input data before
these are compared with the interpolating surface
in the X function. Finally, as discussed in Sec.
II, when dealing with polarization data we multiply
by a factor s, &, equal to the corresponding cross-
section interpolating surface divided by sine, &,

and evaluated at the fitted momentum q, . The
X function constructed in this manner is

Ws» 2 2 WCs»»(}.»s —1)
~ ( Zs» — s» s») + — (Nfs» — s» s») + s» s» (4 — )

2 2

s$ see Sq ]
(S.4)

which has the form of an expansion in quantities
of order,

l c„I && (normalization error)„
(statistical error), »

There is some arbitrariness in the correction
terms in that we can include in them any analytic
contributions we like (as long as these contribu-
tions vary slowly enough to be well represented
by the interpolating surface), in addition to the
specifically nonanalytic effects that they are in-
tended to represent. This freedom can be used
to keep

~
c« ~

small, and it is fairly easy to ar
range that the. quantity

~ cs» ~/(statistical error), »

is typically of order unity where nonanalytic effects

are important and much smaller elsewhere. Thus,
for well normalized data 8,

&
is small, and the

second and third sums in E»l. (8.4) will be small
compared to the first. Furthermore, the summand
in the second sum fluctuates in sign so we expect a
further reduction by a factor of order (total number
of data)' ' compared to the first sum. The weakest
point in this line of reasoning occurs for elastic
differential-cross- section data at very small
angles, where the Coulomb correction terms can
in principle become arbitrarily large. However,
it is difficult to make a measurement far into the
Coulomb region without encountering backgrounds
which also make the statistical error grow. In
explicit checks we have found that even for the
most forward available &P data 8, &

seldom exceeds
0. 3. Occasional data points for which 8, &

& 0. 3
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can be handled by artificially increasing the statis-
tical error to keep e„small. Thus, in the re-
mainder of this paper we will use the X, function

+g»,'„(~, 1)(~„1)

be decreased further before g per degree of free-
dom stops improving. Although we are aware
that some of this structure may turn out to be
spurious, we have usually attempted to accomo-
date it by choosing 'a conservatively small value
of 0, sometimes as small as 10 (mb/sr)

+Q»,'„(q, —p, )(q, —p„) . (3.7)
IV. t ONSTRUCTION OF ORTHOGONAL POLYNOMIALS

The advantage of this form over Eq. (3.2) is that
the correction terms can now simply be subtracted
from the data before fitting, as in Eq. (3.3), and
do not enter explicitly into the g function itself.

The free parameters to be determined by fitting
are the coefficients of the polynomials f„(z), the
scale parameters &„and the momenta q, . The
polynomials f„(a) typicaliy have appreciable coef-
ficients up to order 8 or higher, so that there is
no mell-defined sharp cutoff point for the number
of polynomial coefficients retained. %e therefore
use the TF 4 to impose a smooth truncation on the
higher powers of z. This is done by minimizing
X +4, rather than X' alone, where

2l/2 k~ (3.8)

with the line integral being taken around the uni-
focal ellipse onto which the t- and u-channel cuts
are mapped by the Cutkosky-Deo mapping. The
lengths of the semiaxes of the ellipse are typically
between two and six (depending on the momentum)
so the higher powers of z are magnified with re-
spect to the lower powers on the boundary of the
ellipse, and the addition of 4 to X cuts off these
higher powers smoothly. The region in which the
cutoff becomes effective is controlled by adjusting
the constant ~. The ellipse shrinks with increas-
ing energy so that 4 naturally allows the number
of effectively free parameters to increase with
increasing energy even if Q is held fixed. The
particular weight function used in the integral is
chosen because Chebyshev polynomials are ortho-
gonal with respect to this weight and this facili-
tates computation of 4 as discussed in Sec. IV.

In our applications to &p scattering we found that
a single value of 10 (mb/sr) .for 0 gave gener-
ally satisfactory results for both cross sections
and polarizations throughout the resonance region.
This value was arrived at in the usual way, by
decreasing ~4 until g per degree of freedom stop-
ped improving. In a few cases where the data
were particularly sparse and the interpolating
surface was poorly constrained, we used values
as large as 10 (mb/sr) . There are also some
data sets with pronounced structure where 0 can

f„=(q( q)). =qf qqqq. (q)f(q. „q) dqa, (q) .

(4. 2)

Since f(a, y) is at most quadratic in y, f„can
be evaluated completely in terms of the average
momentum (q)„which we take tobe the fitted mo-
mentum q, and the mean squared deviation
((q —(q),)') = b,'. Using the decomposition of Eq.
(4. 1) we have

f„.= Pa.7.„. , (4. 3)
m=o

where

As a preliminary to the discussion of the full
minimization of &, we consider here the problem
of minimizing X with fixed values of the normali-
zation and momentum parameters. This is a
linear least-squares problem which can be solved
analytically. We represent the fitted surface as

f(a, y) =Q a T„(z,y), (4. 1)
m=0

where the functions 7 (z, y) a,re polynomials in a
and y and the M+ 1 parameters a„, are variable
coefficients to be determined by minimizing X .
It is useful for numerous aspects of the amalga-
mation procedure to attack the problem of deter-
mining the coefficients a by first choosing the
polynomials T to diagonalize the a sector of the
second-derivative matrix of X . All of the diffi-
culties of the fixed &, and q, minimization problem
are then contained in the construction of polynom-
ials T which satisfy an appropriate orthogonality
condition [Eq. (4. 10) below], and once these poly-
nomials are constructed the determination of the
coefficients is trivial. This section is devoted to
the formulation of the orthogonality condition and
to the construction of the polynomials which satisfy
it.

The terms in X which are bilinear in the coeffi-
cients are those containing f„' and those coming
from 4). The quantity f„ is the average of the
fitted surface over the spectrum of the &th beam.
If the beam resolution function is &, (q) we have
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, O'T (z„,y, )T, = T„(z„,y, } + —,p,

p. = f.&ao, y. = 4. —8~~0
(4. 4)

The TF has been designed to take advantage of
the orthogonality property of Chebyshev poly-
nomials on unifocal ellipses. For any ellipse
with focii at z =+1 we have

dZ mN,
(I) z 3 z1/'g Pi (z)Piz (z) 5ii ~—1) 2

N, =25)0+8'+R
(4. 6)

f(z) Qfz =D„P,(z).
mot 0

(4. 7)

where R is the sum of the semiaxes of the el-
lipse. To use this relation we represent the poly-
noxIllals Tm as

T.(., y) = gD,",P, (z)y', (4. 6)
0=0

where (L + 1)(K+ 1)=M+ 1. Comparing with Eq.
(2. 2) we find

for orthogonal polynomials Q„ in a real variable
x. The lowest-order polynomial is chosen to be
a constant:

~-i/2
T0(z y) =Dto = Z ~ i + ~00 I)

(4. 12)

For the first & polynomials with m & 0 we define
to introduce higher powers of y. For m )E

we consecutively introduce higher powers of z in
groups of K+ 1 linearly independent terms. Spec-
ifically,

yT i(z, y), 0(m- K
m(Zy y) =

zT-(z, y), m &K,
(4. 14)

Higher-order polynomials are generated by ex-
pressing them as a linear combination of all low-
er-order polynomials, plus a linearly independent
"leading term" L

m-l

T„(z,y)=C„ I„(z,y)+ g C T„(z,y), m&0.
n=0

(4. 18)

Thus, the TF can be expressed as
N N

7'mngma„,

where the "truncation matrix" v is

(4. 8)

where m=m —(K+1). For example, if K=2 new

powers of z and y are introduced in the following
2 2 2 2 2 2 3order' . 1, y, y, z, zy, zy, z, z y, z y, z, . . .

