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The forward-backward asymmetry Ay and longitudinal polarizatior: Py of a spin-1/2 baryon in the process
e +et—B 4+ X are calculated in terms of the vector (a,) and axial-vector (b,) weak-neutral-current
couplings of the quarks composing B, their electric charges Q,, and their (g —B) fragmentation
probabilities. Using a theoretical argument for baryons composed of one heavy c,b,..., quark and two light
u,d quarks, and SU(3) symmetry for baryons composed of light u,d,s Quarks, Ap is expressed in terms of b,
and Q, only. In similar fashion, some relations between the various Py, independent of the fragmentation
probabilities, are obtained. The results are discussed in' detail for the strange and charmed baryons. The
corresponding weak-neutral-electromagnetic interference effects for the vector mesons are also briefly

discussed.

There is little doubt that the study of weak-
electromagnetic interference effects will deepen
our understanding of the weak interactions, in
particular of the weak-neutral-current interac-
tions, and will play an important role in discrim-
inating between different weak-interaction models.
A recent indication of this is found in the analysis
of the polarized-electron-nucleus scattering ex-
periment.! Here, as well as in the analysis of
high-energy neutrino scattering data, the effects
of the heavier s, ¢,..., quarks in the nucleon sea
are always neglected, such effects being presum-
ably small. In this way, the weak-neutral-current
couplings of the # and d quarks have been deter-
mined. But, as long as the s, ¢,..., quarks in
the nucleon sea are neglected, the determination
of their weak-neutral-current couplings must
proceed in some other direction. With this mo-
tivation in mind, we have previously considered?
the weak-electromagnetic interference effects in
the process e¢” +e¢*— M + X, where M is a pseudo-
scalar meson. In this process, the interference
between the weak and electromagnetic amplitudes
produces a forward-backward asymmetry A, of
M. Working in the framework of the quark-parton
model, A, was expressed in terms of the axial-
vector weak-neutral-current couplings b, of the
quarks composing M, their electric charges @,
and the ratio D(x) of their (g — M) fragmentation
probabilities. A, is independent of the vector
weak -neutral-current couplings a, since the for-
ward-backward asymmetry is an intrinsically
parity-conserving effect so that terms of the form
ba, (or ab,) do not appear in A,, while terms of
the form g,a, merely renormalize the purely
electromagnetic cross section.

In this paper we discuss the interference effects
in the process e” +e* — B+ X, where B is a spin-3
baryon. Here, in addition to the forward-back-
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ward asymmetry A g, a longitudinal polarization
Py is also expected. The longitudinal polarization
is intrinsically parity nonconserving and, in con-
trast to the forward-backward asymmetry, is sen-
sitive to both b, and a,. We also study the process
e +e*— V+X, where Vis a vector meson, for
which similar effects are expected. From an ex-
perimental point of view, the baryon process is
much more useful than the vector-meson process
even though the expected longitudinal polarization
of B and V are of the same order and the produc-
tion cross section for V is considerably larger
than that for B. The reason for this is that the
dominant decays of the vector mesons are parity
conserving and hence unsuitable for the determin-
ation of longitudinal-polarization effects. Thus
consider, for example, the mesons p, K*, D*,

The dominant decay modes of these mesons are
parity conserving, i.e., p— 71, K*— K, D* —~Drn
or Dy, and for such modes the angular distribu-
tion of the daughter pseudoscalar mesons is in-
dependent of the longitudinal polarization of the
parent vector mesons. In contrast, the decay

B— B’ + M is parity nonconserving and sensitive
to the longitudinal polarization of B. In what fol-
lows we calculate the longitudinal polarization and
forward-backward asymmetry of B and apply the
results to the strange and charmed baryons. For
baryons composed of even heavier quarks the re-
sults are analogous to those for the charmed bary-
ons. We work in the framework of the quark-
parton model and, to describe the quark —hadron
fragmentation process, introduce several po-
larized quark fragmentation probabilities; the num-
ber of independent fragmentation probabilities of
this kind can then be reduced by use of space-in-
version and SU(3)-invariance considerations. In
this way, relations independent of the fragmenta-
tion probabilities can be obtained for the asymme-
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tries and polarizations of the baryons. Finally,
the vector mesons are briefly discussed in
Appendix A.
Our calculations are based on the following
Lagrangian
L= —e(J, —ey,e)A* —g, (N, +el%e)Z",

where

o= D, Qfvud,

quarks

N,= z: 6—11“161,

quarks

and
F{,Z?’u(af'*'bf'}’s) f=e,q.

