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I

Cross sections are given for e e + collisions on 1 resonances producing pairs of spin-1/2 particles in the
tree approximation. EfFects of neutral currents and beam polarization are included. Possibilities for
measuring W' effects in collisions producing p, p,+, 7. 7+, and e e+ at the T and higher-mass resonances
are discussed.
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If 9 is larger than Mp the electron or positron
can radiate the excess energy and collide on re-
sonance, so the cross section with beam-brems-
strahlung corrections has a ramp as sketched in
Fig. 1.

Since the energy in the beams is spread, the ra-
diatively corrected cross section must be folded
with the beam distributions, giving a softer ob-
served cross section. In the case where the dis-
tribution of 8' is a Gaussian of width a~, and the

%e are learning much about weak neutral cur-
rents from neutrino scattering, from polarized-
electron scattering, and from parity-violating ef-
fects in atomic and nuclear transitions. %e can
expect to learn more from e e' collisions at high
energies. For instance, by approaching the pole
in the 5 ' propagator we can learn the 5 ' mass.
Perhaps we will find surprises such as additional
R' 's. Also, we may be able to measure 5" coup-
lings of unstable particles such as. resonances and
heavy leptons.

Many papers have studied the prospects of mea-
suring weak effects in e e' collisions. ' ' A prob-
lem is that the center-of-momentum energy W
= Ms should be large to enhance the signal-to-
noise ratio, but at large 5 the event rates of many
specific channels are small. It may be possible
to enhance the signal (along with the noise) using
resonances. If resonances such as the Y family' '
couple appreciably to e e', they could provide such
enhancements.

'These enhancements are reduced by spreading
caused by radiative corrections and the distribu-
tion of energies in the beams. For example, con-
sider a narrow spin-1 resonance of mass Mp in
e e'-f. The Breit-Wigner formula for the cross
section is

resonance is very narrow (I' «a~}, the cross sec-
tion at Mp' is reduced to'
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FIG. 1. Corrections giving the observed resonance
part of the cross section.

A typical value for 0~ is 4.3 MeV at 5'= 9.5 GeV.
(The full width at half maximum is 2.35 o~.) The
corresponding values of K and & are 0.60 and
0.087, respectively. They do not vary much over
the range of a~ and 9 anticipated for the PETRA,
CESR, and PEP facilities.

This implies that the enhancements of e e'
—p, p.

' and e e+-hadrons caused by the resonance,
relative to the nonresonating backgrounds (to low-
est order), are

a„(M~~)„.. 9wKI', I'„3.41', 2

4mn2/3Mo' 2v'2mn~o~I' n'a~I'
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with R„=5 being the background ratio of hadrons
to p. p, '. The value of 8', can be estimated using
DASP data. ' If I', = l.5 keV and I = 60 ke V, then 5„'
=0.56. This enhancement, is dh. scouragingly small,
but perhaps enough events will be collected to
measure weak effects.

Besides using resonances for enhancement, it
may be possible to measure their couplings to the
TV'. The amplitude for a resonance to decay in-
cludes the terms in Fig. 2. The relative magnitude
of the photon-W' interference in a cross section is
given by the ratio of amplitudes shown in Fig. 3,
l.e ~ ~

f~( ~ ~/M~p f~
f,elM, '

This is expected to be of the order of 0.01 for
MT=9.46 GeV. The ratio of 8"' to y coupling of
resonances f~/fo would be an interesting quantity
to know. The imprecisely known bound- state wave
function of the resonances should occur equally
in f~ and fo, and thus cancel, leaving the ratio of
quark couplings. This ratio will be difficult to
measure for reasons discussed below.

This paper gives the cross section for e e'
annihilation in the tree approximation. The am-
plitudes used are those in Fig. 4 with an arbitrary
number of 1 resonances and arbitrary beam po-
larizations. The case e e'- p. p,

' on. a narrow 1
resonance is discussed in Sec. II. Narrow reson-
ances appear to be nuisances for measuring W'
effects in this reaction. The prospects of mea-
suring W' effects in e e'-7. T'by analyzing the
IL(, or e from 7 decays are discussed in Sec. III.
It may be feasible to measure the ratio of coup-
lings to resonances using this reaction. Also,
the cross section for the Bhabha-type process
including the t-channel analogs of the amplitudes
in Fig. 4 is given. The case e e'-e e' is dis-
cussed in Sec. IV.

II. e e'-+ p p'

This reaction is very clean in that backgrounds
are relatively small. Also, the analysis is fairly
straightforward. It can teach us properties of re-
sonances such as their J through photon- reson-
ance interference.