From Eqs. (4. 18) and (4. 14) we immediately find
that

D,„=O if m ((K+ l}l+k. (4. iS}

l =0 y=0 (4. 9)

2/
i Wei I /Sgj

(4. io)

When this condition is satisfied the va, lues of the
coefficients which minimize X are easily found

to be 1

We now have all the notation necessary to write
down the coefficient sector of the second-derivative
matrix of X and the orthogona, lity condition to be
imposed on the 7 . This is

g 2X2
=g &I &

T~ (T~I i +g &ii(Dii(~ia
2 Ramada„

Note that unlike the fa,miliar real-variable recur-
sion relation, we cannot truncate the lower side
of the sum in (4. 13}at some small value of m n-
This is because the TF is a scalar-product type of
integral over complex values o'f z, and as a result

will in general not be orthogonal to any of the
polynomials T„with n & m.

We must now solve for the coefficients C~ by
imposing the orthogonality relation (4. 10) on the
representation (4. 13). For the first sum in the
orthogonality relation we need the representation
corresponding to (4. 13) for the "evaluated" poly-
nomials T~ &. This is

T,=C„„I,+ C T„„, m&0, (4. 16}
n~0

where

+Ni = i~a i~edei~~s i ~

(4. 11)

L ~~ =ye&06~ ~

2
~26i =ye Tg6& + C11Ps ~06( &

(4. 1V)

The actual construction of the orthogonal poly-
nomials can be carried out by a recursion method
which is a generalization of the familiar recursion
relation

Q„=(A„x+B„)Q„i+ C„Q„,

For the second sum we will need the analog of Eq.
(4. 18) for the coefficients DP~. Making a decom-
position similar to Eq. (4. 6) for the f „(z,y):

K

I (z, y) =Q Q &i(,Pi(z)y", m& 0 (4. 18)
t 0 a=0
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we obtain
m'1

(4. 19)

ses the ratios C„„/C in terms of previously
calculated quantities. Imposing the normalization
condition expressed by Eq. (4. 10) with m =n we
obtain

The coefficients &P, vanish when (K+ l)l + 0 & m, ,
and by using the definition (4, 17) of the L and the
relation

~&, (~) =-.'l&,.i(~) +&~-i(~)], -f - 1 (4. 20) (4. 23)

we can express all the & coefficients with (K+ 1)l
+ 4& nz in terms of D coefficients corresponding
to lower values of m. These relations are given
below, where we use integers ~ arid w defined by
the decomposition m = (K+ 1)&+ v with» 0 and
Q~ K~E:

&oo=o

~0k =D0,k-i ~

gm~0k=0

~~a = D0k

~0k —2+ 1k&

~0k=0, k&&
At

At

Ok

a» =D33+ 3D33 X=6,
6& —D3„, 13 & tC

At

which is also in terms of previously calculated
quantities. T~& and D, k ean now be calculated
from Eqs. (4. 16) and (4. 19), and one can proceed
to index m+1. The polynomials T (z, y) them-
selves can either be calculated recursively using
the coefficients C or directly using the coeffi-
cients D&~.

V. EFFECTS OF INDIVIDUAL COEFFICIENTS AND

CONSTRAINTS

In Sec. IV we solved the problem of minimizing
X when the normalization and momentum param-
eters are fixed. We now show that the orthogonal-
polynomial formalism developed there allows us
to make quite specific statements about the effect
of individual coefficients and constraints on the
resulting value of X at minimum. The part of X
which involves the coefficients directly is

(6. 1)
ef ~6$

t

and we can use the results of Sec. IV [particularly
Eqs. (4. 3) and (4. 8)-(4. 11)] to rewrite this as

m. x m x'.=+~„d„' 2+a„a.+gg.'.
e$ m

(6.2)
At

~~ = D0k+-:D2k

3( f ltk It1t3) t

At

P2, A—3(+X-3,3,-+ ,
X-1,3) t

m~X 2k —2' 3k&

2& ) & A. -3
X~ 4.

k~K

The effect of an individual coefficient a on the
minimum value of &, is now clear. The minimum
value is

X a.m&n =~'+6&dec-
ef m

~)~ = =-&i-1,k

The procedure for solving the recursion rela-
tions is now straightforward. Suppose that we
have determined all the quantities C„„, T„&, and
D» for v & m, ~' & m. The next stage of the pro-
cess is to substitute Eqs. (4. 16) and (4. 19) into
(4. 10) and impose orthogonality between T (s, y)
and all T„(zt g) with n & m. This gives

x.=Px'. , +gy'„,
6$ lk

where

(6. 4)

and the result of omitting the mth term from the
sum (4. 1) is to increase X „~,„by Fr

' without
changing the values of the remaining coefficients.

To describe the effects of individual constraints
we rewrite X, as

=--Z~stL~&Tnet -Z~»+FaDit t
mm 64 lk

(4. 22)

which, with the help of (4. 17) and (4. 21), expres-

ZUg g

& (A,f„—s, gd„)
Se(

2
V m0 ~t =~» ~~ADr3

(6. 6)
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and consider the effect of omitting one of the con-
straining terms, i. e. , setting one of the ze,

&
or

~» to zero. The resulting decrease in X'„,„can
then be calculated by reminimizing and will gener-
ally be greater than the corresponding value of
)P„. or &f,~ at the original minimum.

Suppose we omit the constraint corresponding to
datum gj and denote quantities in which this datum
is omitted by primes. Then

(s. 15)

It is clear from Eqs. (5. 12)-(5.15) that the quan-
tity A„(or A, ~) is a measure of the "pull" of con-
straint &i (or lk) on the fitted pa. rameters a and
on the value of X „, ,„. The sense in which this is
true can be made more precise by noting that the
orthogonality relation implies that

A„+ A~ —M+ l.
ek lg

(s. Iv)

se«d«' —2 bma + 8 a a„, 5. 6
81 m

where

b =a —a)T „;,
S~ = ~mn —~qjrmjTnnj-

Minimizing X', we obtain

(s. 7)

(s. a)

CO~~
mg

y A j mr)j fir)j y

'v
(s. o}

where we have converted to matrix notation. The
inverse of 8 is

Thus, it is natural to identify A„(or A») with the
effective number of parameters used in fitting con-
straint &i (or lk). Equation (5. 17) can be rewrit-
ten in terms of the truncation matrix defined in
Eq. (4.O) as

; = M+ 1 —Try. (s. ia)

We identify (M+ 1) —Tr~ as the number of param-
eters used in fitting the surface to the data, and
Trv as the number of parameters held fixed by
the TF constraint. The quantities A„and A, ~ are
found to be quite useful in practice for understand-
ing how individual data points and data blocks in-
fluence a particular fit and for identifying the posi-
tion and range of the smooth cutoff imposed by the
TF

2
Aqj

—~j ~ Tm~j (s. Io)

It is easily verified that the fitted value of the sur-
face corresponding to datum qj

(s. ii)

is changed by an amount

f A„, l — s,„,.d„,'r~
fg f'j ~1 A If/ j ) (s. 12)

where X» i.s the value of X» at the original mini-
mum.

