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Existence of the West P correction
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We study the smearing effects, due to the nucleon s Fermi motion inside the- deuteron, in a covariant way
by using the Brodsky parametrization method and neglecting the spin of the particles involved. %'e find that
West s P correction is absent in the high-energy limit for hadronic scattering, but it is still there for leptonic
scattering in the deep-inelastic limit. The form of the correction for the leptonic case is, however, different
in our calculations from that given by West; W'e show explicitly that our approach' is consistent and avoid
some of the approximations made in the earlier contribution to this problem.

I. INTRODUCTION

The deuteron is used as a neutron target for two
reasons. Neutron beams are difficult to work
with, and free-neutron targets do not exist. There
has in fact been considerable progress in the past
few years i.n the use of high-energy neutron beams,
but only neutron-proton and neutron-nucleus re-
actions can be studied in this way. Reactions in-
volving a neutron and any non-nuclear particles,
such as pions and electrons, are best studied using
deuteron targets, at least until the time that col-
liding-secondary-beam techniques are developed.
Since the deuteron binding energy is small (-2.2
MeV) it is tempting, especially in the asymptotic
region, to write the deuteron cross section as the
sum of the free-nucleon cross sections (apart
from the shadow correction, etc. ) o, = v~ + o'„.
Intuitively one does not expect the 2.2-MeV binding
energy to be significant in a region where the en-
ergy scale is many GeV.

However, there is another important correction,
the smearing correction due to the fact that the
bound nucleons undergo Fermi motion (notice in
electron scattering off deuteron that this correc-
tion is more important than the shadow correction,
which is usually neglected). The fact that the tar-
get nucleons are moving affects the cross sections
in two distinct mays:

1. The total center-of-mass energy seen by the
constituent nucleons is shifted by a "Doppler ef-
fect."

2. The flux of incident particles in the rest
frame of the moving nucleon is different from that
in which the cross section of free nucleons is
measured. If the free-nucleon cross sections are
strongly energy-dependent, the first effect could
be expected to be large. If they are slowly vary-
ing, as they are at high energies, one would ex-
pect this effect to be negligible. West' ' had
pointed out that this was not true. He showed that
the constraint that real particles be produced in

the final state leads to v, = (o~ + o„)(1 —p) if
o~, o„are constant (see Sec. II). This kind of
correction is called West's "P correction. " He
also found that the Qux factor depletes o~ relative
to v~+v„.

Recently Frankfurt and Strikman' and Landshoff
and Polkinghorne' claimed to have shown that
West's P correction is in fact absent. If this
claim is correct, then the neutron-data extrac-
tion using West's procedure needs to be examined
again, especially for the deep-inelastic neutron
structure- function at the Bjorken scaling variable
~ close to 1 where 0~ and a„vary most rapidly.
The information from this region is of very con-
siderable theoretical importance, in that the ratio
v„/o~ in deep-elastic electron or muon scattering
gives information about the relative shapes of the
momentum distributions of u and d quarks in the
nucleon.

However, West disagrees with their conclusion. '
Thus we see there is a controversy here.

The aim of this paper is to give a solution for
this controversy. The plan of the paper is as fol-
lows. In Sec. II we discuss the source of the con-
troversy and state explicitly the basic assump-
tions of our formalism. This discussion is im-
portant for the refinement, if needed in the fu-
ture. The normalization of the rela, .stic deu-
teron wave function is discussed in Sec. III where
we use the common procedure, the relation of the
elastic electromagnetic form factor at q'= 0 to
the total charge. In Sec. IV we consider hadronic
scattering where the incident particle has a small
but finite mass. We find that when the nucleon
sections o~ and o„are constant, the West p cor-
rection vanishes. In this result we agree with
Frankfurt and Strikman' and Landshoff and Polk-
inghorne, 4 who pointed out that the correction is
absent. We find, however, that for leptonic scat-
tering (the case of the electron is discussed in
Sec. V and that of the neutrino in Appendix D)
West's p correction is still there.
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In the main part of the paper we show explicitly
that our approach is consistent and we have no
problem with subasymptotic effects. ' The prob-
lems concerning gauge invariance are the subject
of Appendix A. In Appendices 8 and C, we re-
derive the result of Sec. III by using the light-cone
approach which clarifies the incorrect presenta-
tion given in Ref. 3 and TOPTH„(time-ordered
perturbation theory in the infinite-momentum
frame), respectively.