To see what can be learned about 5 couplings,
consider the case of unpolarized or transversely
polarized beams of moderate energy. The cross

FIG. 3. Relative magnitude for photon-8' interfer-
ence terms.

section from Appendix A is

Q
(1+cos'8+ a'rQ r sin'0 cos2p)

x(h, + 1)(1+2@~ R)

+ 2 cos6(2g&2R)

+s' '0 r sin'8 sin2p h, 2g„(p g~)R-
8

(2.1)

b /h' =—1+ 5 = 1+2(2p —g„)g~R . (2.2)

The magnitudes of 5 for t and b quarks in the
Weinberg-Salam model are in Fig. 6. They are
less than about 0.01 in this model with sin'0~
near 0.25. Measurements of 8, will not reveal
6 due to various reasons —including the problem
of not being able to know 8' sufficiently accurate-
ly.

The cos0 term does not get a contribution from
the resonance (to order R) since it requires an
axial-vector coupling to both the e and p, ; but 1
resonances have only vector coupling to the 8".
This term could, in principle, be measured as a
forward-backward asymmetry,

The terms containing R=-s[e'(s —M~')j ' come from
photon-W' interferences. (Terms containing R'
were dropped here for being small at moderate
energies. ) The couplings gv and g„are of the e
and p, to the W', and p is the charge of the elec-
tron times the ratio of the weak and electromag-
netic couplings of the resonance. Their expres-
sions in the Weinberg-Salam model are in Appen-
dix A and are plotted in Fig. 5,

The effect of the resonance is the s-dependent
8,. When the total width of the resonance is
small, this enhancement has a width approximately
a~ and is peaked near s =M,'. The contribution to
5, from beam corrections 5' has the peak value
given in Eq. (1.3). The weak corrections to h'„
are

+
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FIG. 2. Tree amplitudes for resonance decays. FIG. 4. Tree amplitudes for e e' E E'.
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FIG. 5. %'eak coupling constants versus sin28~ in the
steinberg-Salam model with t and b quarks. FIG. 6. TV corrections to the asymmetry and en-

hancement from the %einberg-Salam model at 8'= 9.46
GeV.
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More precise calculations would be needed to sep-
arate 5 ' effects from the above measurements.

Terms odd under P or C would be less ambig-
uous signals of weak effects. The P- and C-odd
sin2& term has an interesting coupling,
2g„(p —g„)R which, in the Weinberg-Salam model,
is 0.016 for a b quark at 5"=9.46 GeV. Unfortun-
ately, the factor

3g~ R
2($, +1) (2.3)

is expected to be 0.05 for a b quark. Thus the
sin2$ term is too small to be measured at the
Y {9.46).

There are two other measurements of P-odd
terms which are remotely feasible. One requires
longitudinally polarized beams. If these can be
constructed (presumably by rotating transversely
polarized beams) then the asymmetry, when both
are reversed, is

2(g„P+gF)~"R . (2.5)

In the Weinberg-Salam model, the value of Sg~'R/2
at W=9.46 GeV is -0.006. This asymmetry could
be measured with an integrated luminosity of 1.1
x 10' (1+6,)/nb. Obviously, it would be quicker

el" I",' 3X' '
no~to measure off resonance where $„=0. e

Even if these weak corrections were not as
small as the Weinberg-Salam model suggests,
the measurements discussed above may give am-
biguous information about weak coupl. ings. This is
because all but the sin2y term in do/dQ are even
under parity (P) and charge conjugation (C), so
higher-order electromagnetic effects can contri-
bute, and mask out the 9 ' effects. They have
been estimated to be of order 10'/0 (off resonance). '.

N(d'~. +6'~) —N( (P~, -tP~) -((P~+6'~)(1+cos9)'
N{(p 6'~) + N(-(p~, -6'~) (1+&' 6 )~(l+ cos'e) + (p~(pr sin'8 cos2p

The values of d„=-2@~pR and d& —= 2g„g~ g from the
steinberg-Sai. am model. are in Fig. 6.

Measuring 3„„,offers several features. It would
test p.-e universality since the 1+cos'6 and the
2 cos0 parts in the numerator come from axial-
vector coupling to the e and p, , respectively.
Also, in principle, a very precise measurement
of A„„with one of the previously discussed mea-
surements could yield p. Unfortunately it will be

hard to measure A„„(except possibly at very
large W) since even if longitudinal polarization is
feasible, it is expected to be small.