If we omit the TF constraint corresponding to
~» a similar calculation gives equations analo-
gous to (5. 12) and (5. 18):

(5. 14)

by the reminimization and that the decrease in the
minimum value of X, is

(s. is)
a =a'+ aa,
X, =A, +BR, ,

0
9'e =9'e + ~Q's

(a. 1)

and expand X to second order in Sa„, &g, and

&q, . Define the parameter and derivative vectors

8, =(sa„&a„.. . , &a„),

(a. 2}

VI. ITERATIVE MINIMIZATION SCHEME

We now consider the problem of minimizing the
full X function [Eqs. (3. 1), (3.7), and (4. a)] with

respect to all of the free parameters, including

g and q, a,s well as the polynomial coefficients.
We have found that this problem can be efficiently
handled by an iterative procedure in which mini-
mization at fixed values of &, and q, as described
above is alternated with full minimization of a
quadratic approximation to X'.

Suppose that we have found a set of orthogonal
polynomials T (z, y) satisfying (4. 10) and a set
of polynomial coefficients a satisfying (4. 11) for
particular fixed values &, and q, of the normaliza-
tion and momentum para. meters. We now set

where

(s. is) 1 BX BX BX BX
s' ''&m»'&a a' )
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and second-derivative matrices
(6. &)

(6. 3)
Minimization with respect to & gives

6=8" 4 (6.6)
62X2

22 mn 2 6(6) g(6) and we can take advantage of the special form of
d and D to find that

Using & j8a ~0
—0 and

—,'6'X'/~a. ~a„~,= &

62 —(D22 D12D12) d2 e

~1 —D12 ~2 ~

(6. 7)

(6. 6)

X' =X', 2d'6+ 6'D6+ O(6'),

where

(6.4)

the second-order expansion of X' now becomes For reference we give below explicit expressions
for the derivatives that appear in d' and D, where
primes on f„.and s«denote differentiation with
respect to q,

1 ()X
(gf„-s„d„)+Q m,'„(g —l),2 8~6 i 86i

" "~(a,f„—

s„d„)+alii~,

„(q„-P„),

g 2X2l RX bio„T
2 ~~mRX6 i SI

2 sfei ~msi-
~m qe i ~a i

2s' T ' Td. T' " *'+&f'TSi ei feei e 6 i me i6i & ~ei
(6.9)

p 2~
iaei'W (~f d ) fil feil i+feei ei ~ fsi( s ii I+q f's fsi ei ~ 2

I 7) ~q„q, ~6 i ~6& 8$ 6i

For most purposes terms proportional to &,f„.
—s„d„.are sufficiently small to be safely neglected
in the above expressions for the second deriva-
tives. This has no effect on the final minimum,
which occurs at d2 ——0, and does not degrade the
convergence rate of the iterative procedure signi-
ficantly. In particular, it is never necessary to
compute the second derivatives f,"; and ss"; because
they are contained in a term proportional to g f, i
—Sg qd~ i.

Our basic iteration scheme is to find a set of
polynomials and coefficients at fixed values of
A, and q„ then shift g and qe according to Eq.
(6.7), find new polynomials and coefficients, etc.
However, it is well known that the type of multi-
dimensional Newton-Raphson approximation which
led to Eq. (6. 7) can have serious instability prob-
lems, and we must modify this scheme somewhat
to avoid these difficulties. At the outset of a min-
imization we start from initial values of A, = 1 and

q, =p, and hold q, fixed, iterating with the a and
&, parameters only until a stable solution is found.
The q, variables are then released and the full
iterative procedure is followed. The initial mini-
mization at fixed q, is necessary because the mo-
mentum derivatives of X are poorly known during
the initial iterative steps, and large, unstable,
highly correlated shifts of the normalization and
momentum variables away from their input values
can occur if the full iterative scheme is applied at
the outset. After each calculation of & it is useful
to check that the adjusted parameters actually give
a decrease in X . This is done by evaluating X
approximately to fourth order in & and comparing
the result with the previous value. If it is found
that X' has actually increased, we replace & by
P6 where the scale factor P is chosen to minimize
X . The fourth-order evaluation of X results in a
cubic equation for P which can be solved analyti-
cally. Sometimes X will appear to decrease when
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& is chosen, but because the approximate fourth-
order evaluation is insufficiently accurate, it will
be found that X has actually increased when an
exact evaluation is made with new polynomials
and coefficients in the next iterative step. In this
case we multiply & by a factor of 0..3 and try
again. Failures requiring the scale factor P or
the factor of 0. 3 are often associated with unstable
behavior of the interpolating surface rather than
&, and q„because the latter are directly con-
strained by zv, „and m, „. We can therefore often
correct this behavior and move closer to the mini-
mum by temporarily holding the interpolating sur-
face fixed as we shift Q and q„ i. e. , by replacing
Eqs. (6. 8) and (6.7) with 6, = 0 and 52 = D22 'd2.
This replacement is also useful in the initial itera-
tion when &, first departs from unity and in the
first step in which q, is allowed to depart from p, .
With these safeguards against instability the. itera-
tive procedure usually converges in somewhat less
than 40 full steps, i. e. , somewhat less than 40
reevaluations of the polynomials and their coeffi-
cients.

VII. ERROR ADJUSTMENT

- The X confidence levels of fits obtained as de-
scribed in the previous sections are often very
small. This is due to unknown experimental biases
and errors in some of the data, and these effects
will propagate into the amalgamated data unless
they are explicitly removed. The nature of the
problem ean be clearly seen in histograms of the
data point and data-block eonfidenee-level distri-
butions calculated on the assumption of Gaussian
errors. Examples are shown in Fig. I of Ref. 2.
Instead of being flat, the distributions are peaked
at low confidence levels. These peaks are nearly
always present though their heights and widths
vary with momentum. The data block confidence
level distribution is usually even more sharply
peaked than that of the data points, indicating a
fairly even scattering of bad data among the dif-
ferent blocks.

We deal with this problem by doing the X mini-
mization in two passes. After the first pass error
bars of data in the low-confidence-level peak are
stretched as described below, and the data is then
refit. After the second fit the stretching is done
again, but at this stage the low-confidence-level
peak has essentially disappeared so the effect is
minor. The stretching algorithm is defined in
terms of

"2 2X, «
——NgX .«/N«,

where N„ is the number of data points (including
normalizations and momenta) and

is the effective number of degrees of freedom.
(N, is the number, of normalization and momentum
parameters contributing to X'.)I The quantities
X „and similarly defined quantities for the nor-
malizations and momenta are expected to be dis-
tributed approximately in a X distribution for one
degree of freedom if the errors are truly Gaus-
sian. The error e«of datum &i is stretched ac-
cording to the algorithm

e„.unchanged if g, &
+ ~p,~ 2 2

v'x 2„
e, «-e, «1+(6« —1) ' — —

~

if X,«& 50
p

and a similar procedure is applied to the normali-
zation and momen)um convariance matrices. Thus,
stretching begins when &'«exceeds ~p and be-
comes extreme when X'„.exceeds 6,', 50 and 5, are
chosen to lie near the edge and the rniddle of the
low- confidence-level peak, respectively. Typical
values are &0 ——2 and &« ——S. About 10/«; of the
errors are usually adjusted by this algorithm, and
only about half of these are stretched by a factor
of more than 1.5.

Provision is also made for simultaneous stretch-
ing of all the error bars in data blocks that remain
poorly fit after the above procedure is carried
out, but this is seldom necessary and the overall
stretching factor is seldom larger than about l. 2.

VIII. INTERPOLATION, ERROR PROPAGATION, AND.
AMALGAMATION

The covariance matrix of the shifted data is ob-
tained by calculating their response to fluctuations
in the input data. These fluctuations are repre-
sented in terms of a statistical model of input data
in which the data actually used are considered to
be a single sample point in a space of Gaussian
random variables whose mean values are the true
physical values of the measured quantities. The
X function corresponding to a general sample
point in this space in the same approximation as
that of Eq. (S.V) is

ef Set

+g««;,'„(x, —A, )(x„-«1„)

+ +'sg Ce —+e

++~ „(««„-A„)(««„-A„).