II. THE CONTROVERSY OF THE %(EST P
CORRECTION

In this section we would like to review the
source of the controversy and state explicitly the
basic assumptions which had been used implicitly
by the previous authors (Ref. 1, 3, and 4) and
also in this present paper. We shall consider
hadronic scattering and limit ourselves to the
case where the incident particle has a small but
finite mass, such as pion-deuteron scattering.

Our basic assumptions are as follows:
1. The deuteron is considered as a (p, n) bound

state. We do not consider the isobar admixture,
the six-quarks degree of freedom, and the meson
exchange current contribution in the deuteron.

2. We use "off-shell kinematics"-"on-shell
dynamics" formalism. Stated plainly, we use the
on-shell amplitude but off-she11 kinematics. This
is not a bad approximation if the interacting nucle-
on is not far off the mass shell, which may be
true for a weakly binding system like the deuteron.

3. To illustrate the physical point without ob-
scuring the issue with algebra, we will consider
the spin-averaged case and hence mill neglect the
spin of the particles' in the formulation of the
model.

4. We work in the (incoherent) impulse approxi-
mation (IA) . This approximation excludes shadow-
ing corrections. We also neglect in this paper
other effects which might impair the validity of the
IA. For example, the use of the IA at small q"s
might be questionable, and hence the usual prac-
tice of extrapolating to q'= 0 for the form factor
might not be' realistic. We know, however, of no
operationally useful approximation that could take
into account the deviations from the composite
picture implied in the IA, and hence we will join
our predecessors in using the IA.

Even doing so, one might think of including pro-
cesses where the "spectator" nucleon, though dy-
namically still a spectator, appears in an excited
state of the nucleon. We neglect such a possibility
in this paper, because including such excited
states in the model for the spectator would then
also require, for consistency, the inclusion of

such excited states in the internal lines of the dia-
grams we use. To do so would be another, rather
ambitious calculation of questionable reliability.

The point we want to study is the behavior of the
alleged corrections in the usual IA, which is what
West used. It is not our purpose to claim that this
model will necessarily give the actual precise
quantitative magnitude of any corrections one has
to make when reducing deuteron data. Such addi-
tional contributions to the corrections, due to the
deviations from the IA, should be calculated in the
future by a string of successive calculations as
our knowledge of each of these deviations solid-
ifies.

As pointed out by Bodek, ' the relevant quantity
to smear is the invariant matrix element l Kl '.
The cross section is defined as the invariant ma-
trix element times the invariant flux (the final-
state phase space is included in the definition of
the matrix element). Smearing the invariant ma-
trix elements (see Fig. 1) we get

x ave(u2-I 2) e(s' -M'), (2.1)

where p (p') is the txuncatedn-p-d vertex func-
tion (truncated simply means that one of the nu-
cleons, here the spectator, , is on sheQ). We in-
corporate the 8 function explicitly in Eq. (2.1).
This is due to the threshold condition on

l K,. (s')l', i.e., l II,. (s')l'=0 when s' & M' which
was first suggested by West'; we parametrize
the l Kl "s in terms of the relevant total center-
of-mass energies s= (6'+ q)' and s'= (p+ q)'.

In the laboratory (lab) system or deuteron rest
frame,

(2.2)

By defining

FIG. 1. Impulse-approximation Feynman graph. The
broken line represents the incident particle of four-mo-
mentum q; the single solid lines are the nucleons of mo-
menta p (the interacting particle) and k (the spectator).
The double line represents the deuteron of four-momen-
tum (P.
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0'(p')If( )1 4(2,)3 (p2 M2+te)2

we can rewrite Eq. (2.1) as

In). (*)I'= Z f q
—2(f(2)(*In(,. (x')I'

i=P&n 0

x8(s' -M') .

(2 3)

(2.4)

fining T=—(M'+k')' '-M= relativistic kinetic
energy. The angle 6 above is the angle between
k and q. For slowly varying cross sections we
can expand o(v) around v= v~. Then from Eq.
(2.7) we obtain

a. (")= Z „M lf(k)l'8(v)
i=Pen " 0

e+T —
j ki cos8x o,.(v, )—

The controversy starts from Eq. (2.4). West in-
terprets

~ f (k)~' as the probability of finding a
nucleon with momentum k in the rest system of
the deuteron, and he chooses the following nor-
malization:

x[xvi(x)]:
I

(2.9)

I if(2)I '=(, (2.5)
where the prime means d/dv. If we define

d'k
[f(k)l'I &I 8(v) cos8-=r,

l 0

by identifying
~ f (k)~ 2/(Ii0/M) as the usual nonrela-

tivistic deuteron wave function.
In terms of the experimentally measured total

cross section, rewrite Eq. (2.4) as'

d3k
,~ lf(k)l'8(v)=1 (2.10)

2yg
0

x o, (s')8(s'-M'), (2.6) then we obtain

where

M, ~d =6' q,

Mv=Mv+(p'-M')/2; Mv=p q .