The other remotely feasible P-odd measurement
is of a final helicity. To do this, one of the p
would have to be stopped in order to watch the di-
rection of its decay. This is very difficult for
high-energy muons, and may be impossible due to
depolarization as the muon is decelerated. The
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prediction,

(1+cos 8)'+6' r6 rsin'8 cos'y
1+cos'8+6' (P, sin 8cos y

0.4- '¹50GeV

8 (b quark}

2(S p+g v)ggR
8„+i (2.6)

0.2

d, (b quark)

S„R I, /I' (2.7)

could remain smal. l compared to the nonresonating
terms. For S„Bto be large, either 8'must be
close to M~ or else 1, must be large.

To anticipate what couM be measured at the up-
per range of PETRA and PEP, suppose there is a
resonance at W near 30 QeV. In the Weinberg-
Salam model, the 8 terms will be of the order of
10%%uo and the R' terms a few percent. The value of
5 giving the weak correction to 8„defined in Eq.
(2.2) is plotted in Fig. 7. The forward-backward.
asymmetry in Eq. (2.3) is approximately —0.07/
(S,+1). The coefficient of the 6' re'r sin'8 sin2y
S„nl /31, term in Eq. (2.1) is 0.19 for f quarks
and 0.05 for b quarks, but as remarked above,
S„probably will be small. Finally the coeffic-
ients d~ and d„ in the helicity measurements of
Eqs. (2.5) and (2.6) are also shown in Fig. 7.

If storage rings are built with sufficient beam
energy for measurements at R'= M~, the reaction
e e'- p p,

' should be dominated by 8 exchange.
The cross section for this is given at the end of
Appendix A.

is essentially the same as A„„since it does not
matter whether the helicity is in the initial or
final state. There are additional parity-even con-
tributions to (h, ) in the form O' 6'. -sin'8sin2$.
These come from highe. -order QED corrections"
and from tiny resonating weak corrections given
in Appendix A.

The muons also have transverse spin polariza-
tions given in Appendix A. When only a p,

' or jtL

is analyzed, such terms are reduced by 2m„/W
which is 0.02 at W= 9.46 GeV. The only one-pho-
ton term giving a final spin polarization requires
longitudinal beam polarization.

These results show it will be difficult to measure
weak effects in e e'- p, p+ on the Y resonances.
Since the Y's alleged quark is believed to be a
member of a doublet, there should be a second
quark which can form a heavier resonance, pos-
sible in the energy range of PETRA and PEP. The
prospects for measuring weak couplings would ap-
pear better at larger s, du'e to the s factor in R.
Curiously a narrow resonance probably will not
help since the width of the beams v~ is expected to
grow as s. Thus the combination

. 2
8(tquark) sirl8+

50
dr(t quark)

db

-0.2

0.4-

FIG. 7. W corrections to the asymmetry and en-
'hancement from the Weinberg-Salam model at TV= 30
GeV.

III. e e+ ~ r 7+ ~ p'-OR e-+ + OTHERS

~F -&s F g„'R (S,p+g„)g„R (3 1)

Here E, and F, are functions (specified in Appen-
dix B) of x and of the speed and decay parameters

The previous section showed that the less am-
biguous measurements of weak terms in e e'- p p'
require measuring the sin p term, which is sup-
pressed, or constructing longitudinally polarized
beams, which will be difficult, or measuring a
final spin, which is hard for muons since their
lifetime is too long. The v has a very short life-
time, so its decay measures its spin and thus the
weak coupling in Eq. (2.6). Since the lifetime is
so short, special steps are needed to ensure that
a 7 pair was produced. One way is to trigger on
events with p,

' and e' but no hadrons. The rate is
reduced by the product of branching ratios, B„B,
= 0.03.

The cross section for producing a p' or e' from
r r pairs is gotten by folding the decay distrjbu
tions for 7-l T,v, with the cross section i.n Ap-
pendix A. For the case where the angle 0 and en-
ergy fraction x =E,/E~„of the e or p are meas-
ured, the one particle inclusive distribution do/
dAdx is given in Appendix B. Special cases are
discussed below.

The forward- backward asymmetry for detecting
a p.

' or e' from collisions at moderate energy is
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of the 7; They are plotted in Fig. .8 for the case of
V —A decay at W = 9.46 GeV. At TV= 30 GeV and
x ~'0.5, I', = 1.5 and F, is about the same as in
Fig. 8. The g„'R term comes from a cos 8, term.
in 7 r' production and is the analog of Eq (2..3).
The rest comes from the spin polarization of the
7'~ and is the analog of Eq. (2.6).