The general sample point is here represented by
the quantities-
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B„.=B„+5D, i,
A, =A,'+ 6A, ,

P,. =P, + &P, ,

w. =w'. + u...

(8.2)

0 08 i Tme i ~n6 i + +mn ~mn p

ei
(8.4)

use polynomials which satisfy an orthogonality
condition appropriate to the case of mean-value
input data:

which have the particular values d„, 1, p„and 0,
respectively, in the actual fit. [The D« in Eq.
(8.2) should not be confused with the D« in Eqs.
(3.2) and (3.3).] The quantities with superscript
0 in (8.2) represent the mean values of the ran-
dom variables which are assumed to be equal to
the true physical values of the relevant quantities.
The inverse covariance matrices of D„, A„P„
and A„are taken to be at„(diagonal), &~„, sv, „,
and z~, respectively, where the matrices se, zv,
and st are the original matrices I, so, and w as
modified by error-bar stretching and z is the
truncation matrix defined in Eqs. (4. 9). Inclusion
of the quantities A with covariance matrix 7 in
the space of random variables allows for fluctua-
tions of the appropriate scale in the a pmori
values of the coefficients.

The error-propagation calculation does not take
into account the effect of fluctuations in the input
cross-section data on the shifted polarization data
through the factor s, ;. We neglect this effect be-
cause the cross-section data are generally con-
siderably more precise than the polarization data.
Tests have been made to check that the effect is in
fact negligible. We also neglect fluctuations in the
adjusted inverse covariance matrices Fe, 9, and

9 and in the truncation matrix y.
Our goal is now to calculate the covariance ma-

trix of the fitted parameters that is implied by
this prescription for the statistical nature of the
input data. We denote the variable parameters
as

where

a„=nr„(x,')'/(s, ';)'

and T; is the quantity in Eq. (4. 4) evaluated. at
y, =y, =(q, —q)/qo. The conditions for a minimum
of X~ satisfied by a~, &„and q, are

0 0

a =~ 0
—T „+ 7 A.„,0 ~~ i~sD6i 0 0

S8, n

i

0

(8. 5)
u &0 ' 'Si 6 i 0 ~i~S~i~ 0 0 SO DO
ssi ssi

+Q re,'„(q„'-P„')=0.

Using these definitions and minimum conditions
we now expand X to second order about its mean
value minimum, i. e. , to second order in the
quantities 6D„, 6A„6P„6A„, 6a, 6&„and 6q .
To simplify the notation we also define the follow-
ing quantities (where r and s take the values I
and 2):

&i. .=f.~ &2' = ~ (fl «) ——'
—,0
Sei

~ e&+~i+sei(Oa
KS8 if

W ~6~4
~m rs ~ f 0 i2 Tmsi+ref i

KSe iy

a =a +~a

X, =&,0+ aX„
0

6'8 =6'e + ~6'6 ~

(s. 3)

&hg, ——&&, , &h2, ——&q, ,

OH', —6A, , F2~ —5P, ,

M = g,"„6H„„+ —O' I', 5D i,
Se i

(s. 8)

where the quantities with superscript zero are the
values taken at the minimum of X ~ for the case
of mean value input data. In the following we also

eZ =. & ea„+ ", 'V'„„,.eD„. .
n @i SSi

The result of the second-order expansion is then

X =(X ) +2:"++go„(6D„.) +ggv,"„6H 6H +gy 6A 6A„—2+6a M
St ren mn m

—2+ 6h~ 6G ~ +Q (6a ) + 2 Q P,~ 6a„6h~ + Q Q~, ~6h~ 6h~, (a. v)

where
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"=-+Pe,'„(X~0 —A~a)5A, -Qgg, „(q~o —Po)5P, —Qr~(ao-Ao)5A„

(8. 8)

+Q, 0",g (&,f, (
—s„D,i) -s, (5D,(+QT, (5a~5$+ g~Q (T' ))0 — ', '-' —sa„sq, + 0" 5q, 5A,

s« (S6()

All terms in " contain factors proportional to the
deviation of the mean value input data from the
corresponding fitted quantities. Assuming that the
parametrization has been appropriately chosen,
we expect these factors to be first order in magni-
tude and to fluctuate in sign. This results in a
suppression of the linear terms in " relative to
the second-order part of X', which is positive defi-
nite, and a further suppression of the quadratic
terms in -" which will actually be of third-order
magnitude. On this basis we neglect " in the fol-
lowing calculations.

Our next step is to obtain the fitted values of
sa„, 5$, and sq, in terms of 5D, &, 5A„5P„and
5A„. Minimizing the expression (8. 7) for X
(with:" neglected) gives the following relations:

We can now use relations (8.11) to express the
fluctuations in the shifted data in terms of the fluc-
tuations in the input data. A shifted datum Db«
which is originally the ith data point of data block
a and is shifted to central bin 5 at the central mo-
mentum q, is defined to be

(8. iS)

where sb and cb are defined similarly to s«and
c„, ~b„ is unity for cross-section data and is
(sine, )/( sine«) for polarization data, and

fb Qa

5a„=5K„+p-,~ 5h„,

gn„,„sP„=5G„, QP„,„5a.,
(a. 9)

T~=r (s„y,},
, 5'T„(s„,y, )

Tns k
= Tm46 ti L e) + 2ps 2 ~

~Pe

(8. 16)

5a=5Ã- psh

Qsh=5G —P sa. (a. io)

where the barred quantities indicate values at
minimum. Converting to matrix notation these
equations become

Thus, renormalized cross-section data are shifted
parallel to the fitted surface while the deviations
of renormalized polarization data from the fitted
polarization are modulated by sine. To exhibit
the fluctuating part of the shifted datum we rewrite
it as

The solution is

&g =A 5K,

&K= B '~G,

where

(a. ii)

0
Db ~ =abc~+ ~b« ~

where

0 DO 0)
DO ~f'+& ws fan I+c

Sb ~8 S

(8. 17)

(8. 18)
5K= 5K- PQ 5G,

5G = 5G —P 5K,

A=i —PQ 'P,
B=A-P P.

For later use we note the relation

A. = 1+PB P

which may be obtained as follows:

A '=A '(A+Pfi 'P') =1+A-'(PO-'B)B-'P

=1+A '(AP)B 'P =1+PB 'P

(a. i2)

(8. 18)

(8. 14)

fy =Qa~rne .

Expanding Db« —Db',
&

we find that the fluctuating
part of Db„ is, to first order,

DO

se.i j
(8. 19)

y0
mb +be f tran 5

~ &Sb S«

Following the same argument that we used to neg-
lect ", we expect that the approximation
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0 0Dsl -fsl
p 0s„

is accurate to first order. We can therefore re-
place D,', /&, in (8. 19) and obtain

&D„1
+0si +002 0 0 0 p +ssl ~re

(5D„5a„)= 0 X, QA '„T „
Se

(6D, , 6h,g = Q B,„E
Sef ~- r

where

1
&a

Se& m

0
0 Se]

+be f
——T IT mb ~

be, Sb]

(8.20)

(5 5 „)=A'

~0, g(pa '). ,„T', ,

(s.26)

Equations (8.20) and (8. 11) express 40«as a
linear function of the fluctuations in the input data
which have the prescribed covariances

(5D, 5D„)=6, „ /

(6a„6a,„)= 6„,(g");„' (8.22)

The last three entries of Eqs. (8.26) make up the
covariance matrix of the fitted parameters. We
denote this matrix as a whole as