In the high-energy limit

a~ (v~ ) = [ o2 ( v2 ) + (x„(vn )j (1 —p)

&+&T&-~
v~o", (v„)+ ~

If o~ and o„ are constant, then

(2.11)

o3(v„)= g &
) f(k)~' —o,. (v)8(v) .

i=A ~ n ~ 0 Pd

(2.7)

In the deuteron rest frame where

t„=(M„K),

p =(M —(M'+k')' ' -k)

we can write

o, (v, ) = [o~ (v, ) + o„(v, )] (1 - p) . (2.12)

~ M If(k)l' M
' 8(&+&,)=1 (2.13)

0 d

This (6 is known as the West P corrections
The normalization Eq. (2.5) had been criticized

by Frankfurt and Strikman' since it is inconsist-
ent with the usual normalization by using the
relation of the elastic electromagnetic form factor
at q'=0 to the total charge. They suggested that
the normalization

by using

(e + T —lkl cos8)
M

(2.8)

I ql =qo= vu

Md =2M —e,
where ~ = the deuteron binding energy and by de-

should be used instead of Eq. (2.5). We will re-
peat the light-cone derivation of Eq. (2.13) in
Appendix B since the original derivation is not
explicit and also we need to do it again in connec-
tion with the gauge-invariance problem (see Ap-
pendix A).

We believe that the normalization Eq. (2.13) is
the correct one. %e rederive it by using the
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Brodsky parametrization method. ' This will be
disc@.ssed in Sec. III. In fact Landshoff and Polk-
inghorne get a similar result by. using the Sudakov
variable method, though they need to go to high-
energy limit to get it. This implies that West s
interpretation and the identification of

~
f(k)~' as

the usual nonrelativistic deuteron wave function
cannot be correct, even apart from the question
of whether the kinematic form factor M/0, should
or should not be included.

Frankfurt and Strikman showed that the correct
normalization Eq. (2.13) will lead to the vanishing
of p correction in high-energy hadron scattering.
Their argument goes as follows: Rewrite Eq.
(2.V) as

Combining Eqs. (2.13) and (2.14) leads them to
conclude that when the nucleon cross sections o~
and c„are constant, the P correction will van-
ish': v„= o& + 0„. Landshoff and Polkinghorne
using the Sudakov-variable approach also get the
same conclusion. This conclusion will be con-
firmed again by using the Brodsky parametriza-
tion method (see Sec. IV), which we claim has
a more sound derivation than the previous ones
(see Sec. VI).

III. THE NORMALIZATION OF THE RELATIVISTIC
DEUTERON WAVE FUNCTION

4=Pot(

x o,. (v)8(E+k, ) . (2.14)
%'e F11 consider first the normalization of the

deuteron (relativistic) wave function (see Fig. 2).

I
~

= (24'+ q) „E~(q ')

d'k y(p', k') y((p+ q)', 0') 1

g =, ~ „~ (2v)'i p' -M'+ is (p+ q)' M' -i+a O'-M'+ ie

+ 2 2

2p+q I
&

q' +q --
. 1 -p q'

We showed in Appendix A that this form satisfies the gauge-invariance condition.
%'e will use the Brodsky parametrization method to parametrize the four momenta as follows:

(9 q 6'q
Il 4 4P 'Q P 2P Q

(3.1)

3,2)
P2+k 2 ) ~ $2+k 2

Q +k
p„= ~P ', k, , gP- ', k„- 1-xP+, —„1-~P-

Here p= —,(6,+6,) ts an arbitrary parameter and notice that all invariants are independent of P. » the
deuteron rest frame P= &I„.