In the Weinberg-Salam® (WS) model we have the
relations

- S ¢
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where I* is the weak isospin of the (left-handed)
fermion (123)214(3)=18(3)= crrt= —%).

The cross section to produce a quark with mo-
mentum P, and polarization }, in " +e* —~¢q +7 is
then

1 &*Q°
2 4s 7(6,9)

doiq(sd’&‘q)
asy
X[1+A4,65,6,0)+ Py(s, 6, 0)%" b,],
1)
where cos0=p, ‘p,-, ¢ is the azimuthal angle rela-
tive to the transverse polarization 2 ,-= -2,. of €

(Xe *Dy-=0), V5 is the total center-of-mass en-
ergy, E,=3Vs, and

aquz _ azQaz
_4§_f(9’ (Z))“ S

2 (1+ cos®6 - [X,|%sin6 cos2¢)

~ is the purely electromagnetic cross section.
Further,

4B(s)b,b,\ 2 cosf
Aa(sy 9: d)): ( Qq )f(e, ¢) ’ (2)
P(s,0,¢)= 41;(3) (aeba +a,b, ]ZC(%OS(:), (3)
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with

B(s)s(zgfngi) (:f,‘,%) (T——"s;/l%?) l'

In Eq. (1), we have neglected the square of the
weak amplitude and a weak-electromagnetic inter-
ference term of the form 4B(s)a,a,/@, that merely
renormalizes the electromagnetic cross section.
In addition, we have set all masses equal to zero.
To first order in B(s), A,(s, 6, ¢) and P(s, 6, ¢)
are, respectively, the forward-backward asymme-
try and the longitudinal polarization of the pro-
duced quark.

The angular dependence of the forward-backward
asymmetry Ag(s, Eg, 6, ) and longitudinal polar-
ization Pg(s, Eg, 6, ¢) of the produced baryon will
be the same as that of A,(s, 6, ¢) and P,(s, 6, ¢).

It is thus convenient to write

2 cosé
Ay(5,Ep, 6, 0)= A, 5p) 2E5S,
(4)
\ 2 0
PB(S’EB’ b, d’):P;s”(s;EB)+P(32)(S,E3)f(g(,)<sf)) ’

with analogous equations for A,(s, 9, ¢) and
P,(s,6,¢). From Egs. (2) and (3) we then have

a5 = 2B
pén(s):flf(ﬁzfib_“’ , © (5)
Qq
4B(s)b,a
P(z) — elq .
< (s) —a

The corresponding quantities for u~ in e™ +e*
— i+ u* are obtained from Eq. (5) with the re-
placements a,—~a,, b,—~b,, @,—~ Q,=-1.

As already noted, the forward-backward asym-
metry is intrinsically parity conserving so that
there will be higher-order electromagnetic con-
tributions to Ag(s,Eg, 6,¢). On the other hand,
the longitudinal polarization is intrinsically parity
nonconserving and, if there are no directions
available other than 13 s and ﬁe-, its nonvanishing
value is a clear signal for the presence of a
parity-nonconserving amplitude. However, if the
spins and/or momenta of final particles other than
B are observed, or if the initial ¢” and ¢* are po-
larized, there can be parity-conserving contribu-
tions to Py(s,Eg, 0, ¢). In general, parity con-
servation implies

Py(s,Ep, 0,¢9)=—Py(s,Eg, 6,7~ ¢), (6)

whence, for initially unpolarized ¢, e* beams for
which there is no ¢ dependence, Pg(s,Ey, 6)=0;
it is important to note that Eq. (6) holds even

after inclusion of higher-order electromagnetic
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contributions to Py(s,Ep, 6, ¢) and Pg(s,Eg, 0,7
—¢). These higher-order contributions have been
calculated® for ¢ +e*— u” + u*, from which the
corresponding contributions for ¢” +e*—¢q +g can-
be obtained with the replacement @, — Qq and ap-
plied to Egs. (2) and (3).