(6W.6W„) = &-' .
Using these we can calculate the covariance of two
shifted data:

pa-2 )
I

~

(Pg-l)r D-2 j
(s.av)

(5Ds 25K„)= X, T„s2/ss 2,

(5D„&G~)= &,„E„,/s„,
(6Z.6Z„) = 6

(5G~5G~) =—Q~, ~,
(6Z.6G,„)=P. ,„,

(s.24)

(6D„6Z„)=, ~,'T„'„-g (Pn-')„„Z„, ,

~+

(5D, 2&G ) = 0
600&ss& —&s QP0

.m

The following are useful intermediate steps in the
calculation:

U is proportional to the inverse second-deriva-
tive matrix of X with terms contained in " ne-
glected. To make an explicit comparison with the
second derivatives displayed in Eqs. (6.9), we
introduce a superscript 0 on the matrices D~2,

D22, and D which denotes (1) evaluation at the
mean value minimum, (2) neglect of terms pro-
portional to &,f„—s„D„, and (8) replacement of
all input weight matrices by their stretched ver-
sions, i. e. , see&-M«, etc. Thenitiseasilyveri-
fied that

D20 =P,'0

0
D22 —0,

(5k 6K„)=A „,
(6G„,6C„)=a„,„,
(6k.6C,„)= (pg-'a). „,

(8.26)
The covariance matrix of the shifted data can

now be obtained directly from Eqs. (8.20) and

(8.26). The result is

0
(g 4 b &&3 Myr . ~0 ~0 ei f)g gb m2f

be~.cay —et.ay&be& / ~e«ef —
0 p

Se gSrt~ atm SbSg 7'be ]Jg~g

Although the formal derivation of (8.29) has been
facilitated by expanding about a point correspond-
ing to the true physical values of the relevant

quantities, it is of course impossible &o use these
values in a numerical eva, luation of V. In prac-
tice, we make the replacements a -a,



20 AMALGAMATlON OF MESON-NUCLEON, SCATTERING DATA 2795

&Db (8. so)

with normalized coefficients

y~; =1.

The covariance matrix of the amalgamated data
is

Cbg ybsf 40f ~b&i d'nf ' (8. 82)

%e choose the coefficients 'Y„& to minimize the
variance of Db subject to the normalization con-
straint (8. 81), i. e. , we require

q, q„&~;-T'„„, where the barred quantities
are the values at minimum for the particular fit
under consideration. These replacements are no
less accurate than the various other first-order
approximations involved in the derivation of (8.29).

The first term of V is primarily due to the er-
rors of the original data while the remaining terms
represent errors of interpolation, renormaliza-
tion, and momentum shifting. These latter errors
are generally somewhat smaller than, but com-
parable to, those of the original data.

The final step of our procedure is the construc-
tion of the amalgamated data and their covariance
matrix. The amalgamated datum in bin 5 is a
linear combination of the shifted data in that bin

((gy)2)

(ad»ad, ) = 5»,e», (9.2)

their collective aspects, this information is not
expressed in a particularly transparent way. In
this section we show how to extract from Cb„a
simple, quantitative description of the collective
fluctuations. One result of this will be the ability
to perform a fit to the amalgamated data with a
X function which involves only single sums over
the data points, rather than a double sum over all
the matrix elements of &bz. A more important
result will be the ability to extract from a parti-
cular fit, fitted amplitudes for the collective fluc-
tuations. These amplitudes can be used to per-
form collective adjustments to the data, in a direct
generalization of the common procedure of re-
normalizing data using a fitted scale factor.

Before embarking on a general discussion of
fIuetuation-affected data, we will consider a par-
ticular simple example by way of introduction.
The example is a set of data &b with independent
"statistical" errors web for each data point and
an overall normalization error of +n. More pre-
cisely, we represent 5» by a statistical model
in which

(e. i)

where the random variables ~ and d, have means
1 and db, respectively, and have the following co-
variance matrix:

a
Cbb —P yb~ —0,

gabe 5 8$
(a. ss)

where
where P is a Lagrange multiplier. This yields

b b

b
ybei ~ 8$»lf ~ 6k»'N )

8f 6k o9$

(8. 84)

where m' is the inverse of the submatrix of V per-
taining to bin b.

IX. CORRELATION VECTORS

The amalgamated data Db obtained in Sec. VIII
are intended to be useful as precise input data for
fitting programs, such as partial-wave-analysis
programs. They are more complicated than" raw"
experimental data, however, because they have
highly correlated errors as expressed by their
covariance matrix Cb~. The correlations arise
through the mutual dependence of the amalgamated
data on the interpolating surface and. on the sys-
tematic errors of the original input data. Most
of the error correlation corresponds to collective
fluctuations with rather smooth angular variation,
although more complicated correlations also oc-
cur. Although the matrix C,„contains complete
information on the error correlations, including

(9.s)

Expanding &b to first order in 4~ and 6db we obtain

Db =Qb+ 5Db,

5Db = Gab+ db5X;

The covariance matrix of the normalization-error-
affected data is

C» =(8D»5D ) =8» 8» +n d»d; (9. 8)

d» =f»ls» . (e. 8)

The error eb is chosen by requiring that the dia-

Now suppose that we wish to approximate the
covariance matrix &„ of some actual amalgamated
data Db by a parametrization of the type obtained
in Eq. (9.8). We need to choose values for d», e»,
and n. There is no unique way to do this, but after
testing several approaches we have settled on the
following method. For d, we use the fitted value
corresponding to bin b,
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gonal elements of C and 0 be equal. This gives
eb in terms of n:

2 2 2
eb —

Cbb —n db (e. 7)

bc bcC
Pbc (C C )&/&

bb cc
(9. 8)

and the sum of squares of its off-diagonal ele-
ments

(e. 9)

Finally, to determine n itself we define the resi-
dual correlation matrix .

try to devise a way to fit the "normalized" vari-
ables db and the normalization variable ~ simul-
taneously, even though we only have data on the
combination 4kb. The obvious procedure is to
represent the normalized variables by

D~/X =D, —d~sX

and to introduce an auxiliary normalization param-
eter to repiesent ~. For later convenience we
will actually use a normalization parameter $
which represents 0&/n. Since the normalized
variables have independent errors me, and &A/n

has unit error we are led to guess that the follow-
ing X function is appropriate:

n is chosen to minimize I', giving

p C,.d, d.
) (g

d'd,
b~ CM C be CbbC ] (9. 10)

Note that nothing in Eqs. (9.7) and (9. 10) guaran-
tees that eb &0 and n &0. This depends on whe-
ther the amalgamated data really do have the sta-
tistical character of normalization-error-affected
data so that the parametrization embodied in 0 is
adequate to provide a good approximation to C.

Once we have determined an approximate error
matrix we may consider using it in a fit to the
amalgamated data. We would then do the fit by
minimizing the approximate y' function

E-
@2 Q Q Db+ndp ~ g2

b eb

g (d', - D,)' d $:"

where

b eb

Minimizing 4" with respect to & gives

mia

(9.17)

(9.18)

g =QC t„(E,—Dt)(E, —D, ),
bc

where +b is the value of the fitting function at bin
b The inv. erse.of C is

2 d(,d~
8b 8b 8c

where

(9.13)

So g' reduces to

where

,'(D. —E.) .
b b

Thus p has the property of involving only single
sums over the data points.