The great merit of the Brodsky parametrization is the simple factorization of the k' integration:

~ oo ck Oo

2(2v) i 1 -xi

dk'
27ri

(3 3)

Since E, (q ') = (I",+ I',)/2P, by using Eq. (3.2) and Eq. (3.3) we get (set q = 0 and notice that 4'

for ela.stic scattering)

. 2(&w)'I (-xl J . 2ni a'-I'+(~ r, , xa'+ic, ' (3.4)

Neglecting the singularity of p in the 0' plane, if
any, "the first denominator represents a simple
pole in the lower k' half-plane. The second de-
nominator leads to one double pole in the upper or

lower 0' half-plane depending on whether (1 -x)/x
is positive or negative. Thus x is restricted to the
interval 0& x& 1 (see a similar discussion in Ap-
pendix B). Notice that x =0 or 1 gives zero con-
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FIG. 2. The deuteron electromagnetic form factor in
the impulse approximation.

necessarily symmetric around x = —,'. However,
for the interacting nucleon which is not far off the
mass shell it is not a bad approximation to as-
sume P or G to have such property, "i.e.,

Gp g, (x) = G„g, (1 —x) . (3.11)

This property implies that Eq. (3 ~ 10) is equivalent
to

tribution in Eq. (3.4).
Thus we get the result"

dx y2(x, k, )
22m' xi-x M -M x k

(3.5)

0
[xG~g, (x) + (1 -x)G„g, (1 —x)] dx = 1, (3,12)

which means the sum of the fractional momenta
of the proton and the neutron is the total (fraction)
momentum of the deuteron.

where

M'(x, k, )=
x(1 -x)

is the invariant mass of the two-nucleon system
(p+0)', where

xM +k~
x(1-x) (3.8)

Notice that the result Eq. (3.5) is independent of
the parameter P as it should be. It can be shown
that this result exactly agrees with the form given
by time-ordered perturbation theory in the infin-
ite-momentum frame (see Appendix C).

Defining

qP(x, k, )
2(2v)' x(l -x) [M„'-M'(x, R )]' '

(3.7)

I m, I SPY
+ 4PI OJ P +

4 I

(4.1)

Notice that 6'„and q„have been defined in a gen-
eral set of frames along the interaction axis. A
specific frame in this set is selected by relating
P and P'. For example, the deuteron rest
frame is defined by the conditions

PlP=-2M„and v„=M, P'+ (4.2)

IV. HADRONIC SCATTERING

In this section we will consider hadronic scat-
tering and limit ourselves to the case where the
incident particle has a small but finite mass,
such as pion-deuteron scattering. See Fig. 1 and
the equation (2.1). We will use again the Brodsky
parametrization [see Eq. (3.2) with the on-shell

we can rewrite Eq. (3.5) as"

dx G(x, k, ) =1, (3.8)

where v~ is the incident particle energy (modulo
Mq ).

The invariant matrix elements in the deu~e&0&

rest frame can be written now as"
which implies that we can interpret G(x, %,) as the
probability of finding the nucleon to have x
= (p, +p,)l(4', +4',} along the direction of the deu-
teron and transverse momentum k~ which is per-
pendicular to @. Defining

Eq. (3.8) can also be written as

I~a(~)l'=.Z J &4 —G(~, »)im(s(~')I*
i=Pion

x 8(s' M'), (4.3)

where

s = (6'+ q)' = M, '+ m'+ 2v, ,

s' = (p+ q)'=p'+m'+ 2v,

"0
ax G(x) =1. (3.10)

In the above discussion we have implicitly used
the isospin symmetry, i.e., G~~~ (x) =G„~~(x)-=G(x). Since the interacting nucleon (spectator)
is off (on) the mass shell, neither P nor G are

m' I'+I '
v= p q=xv, + M, '-4v„1-x

xM +k~
P =xM@P M

(4 4)
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Notice, for our convenience, that our definition
of v and v„here is different from the one in Sec.
II.

In terms of experimentally mea, sured total
cross section

t-a
v (s)= g d'k, —G(x k )

P n ~ ddP X

q. The
~
SR' now becomes the forward virtual

Corn@ton amplitude S'„„. For the case of electro-
production at small q', or indeed for photopro-
duction there is little change as compared to the
previous analysis. In this section we consider
the case of large (negative) q'.

}
W«v„(q', v )= P f d'k

J
—G(«, k ).

i=Pen 0

where

i' —I'I'
)'

'
X

2

v~ —sz M~

x o, (s')8(s' —M '),

(4.5)

where (see Appendix A)

v=xvg —qj ' kj y

x W)}(q)P)q (5.1)

( M+k'
v = v+ 2xl M„'-—

x(1 -x)

In the high-energy limit, v„-~, v=xv~, then

v, ()d, ) = Q d'k, dxG(x, k, )v, (v)8(v).
)=P, n "p

W~„-gGG W, (q, (d)+PqP„W, (q, V)M~

qgCjp
8'pv 8ps

P
P() P)( 2 (1-)( q

(5.2)

Since )d is always positive, i.e., 8(v) =1,
1

v, (u, ) = Q dxG(x)v, (xv, ) .
i=@ en 0

(4.6)

(4 7)

and similarly for W~&"„by changing p„ iP „and
v v„. This form satisfies the gauge-invariance
condltlon.