Although A. ~~ is P and C even, the E, term i.s
composed of a P-, C-odd 7 v' production probabili-
ty and a P-, C-odd w' decay probability. Neither
can be simulated by QED so this term is a rela-
tively unambiguous signal for the W'. The F,
term can be simulated by a higher-order QED pro-
duction followed by the P-, C-even 7' decay, pos-
sibly giving a different x dependence. One clear
way to separate these terms is to measure a for-

ward- backward charge asymmetry

N F —Ns —(Nr —¹s)
Nz+N~+ ¹F+N~

F (~~P +g v)ggR

8,+1 (3.2)

The magnitudes of these asymmetries at the Y
can be predicted using the measured I', and I'.
The coefficients of F, and F, in Eq. (3.1) should be
-0.003 and + 0.003. Measuring'„which is roughly
proportional to p, would require an integrated lumin-

osity of 10'/(B B, nb). At 30 GeV, the coeffic-
ients should be —0.045/(1+ 8„)and 0 for a t quark
Measuring Are would require 2 x 10' x (1+ 8„)/
(B„B,nb).

IV. e e+~e e+

The cross section for Bhabha scattering is given in Appendix C. For the case where the beams are un-
polarized or transversely polarized, and s is small compared to M~', the result I.s

g'(1+ z )+ + [h'(1 z') (1+ z)']&r(Pr cos2y
do (x o 2 (3+ z )2

dQ 4s (1 z)2 8 +s, », (1+z)(3+z'), (1+z)(-5+Bz+ z')
le

, 8 '8 r cos2y[h;4'„(1 z')+g„'(1+z)(1 3z)+g„'(1+z)(3 z)]
W

, 4'"tp."sin2qt(1 —z')8.'2pg„I.
e

(4.1)

Here z =cos8 and 8,' is given in Eq. (1.3). The
first line is the QED contribution. The factors
,—s/e'M~' come from R or from R which results
from f- channel W' exchanges.

2-

V-A decay of 7 produced at W=9.46 GeV

The resonant terms (containing 8,') resemble
those for e e'- p, g in Eq. (2. 1) but one of the
sin2$ terms there does not occur here leaving a
larger sin2$ signal for this reaction.

It does not seem convenient to replace 8,'with
an observed 8, normalized relative to the nonres-
onating background as in Eq. (2.2) for several rea-
sons. The latter has a very different (forward
peaked) 8 distribution. Also it has very large ra-
diative corrections. "

To illustrate the magnitude of TV' corrections,
rearrange the unpolarized case of Eq (4.1) as.

h,'(1+z')(1+ 6,)+ 1,(1+ 6,)
W

(4.2)

-2-

FIG. 8. Kinematic functions for the one-particle in-
cLusive cross section from the decay of a y of .mass
1.78 GeV produced at lP= 9.46 GeV.

The W' corrections are in 5„and 5~. The res-
onant correction is 5„=4pg~R. The shape of the
background correction 6~ versus cos8 for the
Weinberg-Salam model at W= 9.4 GeV is shown in
Fig. 9. The shape at W=28 GeV is shown in Ref.
3.
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W corrections to e e'- e e'at W=9A 6 GeV

cos 8 +I

e+

FIG. 10. Definitions of kinematic variables.

sin 8 =0.25, 2

-0.004"

FIG. 9. W' correction to the differential cross sec-
tion for Bhabha scattering.
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APPENDIX A: e e+-+F F+

tl,"=E(1,0i O, v 1), (Al)
k,"=E(1,+ Psin8cosip, w Psin8sinip, + Pcos8).

The mass of the electron has been dropped and p
= (1 —1/y')'t' with y = E/Mz = W/2M~ = ~s/2M+.

The spin polarizations of the e' beams are

Pq = ((Pq COSepqe ape 81Ile'Pqe(pe) e {A2)

vnth ~ 5'~ the helicities of the e' beams. In the
case of transvexse poJarizatioQ 6'~ ai.e expected to
relax to + 0.924, and y, 8.nd 6'~ asre zero.

The beam polarizations occur in the cross sec-
tion only in the forms

The differential cross section for annihilations
producing spin--, particle pairs is given. The re-
sult was applied to the production of p. p,

' and ~ v'
in Sec. II and Appendix B.

The kinematic notation used is that of Ref. 4.
Specifically, the momenta of the e' and E' in the
center-of-momentum frame, or laboratory frame,
illustrated in Fig. 10, are

The widths for the decay of a resonance to e e' or
E I' in the tree approximation (Fig. 2) are

2

I', = f@,'MI [(1+pg~R)'+ (pg„R)'],

2

I"~= fo;~MI[(1+pG~R) +(ppG~R) ].
Here p = ef~, /fo, . and R =s[e'(s-M~')]-' with s

2=M I

In the Weinberg-Salam model, the W' couplings
to charged leptons are

gin= Gln = . (4 S111 8|In 1) e2 Sln28g

8
gA A 2 s~n2g

The ratio p for a t (II) Iluark with weak isospin
~, =+i (-a)

p=-i —s . s e —. sine +sn ).&e e g . a

2 sin28~ e (AV)

their z axes are in the direction of k, their x axes
are in the scattering plane (containing k, and k,'),
and their y axes are in the direction k xk'. With
this choice, the helicities of the E in the center-
of-momentum frame are + 8',.