We proceed to treat the ¢ — B fragmentation
process; in this process, part of the quark polar-
ization is transmitted to the baryon. In general,
the resulting baryon polarization vector will de-
pend on all the directions involved in the fragmen-
tation. These are the momentum and polarization
of the quark and the momentum of the baryon.. As
Eq. (1) shows, the first two coincide and, in the
simplest version of the quark-parton model, the
directions of the quark and baryon also coincide.
Thus, the baryon is polarized along its direction
of motion and to calculate its polarization we need
only calculate the cross section for it to have a
definite helicity. Denoting by dog(Pg,A5)
(do,(D,,2,)) the cross section for production of
B(g) with momentum P (B,) and helicity x5 (A,),
we have®

doB(Pga Ap) — Z (dcq(l/xpﬂskq)>pg’;5(x) , (7)
dx dQ g as

where DB"B(x) is the probability that a quark ¢

with he11c1ty A, will form a baryon B with helicity

Ap and momentum

Pe=xPe=[Ep? —mp?/(s/4 -mA]"'?D,
=QEp/Vs)D,.

Space-inversion invariance of the fragmentation
process implies the useful relation
DE5(x) = D23 (), ®)
and it is also convenient for what follows to define
Dy, (¥)=DF!(x) + D (%), ©)
ADy, (x)=D2}(x) - DI (x) .

Thus, substituting Eq. (1) in Eq. (7) we obtain

dog(Pp,rp) _1 ( d01(50)>
dxdSQ 2 \dxdQ

X [1 +AB(s’x, 9, ¢)+PB(s’x’ 9’ ¢)A’B] ?
(10)

where

dof o? .

daxdQ  4s (e, qb)[ E Q DB/a(x)]

AB(s’x’ o, ¢)= qEQ“ DB/“(x)A‘I(S’ 6, ®)
27 QDo)

) 2 cosf
16, 9)’

:AB(S,X (11)

21Q2A Dy, (X)P,(s, 6, $)

PB(S,x,YG, (f)):
EQazDB/q(x)
_ p() (2) 20059
=P (s, x)+ PP (s,x) f(G K
(12)

and where Egs. (4) and (5) have also been used.
_Equations (11) and (12) have two limiting forms
that we consider separately.
Case I, All the quarks contribute equally to
the fragmentation process:

DB/q(x):DB(x) ’
ADg /q(x); ADB(X) .

Defining
Cylx)= ADI:ZSC) , (13)
Eqgs. (11) and (12) yield
22Q.0,
A (S):4B(S) q
B EQG
PW(s,x)= CB(x)(Z—:>AB(s), (14)
P2 s,x)= CB(x)[4B(s)be]_Zg>£‘ﬁ?_ ,
2 Q;
and reduce, in the WS model, to
(AB(S)> _ 222Q12
Au(S) WS - 2 qu ’
A
[PD(s, %) ]y = Ca(¥)B(s)(1 -4 sin29w)(A‘:§; >ws ,
(15)
2 _ Ag(s) ‘g
[P(B>(s,x)]ws_CB(x)B(s)[<A“(s))ws —4sin ew],
where

[A,(8)]ys=-B(s)

is the forward-backward asymmetry of the u-.

Case II. The contribution of one quark (call it
Q) to the fragmentation process is much larger
than the contribution of the other two quarks. De-
fining

cB,Q(x)EM , (16)
Dy q(¥)
Egs. (11) and (12) yield in this case
Ap(s)=Aq(s),
(17)

PW¥(s,x)=Cp,o(x)PF(s),
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where Ag(s) and PY’(s) are given by Eq. (5) with
bys a4, Q, Teplaced by bq, aq, Qq. In the WS model
these equations reduce to

(58, -

(PE(s,%))ys = Cp/q(x)B(s)(1 -4 Sinzgw)(ﬁ)sg; )WS

(18)

(P2 (s,%))ys=Cp,qx)B(s) [<AB(3)> -4 sinzf)w] .
AL(s) ) ws

We have considered these two particular cases be-
cause we believe that Case I applies to baryons
composed of the #, d, and s quarks, while Case
II applies to baryons containing ¢, or even heavier
b, ..., quarks. A further discussion of the physi-~
cal assumptions underlying these two cases is
given in Appendix B. -

Let us now consider the strange baryons A, Z°,
and £°. Assuming SU(2) invariance of the strong-
interaction Hamiltonian we obtain