It is of interest to consider the rather peculiar
looking )P function of Eq. (9.14) further and to
interpret it in ter~s of our statistical model of
normalization-error-affected data. Returning to
the model, suppose we have a set of data &b and
the associated covariance matrix ~~ which we
want to fit with some fitting function I"b. Let us

This shows two things. First, our guessed g
function 4' is indeed correct because once $ is
eliminated, 4,„ is identical in form to X which
was explicitly constructed from the correct error
matrix for the model data. Second, when the fit
is completed and Eb has been determined by mini-
mizing 4 „, we are able to construct explicitly
the fitted value of ~, "which is 1+n . We can
then return to the original data and construct re-
normalized data

(e. 20)

in which the effect of normaliza, tion fluctuation has
been suppressed. In an application to actual amal-
gamated data with C approximated by C we inter-
pret

(D,) „-=D,/(1+n"-) =D, —nd, :"

as renormalized data. The renormalization pro-
cedure is especially useful in a highly constrained
fit with g entering as one, contribution to a total X"

function which includes contributions from many
other data besides D, . To the extent that the
normalization of I"b is overconstrained by the other
data, the fitted value of -" in such a case may pro-
vide a particularly accurate measure of the nor-
malization of Db.

The above formalism is not only illustrative,
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but actually provides a useful first approximation
to the description of the correlated error struc-
ture of amalgamated data. In most cases a signi-
ficant amount of correlation does arise from un-
certainties in overall normalization. However,
this parametrization employs only one free param-
eter n' to describe all the off-diagonal elements
of C, and it is not sufficiently precise for general
use. We next develop a more flexible parametri-
zation which allows the detailed structure of the
specific fluctuations affecting a particular data
set to be extracted from its covariance matrix.

Consider a statistical model of fluctuation-af-
fected data Db specified in terms of random vari-
ables db and f„as

N

D, =d, +Q f„K~=d»+5D», (9.22)
n=i

where

f„=Q,

(Ddt»d, ) =5„e»,

(&d»fg = 0.
The "correlation vectors" ~ describe the profiles
of N statistically independent fluctuations whose
amplitudes are given by the random variables P„.
We will require that the correlation vectors be
linearly independent, and will impose this condi-
tion by requiring them to satisfy the following or-
thogonality relation:

pendix C. An indication of the accuracy of the
approximation of C by C is given by the final value
of 2&/Np(N» —1), where N» is the number of occu-
pied bins. This is the mean square value of &p„
and it should be small compared to unity. How-
ever, it is important to realize that although we
have found minimization of I" to be a particularly
stable and simple way to fit C with the parametri-
zation embodied in C, the final value of I" itself
is a rather arbitrary measure of the accuracy of
this approximation. Other quantitative measures
are given below, and these are also used in asses-
sing the accuracy of approximation. In our appli-
cations we have obtained adequate accuracy with
one or two correlation vectors. The best accu-
racy is usually attained by choosing X=2, but the
addition of a second vector does not always lead
to significant improvement so we sometimes
choose N = 1. Occasionally it even happens that no
improvement is possible over the simple normal-
ization-error parametrization, so we use N=1
with K' given by Eq. (C16).

The approximate X' function for a fit to the amal-
gamated data with the approximated error matrix
is of the same form as Eq. (9. 11), but with

(9.26)

where

So g' reduces to

=0 if n+m-.
eb

(e. a4)
(e.26)

The particular form of the orthogonality relation
is chosen for later convenience. The choice in-
volves no significant loss of generality because,
in practice, the orthogonality conditions always
represent a small number of relations between a
large number of free parameters. The covariance
matrix of the fluctuation-affected data is

C», = (5D» 5D,) = Q, e» +Q IP~E," .
n=1,

If we now wish to approximate an actual covari-
anee matrix C using this parametrization we must
choose values for a large number of free param-
eters (the diagonal errors 8, and the elements of
N orthogonal ccrrelation vectors). We have found
that a practical way to do this is to require equality
of the diagonal elements of C and C, and to mini-
mize I', defined as in Eq. (9.9), by varying the
correlation vectors one at a time. This constrain-
ed minimization procedure is described in Ap-

where

(e. 29)

The particularly simple form of C is a result
of our choice of the orthogonality relation for the
correlation vectors. We interpret g by returning
to the statistical model of Eqs. (9.22) and (9.23).
To fit the random variables db and g„simultane-
ously, using only data on the combination given by
D„we introduce auxiliary parameters $„ to rep-
resent the fluctuation amplitudes g„and construct
the quantities

to represent the unfluctuated" variables db. We
are thus led to the X function
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E —D+~ "E"
@2 b b ~n ~n b + 2

b eb n

g(t~-D~)' p („:.„g(„'
(o.sl)

Thus, we reproduce the well-known results that
the mean and central variance of X are N, and
2N„respectively. To judge the accuracy of C for
practical applications me calculate the mean and
central variance of

)t'=gC ',.(D, D,)(D, -D, ) {e.40)

(o. 32) for comparison with the ideal values of -Vo and 2NO.

Using Eqs. (9.36) and (9. 38) one finds that
Minimization with respect to E-„gives

At

M

n~min n s

(e. ss)

(j.') =TrC 'C

((p)') - (q')' = 2 TrC-'C C 'C .
(9.41)

As with Eqs. (9. 19) these results vindicate our
choice of 42 and provide us mith explicit formulas
for the fitted values of the fluctuation amplitudes.
In an application to amalgamated data with C ap-
proximated by C we interpret

(D,)„,.=-D, (o.s4)

q' =QC-'„(D, -D,)(D, -D, ) .
bc

(o. 35)

((D„—D,)(D, —D,)) =C,
by definition, we have

()P) = TrC 'C =No.

(o. 35)

Using the relation (valid for Gaussian statistics)

((D, -D„)(D, D,)(D„D„)(D. D,))

Cb C„+Cb„C +Cb C „
we find similarly that

((y ) ) =N„+2NO. (e. so)

as adjusted data in which the effects of fluctua-
tions have been suppressed. The adjusted data
will be particularly accurate mhen E„and hence
:"„, a,re overconstrained by other data besides &b.
The collective fluctuation amplitudes .„represent
primarily the effects of the normalization and mo-
mentum calibration uncertainties of the original
data. The fitted normalizations and momenta of
different data sets are correlated, but they are
not completely determined. Uncertainties in the
interpolating surface also contribute to the collec-
tive fluctuations.

We close this section by considering measures
of the a,ccuracy of approximation of C by C other
than the rms value of &p„. Consider the X' func-
tion for a set of amalgamated data Db with respect
to their own mean values D,:

It is important to monitor these two quantities in
practice, because it is quite possible to achieve a
small value of 21 /Np(NO —1) accompanied by bad
values of the mean and central variance. This
can usually be corrected by stopping the minimi-
zation of l" somewhat short of an absolute mini-
mum. Typical values of these quantities that we
obtain in applications with N = 2 are less than 0. 1
for the rms value of 6pb„order unity for the bias
TrC"'C-ND, and 2. 0NO to 2. 4XO for the central
variance.

X. CONCLUSIONS

Vfe have presented techniques for amalgamating
data from tmo-body meson-nucleon scattering ex-
periments. The techniques take account of statis-
tical experimental errors, known systematic ex-
perimental errors, unknown experimental biases
which appear as inconsistencies between overlap-
ping or neighboring data sets, and errors of inter-
polation. The resulting amalgamated data are
highly correlated. We are able to parametrize
the correlations in terms of collective fluctuations
using one or two correlation vectors.