The couplings of the 8 and the resonances are
assumed to have the forms

0
(OiJ„ ie e') = v(k„(P,)y„(g~+g„y,)u(k, (p ),
(y' P'iJ„ io) =u(k', s )y„(G +G y,)v(k', s ),

(A4)
(Oie„ iT,.& = —

),t, f, ,V,.',

(OiZ„ iv,.) =;t,f, ,.M,.'.

U= t. +g'6»

T, =(p (prCOS(2p- q - p ),
Tp = (P (P+ Sill(2+ e'P+ —(P ) e

(A3)

These are plotted in Fig. 5.
The amphtudes for e e'-E I"' in the tree ap-

proximation are shown in Fig. 4. They are pro-
portional to

vV=Ro+Rg„, (gl, + Gl )R+ R~g~G„R + 1+g~GIR s

These would vanish if 6'~ = -{P~+ =+ 1, due to the as-
sumption of spin I for aQ the virtual particles.

The fina1. I' are assumed to have spin polariza-
tions 5, in the rest frames, which are oriented so

vA = (Rqw+ Rw gvR +gv) PGxR e

a V= (RqtN+ RlleGIpR+ G„)g„R,
aA = (Rq,R+1)pg„G„R i

(A8)
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~ efo.;fw. ;M2'
s(s -M, ')

e'fw. S~Mi

s(s -M,.')

(A9)

Note that the R~ terms come from the diagram in
Fig. 4 with two virtual W"s. They contribute to
the same order as the square of the amplitude of
the last diagram.

The amplitudes in Ecl. (AS) occur in the cross
section in the following combinations:

&2„,~= lvvl'+~, lavl'+~~lvAI'+~, ~a}~}'

2» = 2 Re[vV(a V)*+ejvA(aA)*],

2, , = 2 Re [v V(vA) *+e,a V(aA) *],

where Rz, Rz~, and R„,are sums over all 1 reso-
nances contributing:

f22; M,
s(s-M, ') '

2, , = 2 Re [v V(aA) *+e &a V(vA) *],
2, &.=2Im[vV(a V)*+ezvA(aA)*],

2, &
=2Im[v V(vA)*+a&a V(aA)*],

2, &
= 2 Im[v V(aA)*+@JvA(a V)*],

with

+1, j=+
0, j=0

When the weak couplings of the I' and e are equal,
vA= pa V so ghat 22 &= pZ, &

and Z, &= pZ, &
(neg-

lecting I/y' corrections to R terms). The terms
which depend on ~,. or c„are proportional to A',
i.e~. , are purely weak and can be neglected unless
s ls large,

The cross section when the spin of either the
E or I' is observed is

U (1+cos'S}Z.. .+, Z. ..+2cosss, , +T.sin 2 Z, , --nZ, ,)
1

y

1 sin'8
+T, sin'8 Z, +-~Z, , +I. (1+cos 8)2, , + 2 2,~, +2cos82, +

}ss

+S;[2cos8(UZ, , +LZ,
~ + +)+ (1+cos 8)(UZS, „+Ig, , +)+sin'8(T, Z, + T,Z., „)]

—S", [2(Ug. ..+ Lg, , +,)+cos8(UP, , —T,Z, + Lg~ + —T,S,, +)]

-2" [T,S, +US, —TS, +LL, , ,]}.' y

In the more general case where the spins of both F and I' a,re observed, the cross section is

(A11)

—= [U(1+cos'8)(1+S*S;)+12 cos8(S'+S', )]S...+ sin 8[T (1+S'S'„)8, , + U(S" S", —S"S',)2, ,
+ [T,(1+cos'8)(S"S", —S"S', ) —T,2 cos8(S"S', + S' S",)]2,