Dy su6)=D, 4,
(19a)

DE’ /u(x)zDE'/d(x); DD*/s(x):DE'/s(x) ’

with similar relations for the functions ADj, /q(x).
In addition, if the quark —baryon fragmentation
process is viewed as the decay of the originally
produced quark into the quarks contained in B, we
further obtain

DA/u(x)= DA/a(x) ) Dv:*r/u(x):DE*/s(x) ’
(19b)
Dg- j4()=Dy- /(%)

which together with Eq. (19a) corresponds to the
relations of Case It

Dy yy(®)=Dg- 4{x)= Dy~ , (%)= Dy +,(¥) = Dy(x),
. : (19¢)
D, (x)=D,,,x)=D,, (x)=D,(x).

Thus, using Eqs. (19a)—(19c) and remembering
that Q,= -2Q;= -2Q,=%, Eq. (15) gives

[Ay(6)/Aus))s =2,
[Aps)/Au)]we =%, (20)
[Ap-(s)/A,6)]ys =3.

Since [on the basis of Eq. (19¢)] the same function

Cy(x) describes the longitudinal polarizations of
Z* and £ we also obtain, from Eqs. (14) and (15),

P;;l«?(S,x) :(ZQubu+sts>< 2Q42+Q32 )_é
Ps,x)  \ 2Q2+Q2 /\2Q.5,+q,5,) 9’
21)

P;:%’(s,x):(gQuau,FQsas ( 202+ Q2 )
Pg;?_)(s,x) 2Q,,2+Q32 ) 2Qq04 + Qqa,

5 3 a2
Z —4sin®g,

—_—
3 —45sin®0,

where, in both equations, the last equality holds
in the WS model. Since C,(x)# Cy(x), there is no
definite relation between the longitudinal polariza-
tion of A and the longitudinal polarizations of Z*
and Z°. The only relation available is

PP(s,x) :(a_> Qubu+ Qabs + Q,b,
PRZ)(S,x) b, Quay + Quay + Qca,
_1-4 sin6y

=125ty ’ @2)

where again the last equality holds in the WS mod -
el. On the other hand, if we assume that Case II
applies to these baryons, Eq. (17) gives, with
Q=s,
[AA(S)] _ [Aw(S)] B [AE'(S)] _3

AL) s T LALS) dys ™ Ayus) dys ™ 77
in contrast to Eq. (20). However, this last as-
sumption cannot be justified for the strange bary-
ons.

In Ref. 2 an argument was given that indicated
that for mesons composed of a heavy quark @
=c¢,b,..., and a light antiquark §=7%,d, the con-
tribution of @ to the fragmentation is much larger
than the contribution of g; i.e., Dy q > Dy 5. The
same argument indicates that a similar situation
exists for a baryon composed of a heavy quark and
two light quarks: Dg,q> Dg/q, ADg,q> ADpg,,.
Assuming then that Case II (with @ = ¢) applies to
the charmed baryons A (udc), Z:*uuc), Z(ddc),
we obtain from Egs. (17) and (18),

AAO(S) =AE;+(S) :Aug(s) ___i (b_c)
Au(s) Au(s) Au(s) Qc bu

1)
PP (s,x) _szl(s,x) :Pg(g(s,x) _ 8abq

(2) a,b
Py ls,x) P‘Ezzl(s,x) P,‘fg’(s,x) e

(23)

_ 1 —4Sil’129W
T1-Zsine,

In both equations the last equality holds in the WS
model. Further, Case II (with @ =c) yields, in-
dependently of the weak-interaction model,
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PN (s,%) _PPl(s,x) _
Py =_%¢ =
(1) (2)
Py (s,x) P:g(S,x)
Pfg:(s,x) =P,‘f:(s,x) _Cpyelx)

T
Pls,x) Pgis,x) Cr/elr)

1,

(24)

which can be used as a test of the assumption of
c-quark dominance in the fragmentation.

For an experimental test of the relations in
Eqgs. (20)-(24) the longitudinal polarization and
the forward-backward asymmetry have to be mea-
sured. For the strange baryons it is well known
how to proceed.® The two-body decays of these
baryons are of the form

S—N+m,

where S is the strange baryon and N is a nucleon.
By measuring the angular distribution of the de-
cays, the combination @gPg is determined, which
in turn determines the longitudinal polarization
Pg since the decay parameter &g is known. The
same idea can be applied to the charmed baryon.
The decays

‘--. 0—’ =
Sr—TtHrt, 20—+

produce two charged particles in the final state.