The techniques described herein have been ap-
plied to a collection of all existing ~p elastic and
m p charge-exchange differential-cross-section
and polarization data between 349 and 2055 MeV/c.
We have produced amalgamated data for these
reactions at 35 momenta from 429 to 1995 MeV/c,
in angular bins of 3' spacing. Some of these re-
sults are described in Ref. 2. We believe that
these data mill be particularly useful for partial-
wave analysis and other resonance-region pheno-
menology. A description of our own partial-wave
analysis using these data is given in Ref. 1. The
data mill shortly be made available to interested
users. The computer program developed for this
project runs on the LBL CDC-7600, and could be
modified for use with data on various two-body
reactions. The program will also be supplied to
interested users. Inquiries should be directed to
one of the authors.
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APPENDIX A: ELECTROMAGNETIC CORRECTIONS

The electromagnetic (em) part of the correction
c„(defined in Sec. III) for an elastic differential-
cross-section datum consists of pure Coulomb
scattering and Coulomb-nuclear interferenee con-
tributions. That is, if we write the scattering
amplitudes as sums of em and nuclear parts

f=f. +fir

Z=gem+gx ~

(Al)

the corresponding correction term is

lf..l'+ lg, l'+2Re(f. fN*)+2Re(g. g.*).(A2)

We use the amplitudes of Tromborg et al. ' for
f, and g, , calculated in the manner described in
Sec. IIC of the following paper.

General expressions for the nuclear amplitudes
are given in Eqs. (2. 32) of the following paper, but
in applications to &p data amalgamation we have
modified these somewhat. First, rather than
multiplying each partial wave by the appropriate
Coulomb phase factor, we multiply by an average
overall phase factor e'"3, where 03 is the non-
relativistic Coulomb phase shift for I" waves. We
have verified that a3 is a reasonable average of
Z~~ (see Ref. I) for &, E, G, and H waves in the
relevant energy range. S and P waves are omitted
from the average because the Coulomb phase shift
is small compared to typical statistical errors in
the phases of these waves. Second, because we
are most interested in accurately reproducing the
single-photon-exchange pole contribution, we re-

normalize the real part of e ""fN to enforce
agreement with forward dispersion-relation deter-
minations of the real part at O'. We also ignore
the energy dependence of the empirical partial
waves used in constructing f„and g„and use fixed
values obtained by linear interpolation to the
central momentum q, . This is necessary because
of the erratic energy dependence of empirical
partial-wave amplitudes. The error introduced
in the em corrections at momenta different from
q, by this choice of amplitudes is a smooth func-
tion of momentum which is compensated by the
interpolating surface. The parametrization of

f~ and g„ is thus

f„(e)= e' "'IRef~ (0 ) Ref,(&)/ Re f~ (0') + i Im f,(e)],

@Ac) =e""g,(e),

where Ref~(0') is the dispersion-relation calcula-
tion for the forward real part evaluated at p„and
f„, g~ are the standard partial-wave sums for f„,
gN evaluated at q, without Coulomb phase factors.
The identification of Ref~(0') with the "Coulomb-
phase-free" version of fN is discussed in Sec. IID
of the following paper. In our applications to mp

scattering we have used the dispersion-relation
predictions of Engelmann and Hendrick and the
partial-wave amplitudes of Ayed. '

em corrections and the threshold corrections
discussed in Appendix B have been applied to
differential- cross- section data only. These cor-
rections are unimportant for polarization data
because of their lower statistical precision. Since
the corrections are made before fitting they must
be made at the measured momenta p, rather than
the fitted momenta q, . This is acceptable for em
corrections which show little energy variation over
ranges corresponding to typical momentum cali-
bration errors. This point is more delicate for
threshold corrections, and is discussed further in
Appendix B.

With em effects removed in the manner descri-
bed, the interpolating surface at 0 represents
the forward nuclear differential cross section.
We have included in our cross-section data sets
(both elastic and charge-exchange) predictions
(with errors) for this quantity obtained by using
the total cross sections and the optical theorem,
along with the dispersion-theory predictions for
the real parts of the amplitudes as calculated by
Engelmann and Hendrick. These predictions help
to determine the shape of the interpolating surface
near the forward direction, and also help to deter-

' mine the normalization parameters of the other
data sets. However, we do not include these 0
predictions in forming the amalgamated data by
the method described in Sec. VIII.
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APPENDIX 8: CORRECTIONS FOR THRESHOLD
STRUCTURE

S()S() .—1,

S1—-BB,
a=- B'B,

a=~S,B„ 1m' =0.'

In particular, this implies that for M &N,

S„=i~2&,~q,

Sue=(Sob~ —Bu q.2

Eliminating Bz we obtain

s„„=(s,)„,+ —,'(s„„)2,

(B2)

(Bs)

(B4)

which is the basic relation between an opening
production channel and the corresponding elastic
channel. The term —,'-(S&&&) produces a square- root
cusp in S~„because qcc (s —s,„) . For N=2 the
S matxix reduces to

S=-
e"."(1—a,'q) i~Vs, e*'~q

i~2&,e'"v q 1-Bo'q
(B6)

Equation (B5) displays the simple relation between
the elastic phase shift at threshold and the phase
of the production amplitude which is characteris-
tic of the two-channel case.

We now specialize to r p scattering near the gn
threshold at 1488 MeV (687 MeV/c), and let S be
the IJI'= —,.'-,'- S matrix. It is assumed that the
above description in terms of & two-body channels
is adequate for our purposes, although multibody
channels account for nearly all of the inelasticity
at this threshold. The production cross section

We begin with a review of. the effect of an inelas-
tic threshold on a communicating open channel.
Consider the S matrix for N two-body channels
with definite values of all conserved quantum
numbers 4, I'„etc. We examine the behavior of
S when the first N —1 channels are open, and the
Nth is an 5-wave channel near threshold. I et q
be the c.m. momentum in the Nth channel so that
S~„~~q(hf &N) and S„„—1~ q near q=0. The
general form of S to lowest nontrivial order in q is

,
s, +s,q il2fiWq (»)0

iv2B Wq 1+Aq

where So and S& are symmetric (N- 1)~ (N —1)
matrices, B is an (N- 1)-component vector, and
4 is a scalar. We. require that S be unitary above
threshold (q&0) and that S, +Sqq be unitary below
threshold (q =i ~q~). After some algebra one
finds that this leads to the following relations
among the parameters of S:

near threshold is

0'& q-qn = —
2 I S,N. nN I

= 0'qqq y3 q
(B6)

where q, and q„are the c.m. momenta in the m p
and gn channels, respectively, and

d& -I-nn 4~
I 8

th 3qtf i th

This determines ~B,„~ in terms of the slope of
the production cross section at threshold. The
measured value of o„' is 21.2+ 1.8 Pb/(MeV/c). "
Using (BS) and (B7) we find that the elastic 7
matrix element near threshold is

(B7)

AN psN T + 2 I 2foS —1 Si
~, tn &ne qn~ (B8)

Where a ig the phaSe Of B,N. Bhandari and ChaO
have determined n to be 41'+ 6 by fitting the
backward m p elastic differential-cross- section
data of Debenham et al. ' The r& S11 amplitude
is fairly elastic near the gn thre'shold (t) -0. 9),
so it is not surprising that n is consistent with the
threshold value of the elastic phase shif t & -39 .