To project out the 9 ',~ and 8"'," from 5"„~ ~e can
use the projection operator P"' with the property

Equation (4.7) leads us to the conclusion:
The threshold condition is always satisfied

in the high-energy scattering, i.e., it plays no
role at all. This is what we expect intuitively.

2. The physical quantity to be smeared by the
Fermi motion is the cross section itseU.

3. If'o~ „are constant, then O„=a~ + v„.
Thus West' s p correction is absent for hadronic

processes. All of these conclusions are the op-
posite to what West obtained. ' '

I~" W'& =W~ ~=1 2.
p, v i

It is not difficult to verify that

1 ~„ 1 q'6'&5'"&""=-2g""+
2 vu

(5.3)

(5.4)

V. DEEP-INELASTIC ELECTRON SCATTERING

Vfe now consider the case where the "projectile"
is a virtual (off-shell) photon of four-momentum

will satisfy Eq. (5.3).
Applying Eq. (5.3) to Eq. (5.1) we get"

W (q', , )= g f d'k, . J
—G(«, k )[W (q', v)vkw (q*, «}),

i =. Py n 0
(5.5)

W; (q', v )= . f d*k —G(v, k )BW« (q', v),
y n 4 p

(5.6)

where
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A=[2M~'(q'M„' —v~')] '[ —v~'k~'+ v~(q~ k~)C, +q'C, +M~'(q~ k, )'],

B=-,'(q'M, ' v,')-'(2x'v, '-4xv, '(q, ~ k, )+ v, '[q'C, +2(q, ~ k, )']+ v, q'(q, k, )C,+q'C, +q'M„'(q, k, )'],

C =(1-x)M M +k~

4(1-x)' 2 ' " (1-x)'~ . 2(1-x) (s.v)

C~ = [2xM2 —2x(l —x')M~ + (3x —1)k~'],1-x

C~= I-3(M'+k~')+ [4 —(1+x) ]M~ j,
k

C, =
(

'
)2+ ( ), [3M +(3x' —2x —1)M~ ]+,[3M +2M~ M (x +2x —3)+M~ (3x —4x'+2x —4x+3)].41 —x'

In the deep-inelastic limit

q -- & = —,-- fmed2 2Vd

q2

then

2

wp(q'i~J= p d*k. —G(x, lc. ) &l'(s', ~)+», w (z', ~)),
q&, n

WP(q', u, )= g f d'k, f dxxG(x, k, )W (q*, ~),
j =P, n 0

where

(5.8)

(5.9)

(5.10)

2v 2xvd x
(0= 2

= xco
Xd

(s.ii)

Defining

~ed +84 p ~ ~2 g78d +8d
1 1 & d d 2 2

W"=E" vM 2R '=E"
d 2 2

we can rewrite Eqs. (5.9)-(5.10) as"

(s.i2)

In terms of x„:
dgZ (q', x„)= g ——~G(y)Z q' ~

iW, n

(s.is)

'dx
&~(q' (u ) = Q —G(x)E"(q' (u)8((o —1),

p n 0 x
(5.13)

F"(q' (u ) = Q Jl dxG(x)E"(q' (o)8((u —1)

(5.14)

%e write the 8 function explicitly as a threshold
condition, i.e., E=O if co&1. Notice in our discus-
sion it is not necessary to assume Bjorken scaling,
so that we retain the possibility of a q2 dependence
in the structure function.

Our result for E~„Eq. (5.14), agrees with the
result obtained in Ref. 4, though it does not men-
tion E

t 1
2 XZ (q' x)= g dyG(y)r; q' ~, (5.15)

le, n 3xd 3'

a form familiar to the believers of the parton
model. '6

A simple direct consequence of Eqs. (5.13)-(5.14)
and of the normalization condition Eq. (3.10) are
the wave function indepen-dent sum-rules:

4{0'&"(q' ~)= Q I" —&"(q' ~)
cf(d

(dd P n jy CO

(5.1'?)

A CO

J
d y'ed(q2 & ) g ~ei(q2 ~)

4Q7

~=a, n

(s.is)
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E~(q' (o ) =- (o E"(q', (o,),
E (q, (u) = (oE (q, ur) .