+ -2[L(s*+S*,)+Ucosc(S*S;+2'2;)J+U (1 —S'S;+S'2*, +2"2",)}S,, ,
sin8 sin8

y y

+ 2[1*,(S*S;+2;S*)—T,(S'S;+S'S",)]—T. (1 —S'S;+S*s*,+2'2', )}S,

+ [L(1+cos'8)(1+S'S;)+ U2 cos8(S' +S*,)]2, , + L, sin'8(S" S+ —S"S",)2,

+ -2[U(S*+S*,)+Lcosc(S S;+S'S')+L*(1—S'2'„+S*s*,+2"2",)}S,
sin8 sin8

y y

L2COS8$+$8$+UgpCOS8$2s+ScUCOS8$+$+LSx$+$8$xg
n y

+sinn T.sino(S'+2;)+ —[T.coss(S'+S*,)- T,(S" +2",)]}2,
1

+ Ulcos8 1+8'S', + I 1+cos'8 S'+S', — L, cos8 S" +S+ + US"S', +S'S", 2, +
y
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+ T,2cos8 S"S+ —S~$~+ —T, 1+cos'8 S"S~++S"S",

y

+ Ts sin 8(1 +S' S+)Ss + + [T,2 c os 8 (S"S»+ + S"S»+) + T,(1 + c os 8) ($» S" —$"$» )]g

+ - S[&(PP +8'P)o», cons(S*P+8'8*,))—I, (1 —8'8'„+S*S*,+8"8",)IS, ,sin8 sin8

1
+ sins U sin 8(S*S",+ 8"S*,) ——[I(S"+S"„)+ Uccs9(S"S', +S'P )IZ, ,

'y

+ T, 1+cos'8 S"S" +S'S" + T,2cos8 S"S+ —S'S",

—[», 8 os 8 (8"S' + S' S* ) + » (8*S' + S' P )]
I
I,1

y

+sin8 T, sin8 S'+S', + —T, S'+S', +T,cos88" +S", g, ,
y

+sins I, sin8(S*S;+S"S*,) ——[U(S +8") 'I.coss(S"S;+S'8',))II, (S
1
'y

The discrete symmetries of the terms in these cross sections can be read off from Eq. (A10).
terms with 2, , „2,~, and 2, , are even under P and C whereas the rest are odd.

The formalism discussed so far can be applied to cases of overlapping resonances. In the case where
the storage ring is tuned to one resonance without overlapping another, then M,.=M, —i I'/2 gives

2fo mo
s(s-m, '+fM, I) '

Aq~= PBq,

R~=P Aq,

for Eq. (A9). In this case the expressions for the g's contain pole terms proportional to

(Als}

( 2)2 21o2

fo mo
i

s —m()
2 4) 2

s ~ (s-m, '}'+m,'I' '

fo'm, '() m, l'
s j (s —m, ')'+m, 'I' '

and background terms. Explicitly they are

g= (1+2P(gv+ Gv)R+ P (gv + 4gvGv+ G v + & )g~ + (8)) P G~ )R j' (P

+ 2(1+ [p(gv+ Gv}+gFGv]R+ p[(p+gv+ G[I)gscGP+ & Jg~ Gv+ q~ P g[IG~ ]R )I)

+ 1+2gvGvR+ (g„'+e;g„'}(Gv'+ &~ P'G„)R',

22 .= 2Pg~R[l+ P(gV+ 2G|c)R](P + 2g~ R( P+ G)8+ P[(P+ 2g U+ GV)GSc+ Q IP G~ ]R]'5)

+ 2g„R[G +g„(G„'+e,P'G„')R],

Zis )
= 2PPG~R [1+P(2gF+ G)8)R] [P+ 2PG~R (P+gv+ P[(P+ 2Gp+g)8)gv+ Eggs ]R]'S

+ 2PGgR[g)8+ Gv(gv + t g~ )R]

g4 . = 2P p'g„G„R'(1+ q .)[P+ 2Pg„G„R(1+p[p+ (1+ & q)(gv+ G v)]R/S

+ 2pg~G~R [1+(1+q,.) gvGvR],

Z, , =2g R(p —G + p[(p —G )G —q, P'G„']R)8,

&6, )=2PGgR(P gv+P[(P--g'v)gv —&Igw ]R] ~

Z, , =2Pg„G„R(-1+p[p-g —G„+&,.(g -G )R]]C.

(A15)
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When the cross section with these 's is radiatively corrected and folded with o~, as discussed in Sec.
I, the (p terms are enhanced by 8 over the nonresonating terms. The K) terms average to zero unless the
storage ring is tuned slightly away from the pole. The 8 terms are proportional to the (P terms scaled
down by

(A18)
Q Bl0

The value of f' can be expressed in terms of I" or I'z using Eq. (A5).
The QED expression for g is given in Eq. (1.2). The W' corrections are given by 2, , ~ (which are the

only terms in the total cross section). With terms of the order of I/y' dropped from the R' terms, the W'

corrections are

1+2@~,R+ (g,'+ g„')(C,'+ C„')R'

I

/

(A I'I)

This is proportional to the product I' I'~ in Eq.
(A5) (to the order of R'). The denominator resulted
from normalizing 8 to the nonresonant background.
Predictions for 5 are shown in Figs. 6 and V.