If the particles are detected in coincidence, the
forward-backward asymmetry and the combination
a P (C=2}", 2% can be measured. Here the
decay parameter @, is not known and must be
measured separately to determine the longitudinal
polarization P,. This can be done by measuring
(Pp)tina1s the polarization of the £ in the final
state; (Pp)yiga iS itself determined by the angular
distribution in the decay Z—~ N+ 7. The procedure
then for the charmed baryons is to look for the de-
cays

C—Z+mn

N

N+q7'
and to measure the angular distribution of the N7’
and of the Zn, This is in fact the procedure used
to determine the longitudinal polarization and de-
cay parameter for the cascade baryons through the
decays®

=~ A+
Voo
p+m.
The same procedure can be followed for
A, —~A+7
N\
pt+m.
Although the dominant decay modes of the charmed
baryons are expected to contain more than one pion

in the final state, the two-body decays required for
the above analysis should be a nonnegligible frac-

tion of all the decays. :
In Egs. (21), (22), and (23) we have focused our
attention on quantities that (subject to the assump-
tions made) are independent of the fragmentation
probabilities Cy(x), Cp,q(x), defined by Eqgs. (9),
(13), and (16). In contrast we can focus our at-
tention on quantities that depend explicitly on the
Cplx), Cg/q(x), i.e., on the longitudinal polariza-
tions P%4'(s, x) of Egs. (14)~(18), and regard
measurements of these longitudinal polarizations
as determinations of the Cyz(x), Cyg,q(x). We also
note that the same Cz(x) or Cp,q(x) appear in any
process in which B is formed, e.g., v, +p—~v,
+ B+ X, and if they have been determined from the
e +e’'— B process, can be used to predict the
longitudinal polarization of the B in the v, —~ v, + B
process.” In other B-formation processes,

~e.g., p+p—~B+Xand m+p— B+X, the calculated

(weak-strong) interference effects will also depend
on the details of the model used to describe the
quark-quark collisions, so that, if the quark—
hadron fragmentation probabilities are known,
comparison of theory with experiment for the in-
terference effects can be used to discriminate be-
tween different models of the quark-quark col-
lisions.® From this point of view, the measure-
ment of the asymmetries and longitudinal polar-
izations calculated here would also be very useful.

Finally we mention that the results for the
charmed baryons can be extended to baryons con-
taining the heavier b,¢,..., quarks, where we ex-
pect the Case II assumption to be even more ac-
curate.

We express our thanks to Professor H., Prima-
koff for his guidance and many discussions during
the course of this work. This research is sup-
ported by the National Science Foundation.

APPENDIX A

In this appendix we discuss the interference ef-
fects in e +e*— V+ X, where V is a vector meson.
We begin by establishing Eq. (7) on the basis of a
density -matrix argument.

Let pfy" = (py)* and o = (pf *)* be density ma-
trices for the hadron H and quark g, respectively,
where X, A/, k, k' are helicity indices. Wave-
function superposition then yields

pr =2 Dax ey . (a1)
aKk’

We normalize py and pg so that

doy(Dy,2) — M

p " (A2)
dx d§? "
do’q(ﬁv, K) kK
dﬂ _‘pq . (A3)
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In the limit m, —~ 0 the V—-A and V+ A amplitudes
do not interfere. In this limit the polarization of
the quark is purely longitudinal and p}* is di-

agonal. We then obtain from Egs. (A1) and (A3),

= L ot o0 “2R).

In the simplest version of the quark-parton model,
the transverse momentum p,, of the hadron rela-
tive to the quark direction is neglected. Then the
three directions available in the fragmentation
process, namely the polarization and momentum
of the quark and the momentum of the hadron,
coincide. Considered as a matrix in the indices
A\, DG () must then commute with Ty by

-S,, p,, since it is invariant under rotations about
Dy Thus the matrix D2’ (x) is diagonal in M\’ and
so is pi’. According to Eqgs. (A2) and (A4), the non-
zero elements of g} are then given by

(a4)

w(e, ¢)__

+ 372 cosfsinb sing Im(p}

with p}’ normalized according to Trp,=1. If the
production of V is parity conserving, we have the
relations

B = (I

Thus, the parity-nonconserving terms are

(A7)

Py=pit-py,
Im(py’ - 0%,
Imp}t.