(5.19)

Notice that these two sum rules are consistent with
the Callan-Gross relation:

A similar calculation with similar results can be
carried out also for the neutrino case. It is given
in Appendix D.

VI. CONCLUSION AND DISCUSSION

The higher moments can be easily obtained,
especially

(q &d )=&x) g E (q, ~),

where

, E;'(q', co,)=&x) Q Jf —,E (q', (o),
ff

(5.21)

&x&= x G(x)dx. (5.22)

2

[-(d&x + (1+ Q)&)x —I] ~

-q 2»N

In hadronic scattering the incoming "projectile"
is on shell with a small (positive) q' (=m', , the
mass of the incident particle), and so the threshold
condition' in this case is

8(s'-M') -8(v) = 8(xv, ) =1,
since"

M +2 i i(1-x ( M~ +2v~

M +k~ -m
M~2+ 2v„

—(M~ +2v~)x.

In general, we expect &x) = I/N, where N is the
number of constituents in the deuteron. For our
two-nucleon model &x) = ~.

Going back to Eqs. (5.13)-(5.14) we see that for
large v, where Ef'(q', &o) is approximately con-
stant (fixed q'), the West p correction is still
present, but the form of this West P correction
is different according to us than what was given by
West." Thus the result is different from hadronic
scattering. The reason is that in electron scatter-
ing the incoming "projectile" is a virtual (off-
shell) photon with a large (negative) q', and thus
the threshold condition is

8(s'-M'}-8(&u —1)= 8(x(o, -1),
since

s —M = —x co&+ —
2 +x 1+(d&+-

q' ~

1-x, " -q' " -q' j

We have considered the smearing effect due to
the Fermi motion of the constituent nucleons in
deuteron. The analysis has been done covariantly.
The proper relativistic treatment of the deuteron
as a (p, n) bound state implies that we need to
consider also the NN pairs (due to the vacuum
fluctuation} in the deuteron. As in the parton mo-
del of the nucleon one can use the infinite-momen-
tum frame to deal with NN pairs. For the deu-
teron, however, this is unnecessary since its
binding energy is small, and furthermore we do
not know the infinite-momentum wave function.
We prefer to work in the deuteron rest frame,
where we can identify the wave function as of the
Bethe-Salpeter type.

The Brodsky parametrization method allows us
to work in the deuteron rest frame. The result
we get agrees with the infinite-momentum-frame
calculation. Furthermore, it can deal with the
problem in a general way and does not need to go
to the limiting case, the high-energy limit.

We get the correct normalization condition for the
relativistic deuteron wave function. This result
leads us to the vanishing of the West P correction
for high-energy hadronic scattering. This absence
is not surprising since in the high energy limit the
threshold condition can always be satisfied„ i.e.,
it has no role at all. Thus, we confirm the pre-
vious claims that the West P correction is absent
in this case. However, we believe that our ap-
proach is more general than the previous ones
since it avoids making several approximations
used in earlier papers. ' ""Furthermore, we
find some inconsistency~ in Ref. 3.

Similarly, also in Ref. 4 we do not see any rea-
son why the $ variable (which is equivalent to our
x (variable) should have values between 0 and 1."
Note that the nucleon as the constituent of the
deuteron should not be treated as the parton-quark
(which is supposed to be the constituent of the
nucleon), especiaQy if we work in the deuteron
rest frame.

In electron scattering we have found that the
West P correction exists, though not quite in the
same form as given by West. ' ' In fact, we get
a result that can be regarded as the complement
to Ref. 4. The results of the latter can a.iso be
obtained easily by our approach. In the deep-in-
elastic limit, but not necessarily in the Bjorken
scaling limit, our result agrees, though not quite
exactly, with the third paper in Ref. 3. The vari-
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(q', (o,)= Q f 2}f)k}~}e[z+').,}
i=A, n 0

x Ef'(q', ~)8(&u —1), (6.1)

x 8(E+k,)F2"(q2, ~)8((g) —1) .
(6.2)

If we define

f
(k) f'-=ff(k) f'

' e(z+y.),
0

which satisfies

(6 2)

able o. there is not the same as our variable" x.
Our general expressions for the 8'," and W,