Consider now theproblem of amalgamating m p
elastic or charge- exchange differential- cross-
section data in a range of laboratory momenta

p2 &p, ~ &p~, which includes 687 MeV/c. We will
construct correction terms, contributions to c„,
which represent the interference between the cusp
term in Eq. (B8) and the regular part of the f
amplitude at threshold. As discussed in Hec. III,
we are free to modify Eq. (B8) by adding analytic
terms which can be fit by the interpolating sur-
face, e. g. , we can add a quadratic polynomial in

p,~. This freedom can be used to control the mag-
nitude of the correction terms away from the
immediate vicinity of threshold. Thus, we para-
metrize T as

T T() + T TQ (B9)

where T, contains the cusp contribution, T@ is a
quadratic approximation to T, and To is a con-
stant to be determined. It is convenient to intro-
duce a new variable

2plab P2 P1
P2 P1

(B10)

which varies from -1 to 1 ae P1 varies from p1
to p2. We choose T, to be proportional to
(x —x,„)' and to be normalized to agree with the
square-root singularity in Eq. (B8). This gives

T, =iae" (x —x,„)'", (B11)

where the square root is positive for xt„&x & 1
and positive imaginary for -1& x & xt„. The con-
stant D is
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2 I P2-P1 dQ~

(
2

dqf) 2m&mnmg VM th

dpi' g., tg (mq. + mq)

(B12)

1

dx(x- x,„)'"Z,(x) . (B14)

Note that h, is in general complex. Tq is now

given by

T, = ice'"a(x) . (BI6)

The constant To is determined by linear interpola-
tion of the cusp-free quantity T-(T, —To) to
threshold, using the empirical 8» partial-wave
amplitudes of Ref. 10 for &.

Correction terms are now constructed from the

f amplitude:

f=f0+ (T, —Tq), —K
(B16)

where fo is the partial-wave sum for f with the
S» amplitude replaced by the quantity To construc-
ted above, and with the other partial waves eval-
uated at threshold by simple linear interpolation.
& is the isospin factor for the reaction under
consideration; —,

' for v p-v p and -v 2 /S for m p—
m n. The correction term is

For T we construct a quadratic function of x-
which approximates (x —x,„) ' in the range ~x

~

& 1:

h(x) =g ag, (x), (Bls)
x=0

where I', is the lth I egendre polynomial and

the fitted momenta. In our present applications,
however, we. have followed the simpler procedure
for two reasons. First, much of the existing m p
data near 687 MeV/c are taken at too widely
spaced momenta and/or are insufficiently precise
for cusp effects to be clearly present. The com-
plication of evaluating c«at q,. rather than p, is
unwarranted for these data. Second, the data of
Debenham et a/. , which does display prominent
cusp effects, has a momentum spectrum with a .

1.2 /z full width at half maximum and a momentum
calibration error of +O. 1%. Thus, the difference
between p, and q, is completely washed out by the
momentum bite integration. Similar, though less
extreme, mismatches between momentum bite
and calibration error are present in the other
existing high-precision data sets near the ~
threshold.

APPENDIX C: DETERMINATION OF THE
CORRELATION VECTORS

We consider the problem posed in Sec. IX of
approximating a given covariance matrix C„by
the parametrization given in Eq. (9.25) subject
to the orthogonality constraint of Eq. (9.24). Our
approach will be to require equality of the diagonal
elements of C and C and to minimize ~, defined
as in Eq. (9. 9), by varying the correlation vectors
one at a time. To describe the procedure we
introduce the notation

2
db Cbb/eb

v", =z",/&c„,

2K—Re[f,*(T, T,)].
q,

(BIV) p„=C~, /(Ct, t,c„)' = 5„/d~ + Q v", v", , (cl)

This must be evaluated at (cos&)„and integrated
over the momentum spectrum of data block & be-
fore being added to c„. The momentum averaging
is particularly important when p, is close to 687
MeV/c. If the spectral shape is a polynomial in

P,~ and we neglect the weak momentum dependence
of fo/q„ the integral can be evaluated exactly by
Gaussian integration in the variable

~

(x —x,„)~'
~'

over appropriate subranges. For most & p data
we have used a rectangular momentum spectrum
for this integration. For the data of Debenham
et al. ' we use a triangular shape appropriate13, 14

to the conditions of that experiment.
We finally consider the problems associated with

making the above corrections at the measured
momenta p, rather than the fitted momenta q, .
This is not really justified for threshold effects,
and a better procedure would be to adjust the cor-
rection terms iteratively as the q, are being de-
termined so that they end up being evaluated at

p„=c„/(c„c„)'",
~Pbc —Pbc Pbc '

Now suppose we want to iterate vector 1, holding
the rest fixed. We introduce the matrix a.'

n
bc Pbc ~ VbVc ~ + Vbvc + Pbc &

(c2)

1
Vb

Xb dbVb f
abb —(Vb)

(cs)

where the latter equality follows from the re-
quirement that 5q, b

—0. The problem is now to
vary xb so as to minimize

&p„=- a„—v,'v,' (c4)

which has known matrix elements given by p„and
the fixed vectors. It is also useful to simplify the
orthogonality conditions by replacing the vector
elements v„with new independent variables,
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where

v,
' = [(1+4a„x,') '" —1],

2xb
(c6)

etrization we have obtained adequate accuracy by
always choosing X=1 or N=2. In either case we
begin with a single correlation vector appropriate
to normalization fluctuations

subject to the constraints K, = nit, /st„ (C16)

g x~v", = 0 for n & 1.
b

(c6)

n=r+2g x„(x'v"), (cv)

We do this by an iterative Newton-Raphson mini-
mization of the quantity

where n' is given by Eq. (9. 10), and then vary
Kb to minimize I'. If K=2 it is important to con-
struct a fairly good guess for the second vector
before beginning the Newton-Raphson iteration.
To describe this, let a be defined as in Eq. (C2),
except that v is now the variable vector with v'

held fixed. We calculate the quantities
where the &„are I agrange multipliers and we are
using vector notation for the sum over bins. De-
note the derivative vector and second-derivative
matrix of I' at x, =xo by

z ar
Qb ———

2 Bxb

(ce)

S„,= g a„a„,(1- 6„„)(1-6„)

=v', v,
' Q(v,')'(1 —& )(1 —&,„)+O(&p),

d

t, = ab, Sb, 1 —&,
(clv)

1 B2I'

2 BxbBx,

and expand Q to second order about x,:

= (v,')'g(v,'v,')'(1 —&„)(1 6„)(a 6„)+ O(6p),
cd

and our initial guess for v' is

Q=Q —2 — „v" 5x+ 5x &x, C9
n&1

cave vc (cia)

Dx=x —x . (clo)

(c11)

The starting vector x is assumed to satisfy the
orthogonality conditions, so the I agrange multi-
pliers are determined by requiring that

Minimization of 0 determines the increment in x
to be

where 8 is the value of b for which t, is a maxi-
mum. The second term in Eq. (C18) approximate-
ly orthogonalizes v to v . Now we go through an
iteration in which we alternately scale v' by the
factor

QqVbV~ VyV~

which minimizes I" and then replace v by v —av'&

where

(v")'(6x) =( v)'P 'n ZQ.-.~.= o,
m&1

where

(c12) Q dbVbVb

db Vb + 2 dbVbVb (c2o)

Q.„=(v")'P 'v .
Thus,

(C13)

(c16)

In applications of the correlation-vector param-

~.=Q Q '. (v )'P 'o', (c14)
m&1

where Q is the submatrix of Q obtained by deleting
the first row and column. The step from x to x
results in a decrease in I' given by

is chosen to orthogonalize v' and v to first order.
During this iteration limits must be imposed on
the size of each element of v to ensure that

a» & (v, ) . The process converges when n be-
comes vanishingly small, and the full minimiza-
tion procedure with all elements of v varying in-
dependently can then begin. Alternative variation
of v' and v is continued until convergence is
achieved. Instabilities of the Newton-Raphson
method sometimes occur, but they can usually be
avoided by temporarily switching to a simple
steepest descent minimization.
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"The truncation function is referred to as a "conver-
gence test function'" in Befs. 3 and 4 and in many
other publications. We prefer the new terminology as
heing more descriptive.

In principle, the integration in Eq. (4.2) should be done
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