P, is the longitudinal polarization of V. As can

be seen from Eq. (AB), W(6, ¢) is independent of
P, and, from our previous discussion, the other
two parity-nonconserving terms are zero since

p} is diagonal. Therefore, the only measurable
interference effect in the case of the vector mesons
is the forward-backward asymmetry. This can be
calculated from Eqs. (A5) and (2) and is given,
using Eq. (4), by

QqboDy /o(x) = Qb,Dy /7 (x)
QozDv/Q(x) + quDV/a(x) |
(A8)

A, (s,x)=4B(s)b

where @ and g are the quarks-composing V and
Dy ,q(x)= DEi(x) + Dx) + Dg; (x),

with a similar definition for Dy ,5(x). Thus, if the

[1+2(1—3p °)(1 -3 cos?6) - 3V 2 cosb sinf cos p Re( pi° ~

-p¥) +3sin®6sin2¢ Impyt],
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dx dU

which, with H= B, is just Eq. (7). The argument
we have used to arrive at Eq. (A5) depends cru-
cially on the assumption that there is only one di-
rection available in the fragmentation process.
Thus, if we take into account the transverse po-
larization of the quark due to the nonzero quark
mass, and the transverse component p,, of the
hadron momentum, our argument does not hold
vand pj" and pf* have off-diagonal elements. How-
ever, these elements are of order (m,?/s) and
(g 2/s) relative to the diagonal elements and are
negligible for practical purposes.

Let us consider the vector mesons in the light
of this discussion, The angular distribution for
the decay V—M +M’, where M and M’ are two
pseudoscalar mesons, is (6, ¢ are polar angles of
Py relative to p,)

p?:fw_ﬂ(M=Z ggg(x)(d"“(p"")), (A5)

pyt) —3sin*¢ cos2p Re pit

(A8)

charges @, and weak-neutral couplings b, are con-
sidered known, a measurement of A,(s) effectively

determines the ratio
Dy (%)
Dx)=—""———=.
( ) Dv/Q(x)

If we assume SU(3) invariance for the vector me-
sons composed of the light quarks u#,d,s, we have

D(x)=1 and Eq. (A8) yields
A,(s)=4B(s)b, 9&”3._&_.
Q" +Q.°

For the mesons composed of a heavy quark @
=c¢,b,..., and a light antiquark 7=7%,d, we can
assume D(x) — 0 on the basis of the argument given

in Ref. 2. In this case Eq. (A8) yields
4B(s)b.b
Av(s)zAQ(s):—%—)—-'f—o-.
Q

In-both cases the asymmetries are equal to the
asymmetries of the corresponding pseudoscalar
mesons? and we obtain, for example,

A, (s)=A(s),
Agx-(s)=Ag(s),
Apx-(s)=Ap-(s),

etc.
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APPENDIX B

In this appendix we wish to distinguish between
assumptions regarding the fragmentation probabil -
ities appropriate to Cases I and II:

DE3(x)=DEp(x) = DR5(x) , (B1)

DB8(x) > DEMB(x) , DEB(x) , DEB(x) , (B2)

and assumptions relating to the same fragmenta-
tion probabilities made in the literature in the con-
text of other problems,’ e.g.,

Q,‘?qa(x): brazPrrd®); a=u, d, s, ¢,...,,

(B3)
or

qu:BOC=1)=GAQABDa/q(’C=1);‘I=“; dy, Sy Cyuuny.
' (B4)

The assumptions in Eqs. (B3) and (B4) describe
the dependence on x of the fragmentation probabil -
ity of a given quark (and thus distinguish between
the behavior of a “fast” quark and a “slow” quark)
while the assumptions in Eqs. (B1) and (B2) relate
the values, at a given x, of the fragmentation
probabilities for different quarks. If now, in ad-
dition to Eqs. (B1) and (B2), we also assume, for
example, the validity of Eq. (B3), our Eqs. (15)
and (18) become independent of x corresponding to
the replacement in these equations of Cgz(x) and
Cgq(x) by 1.
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