[see Eqs. (5.5)-(5.6)] are more complicated than
the ones obtained by West." This complication
is the price we pay for taking the NN pairs in the
deuteron properly into account. We believe that
our expressions are the correct ones. This feel-
ing is strengthened by the fact that our results
leads to a form which has a simple parton inter-
pretation (in the infinite-momentum frame). The
difference between our results and West's is re-
flected also in the deep-inelastic form of the
structure function. Eqs. (5.13)-(5.14) in the deu-
teron rest frame can be written as"

cross section in the high-energy limit differs
from West's .Eq. (4.7} in the deuteron rest frame
can be written as

cr, (v, )= Q )I d'Sly(k)l c,.(v)
,. ~„J

In comparison, the equation obtained by West is

(6.9)
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APPENDIX A

vp'u(va)= Q d'~lg}}(k)l'vc,.(v)e(v). (O. lo)
j=P, n

Although, as we mentioned, the present paper
avoided some of the approximations made in
earlier contributions to this problem, one assump-
tion was made here also, namely that the conclu-
sions concerning the existence of West's P correc-
tion are independent of the spin structure of the
reaction, and hence in our proof we used a spin-
averaged formalism. %hether this assumption
is valid or not will be investigated later.

then

dk k =1, (6 4)
In this appendix we will discuss the gauge-in-

variance problem for the diagr am shown in Figs.
1 and 2. Consider Fig. 2:

~ 'E:"(q' ~.)= Z d'~lgk}l'~'
j=P, n

x Ef'(q', ~)8((g 1),

E~(q', (o,)= Q d'kf((k)f'
j=P, n

(6.5)

1'.= (»+ q). E,(q')

d'I y(a' p')
(27r)' p' —M'+i

„e(~',(p q'))
( p+)q'- M+iE k -M +i& '

(Al)

x E (q', &o)8(&o - 1).
In comparison, the equations obtained by West
are

(6.6)
where the )t) is the n p-d vertex function -and the
I'„(p+q, p) is the y-N-Ã vertex function which
satisf ies the Ward- Takahashi identity

EP(q', u),) = Q ' d'u
f
}t~(k ) f'

j=P, n

q "1'.(p+q p) =&&(p+q) '- &&(p) '

=(p+q)'- p'= -2q 0, (A2)
x Ef'(q', ar)8(&u —1),

I

(u, E~(q', (u,) = Q. d'k
f q~(k ) f'

i+, n

(6.7)

x (orp(q', (o)8(u) —1) .
(6.8)

Similarly, our result for the hadronic total

by using S,=(p+)).}„and q'+26 q=0. Notice that.
in Eqs. (Al)-(A2) we approximate the full dressed
propagator &~ by the free propagator 4„. This is
consistent with the assumption(2) discussed in Sec.
II.

The gauge-invariance condition will be satisfied
if the scalar



I(q', 6 6')=q"I'„=0,
where 6 ~= (6 +q) „. Using Eq. (A2) we obtain

I [
( )4. tf)(k p (P k)p(k y

s k)

1 1

.((P —k)' —M'+i& (6"—k)'-M'+ic

(A3)

Notice that the scalar I is invariant under the in-
terchange 6' 6 ', however, the right-hand side
of Eq. (A3) changes sign. This implies I must be
zero, and hence the gauge-invariance condition is
satisfied.

The general form of I'„(p+q, p) is given by

I'„(p+q,p)=(2P+q)„F(P', q', P q}

+qgG(p iq ~p'q). (A4)

E and 6 here are not independent, but are related
by Eq. (A2); thus

)2r.(p+q, p)=(2P+q)„F~q. p q, p (1 F).

(A5)

Notice that the second term in Eg. (A5) will be
zero on the mass shell limit, and thus we get the
usual form.

Now consider Fig. 1 where q is the four-momen-
tum of the virtual photon. We will use the identity"

q"T..(p, p'q q)= .(P+q, p}- .(P P-q},
(A6)

where the graphical representation is shown in

FIG. 3. Graphical representation of the id.entity Eq.
Q.6).

for an interacting nucleon which is off shell.
Hence, we can use the usual form for the W,„,
given by Eq. (5.2).