When 8'is close to M~, the cross section is
given by Eq. (A11) or (A12) with the following 2's:

~, , .=(g,'+.,g„')(G,'+.,P'G„') ~R ~'

+ 2 g „Gv Re(R) + 1,
k2,. = 2 g„gv(c v + q,.P G„)

~

R ~' + 2g~c v Re(R),

Z, , = 2 pC„C,(g,'+ e,g„')
~

R ~'+ 2 pg, C„Re(R),

Z, , = 2 pg, g„C,C„(1+~,.) ~R ~'+ 2pg„C„Re(R),

(A18)
2, )-—2g„cvim(R*),

Z, , =-2 pg, C„Im(R*),

2, , = 2 Pg„G„Im(R *).
The partial widths of the 8",

I",= 12',
—(g,'+g, '),

is given here. Applications were discussed in

Sec. III.
Since 7' is very narrow, it is produced on its

mass shell. Then the distribution of the decays
can be calculated by folding the ~ &' production
cross section in Eq. (A12) with the decay rates
I" and T', of the 7' and v', and integrating over
the unobserved measurables. "

Using the appropriate l", for whatever decay is
observed, this procedure gives'distributions such
as the angle between two decay products, or the
energies of two decay products. As an example,
in the following the result is given for the case
where the momentum of one lepton, l' from 7', is
observed and the other 7' decays to any specified
state are used as a signature (to guarantee r v'

production).
The rate I", for the decay w'-l*vv implied by the

general four-fermion Lagrangian is

P d'I", 12 2
yc(y, p)+ & (p g,)c(y, 5)

suggest that the total width I" is about 1 GeV. If
this is large compared to 0~, the cross section at
M~ is

(S2)
when the mass of E is neglected. Here p is the
momentum of l. Also

2y=, P k,'

(A19)

The Re(R) terms in Eq. (A18) will average to zero
at M ~' and the Im(R) terms should be negligible
since apparent). y

(A20)

(cV~P) = -I7+-' ( 0~3- I)

with 0,' the momentum of the 7. The parameters
Io, 5, and f depend on the mix of V, A, 8, P, or
T of the decay. "

The one-particle inclusive distribution is

APPENDIX B: THE DISTRIBUTION FROM r ~lvv

The general one-particle inclusive distribution
for the reaction

Y,A

e'
V)g

FIG. 11, Form of the Bhabha-type amplitudes.
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12s do' 1
— = U 2 2Z. ..+ —,R. .. A(x, p)+ (3 cos'8 —1) Z. . .——,R. .. B(x,p)

1

6

s 6 cosSC .[6'C(x, p) —C(x, p) ]}
+ )UZ, ,((3 cos'8 —1)P'[A(x, 5) —B(x, 0)]—3(1+cos'8)D(x, 5)]

+ (U6 cos8 Z, ,A(x, 6) —
}R, „——,2, , ~ C(x, 5)

l

+3T sin 6 2, + ——2Z~ 0 x p + Z~ P Ax~5 — Bx~6 —Dx~6

+3T sin'9 —— Bx p~ P'A, x 6 —P'Bx 6 -Dx 6

+L 2 22~++ —2R» Ax, p+ 3cos 6 —1 &2+ — 2&2p Bxrp

sscospp, [6C(x.p) C(x, , p)]}

a )I 6 cos8 Z. ..A(x, 5) — 2. ..——,&. .. C(x, 5)
1

~ (I,Z, .[(3 cos'8 —1)P'[A(x, 5) —B(x, 5)]-3(1+cos'8)D(x, 5)). (B4)

Here, B, and B, are the branching ratios of the decays to t and to the signature. The angle 0 is the direc-
tion of /, and the energy fraction x is defined by

=P = 2P" p.',„(1+g)Z '

The Z's are given in Appendix A. The functions A, B, and C of the r decay parameters (and speed) are
defined in Ref. 14, and D is defined in Ref. 4.

The functions F, and E, used in Sec. III are

3J3 PRC -Dl 3 (8'C A
3-P' A j ' ' 3-P' A

Their values for V-A decays at W=9.4 GeV are shown in Pig. 8. When y = W/2m, is large, E, = -,', and
the shape of 2F, /3 has been given in Pigs. 1 and 2 of Ref. 4.

In principle, p, -v universality of neutral-current couplings can be tested. One test is to compare L, ,
with I». These are measured by a cos8 and a T, sin'8 term, respectively, in Eq. (B4).

APPENDIX C: e e+~EE

The general Bhabha-type cross section is given here. The case e e'- e e' was discussed in Sec. IV, and
e e'-E'E' is discussed in the end of this appendix.

The tree amplitudes are those with s-channel exchanges, illustrated in Fig. 4, and their t-channel ana-
logs. To include both reactions, the couplings are kept distinct, in the form of Fig. 11. It is convenient
to combine the couplings as vV, etc. , defined in Fq. (A8), and their t-channel analogs with

s-f = (0' -4 )'= -s(1 —cos8)/2. (C1)
These amplitudes occur in the general cross section. in the combinations

I

S, =Z. ..—Z, ,=
/
v V —aA

J

'+ /@TV —vA
/

. =&„„,-&„,= /vV-~i'+ I«-» /',

[B,= /vV+aA+vV+aA/'+ faV+vA+aV+vA}',

$4=2 Re[(vV+aA+vV+aA)*(v V-aA)+ (vA+a V+vA+a V)*(vA -a V)], (C2)

S,= 2 1m[(vA +a V —vA —aV)*(v V —aA) + (v V+aA —v V —aA)*(vA —a V)],

(8, =2 Re[(vV+aA+vv+aA)*(vA+aV+vA+aV)],

$, =2, , —Z, .=2 Re[(vV aA)*(aV- vA)],

[s, =F2, -2, ,=2 Re[(v V —aA)*(a V —vA)].



KFFKCTS IN KLKC'FRON-I'OSITRON COLLISIONS ON 1, . . .

The result for the general cross section is simply

8s do.—,—= (1 —(P~(Pf)4Q, + (1+(PZ6)f)[(1—COS8)'8, + (1+COS8)'8, ]+(Pr(Pr Sin'8[COS2(PS, + Sin2(PSR]

+ ((Pz+(P. )[(1+cos8)'di, + (1 —cos8)'8, ]+ ((Pz -(Pz)4$, .

In the case of e e'- e e' with the storage ring tuned to one resonance without overlapping another, the

results for 8& analogous to Eq. (A15) are

I =[s«+«»'- g~')Q]'

IR = [1+4pg»R +2p (3g» -gg )R ](P

+2[1+(2p(g»+g»' gA')R-+ p(p+2g»)(g»'-gA )R ] &+[I+(g» -gA')R]'2

ei), = [1+4pg„R +GpR(g»'+g~')RR](P

+ 2I1+—+ (
1+— 2pgy+gy~+g ' R+ (g~ +g„)2)+ 1+ —p'(g» +g~')R'+2pg (g„+2g„')R(R+R)I 2)

S 2

+
i
1+— + 2

i
1+—j(g»'+g„')(R+ Q) + (g»'+ 6g»'g„'+g„')(R+ Q)',

(84 = 2[1+4pg„R + 6p g»'R~]6'

s s
+2 1+—+ 1+— 2pgy+gy +gg 8+ gy +g~ + 1+ p gy -g~ + +2pgy gy +gg R +t] F A t

7' A

+2 1+—+ 1+— g~ -g~ 8+ g~ +g~ + + gy -g~ ~ ~+
)pI

6!R-4[pg~R g»g~(R —Q)+p(2pg»+g» -g~ )g~R —2pg»~ggR(R —Q)]+, (C4)

() = 4[pggR+ 3p g» g&R ]+

sb s'),
+4, I+f ~pggR+g»g~(R+Q)+ 1+t Ip g»g~R +p(3g»+g~ ')g~R(R+Q) &

I;&

(

+4 I 1+t g»g~(R+Q)+g»g~(g»'+gg )( +Q)'

I,=e, =0,
where

Q= (s/t)R = s/e (t -M~') (c&)

is approximately B at moderate s.
Radiation and spreading of the beam energies have the effect on the resonance of replacing(P with 8, as

in Eq. (1.2), and averaging the&terms to zero. The observed enhancement 8, of dv/d cos8 can be defined

similar to E(I. (A17) using

—= (8,+1)

where

d(r, en' (3+g)'
,R (1+&R)+ large @ED corrections,

h, =&, » &" +large @ED corrections., (I+z')(I —z)- (1+~„)

The cross section for neutral lepton production e e'-E'E' with Ms() neglected is given by Eq. (C3) if only

the R terms in Eq. (A8) and their t-channel analogs, R are used. In this case R, g» „, and G» „refer to

the charged W', whereas', g~ ~, and G~ ~ refer to the 8" as before. The latter will be enhanced by 1
resonances.
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