APPENDIX 8

Charge conservation is used for the normaliza-
tion of the wave function (see Fig. 2). Consider
Eq. (Al) and Eq. (A5). By using the light-cone
parameter ization

q'=q'+ q'= 0;
d k= &dk+dk d'k, ,

we find, in the deuteron rest frame [set q = 0,
F, =(I',+ r,)/2M„]

(B1)

Fig. 3. In Eg. (A6) T„„is the virtual forward
Compton scattering amplitude. Recall that W„„
is the imaginary part of T„„. Since we use the-
off-sheQ kinematic and on-shell dynamic forma-
lism, i.e., I' is a gaea/ function of q' only in Eq.
(A5), the imaginary part of right-hand side of Eq.
(A6) is equal to zero. Thus,

d k
1 00

dk'(M~ —k'))~
2

. P (k', k, k~)(k'k —k~ -M +i&) ~

x [M~' M~(k'+ k )+k'k —k~' M'+ ie] '. (B2)

In the formula above we used the fact that F,(0}
=F&(0)=1 and F„(0)=0,

Neglecting the singularity of @ in the E plane,
if any, " the denominators lead to poles in the
upper or lower K half plane (fixed Z"}depending
on whether K'&0 or K'&Md. In this case we can
close the integration contour in the lower or upper
half plane, pushing a semicircle to infinity and
we end up with zero. Also, from Eq. (B2) we see
that K'=0 or Md gives zero contribution. 'Thus
K' is restricted to the interval 0&K'&Md. kf we
close the contour in this case, we can do it in the

upper or lower half plane picking up one double
pole or one simple pole, respectively. The two
expressions, of course, have to be equal. 'The re-
sult is"

dQ+ d 2 Q+

d 0

where f is defined by Eg. (2.3). Using the relation

we can rewrite Eq. (B3) as
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2S+
u 0 d

(B5)

a = (M'+ R,
' —M~') .

d

Notice that Eq. (B5) can also be written as FIG. 4. The time-ordered contributions to the Feyn-
man graph of Fig. 2 in the ir8inite-momentum frame.
By convention, time flows from left to right.

In the derivation of Eq. (B6) we do not make any
approximation, apart from the singularity of P in
the K plane which we neglected. Thus with this
appendix we clarify the incorrect presentation
given in the Ref. 3.

APPENDIX C

In this appendix we will rederive Eq. (3.5) by
using TOPTH„(time-ordered pertubation theory
in the infinite-momentum frame). ""We will as-
sume that we can use the Weinberg rule (Feyn-
man's rule in the infinite-momentum frame) for
spinless particles here, though it is derived for
the P' interaction (we just change the g, the coup-
ling constant, to P, the vertex function).

In the infinite-momentum frame only the graphs
shown in Fig. 4 will contribute to the Feynman
graph Fig. 2. By choosing the reference frame

Me,= p+- d, O„p,

~2
q„= —,q„O ~,

I'+
k~= 1 —xP+-- --- —,—~, 1-xP

2xP

where 0&x&1, we obtain"

(C2)

((p + q ) = Mz' -- Mz' + 2 (P '
q + q

' + 0 (1/P '),
q' = -q, '+ O(1/P'),

only the single time ordering of Fig. 4(a) needs
to be explicitly considered at P -~.

Using the %einberg rule and the parametrization

M'+ Tcip„= imp+
' ', Tc„xp),2xP

where

2(2s)~x2(1 —x) M '-M (x, k )+is "
M~ -M (x,k~+ (1 — ) )+is '

(C3)

(1 )
~

By setting q ='0 and taking, for example, the third component we find

(C4)

which exactly agrees with Eq. (3.5). The result is not surprising since if P ~ in the Brodsky parametri-
zation, we have exactly the infinite-momentum frame, where x becomes the fractional longitudinal momen-
tum.

After we finished this calculation we learned that a similar calculation has been done by Gunion, Brodsky,
and B)ankenbecler, ' though their purpose is different from ours.

APPENDIX D

In this appendix we consider deep-inelastic neutrino scattering off the deuteron, say v„+d p, +x. Con-
sider again Fig. 1 where q now is the four-momentum of the S' boson. . The generalform of the 8"~d is given
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Wxp(q q v)) = gkpW» (q y v)) +6 ydvM) W2 (q & vg) —f61»»»yP q (~d } W 3 (q s vg) + qgqP ) Wg (q q vd)

+ (P„q~+ q„»P,)(2M~') 'W","(q', v&),

and similarly for W„"'.
To project out the W's from W„~ we need the projection operator P ':

%e find

P", = [2(q'M ' —v ')] '[-(q'M ' —v ')g '+ q'»f'" »I" + M 'q"q' —v (6'"q'+ q"(P'}]

P,' = M~'2 '(v)' —q'M~') '[q'(v)' —q'M)')g"'+ Sq46'"6" + ( 2~v' +q'M~')q"q~ —Sq'vq(»p" q + q"6")],
iM,-'(q'M, ' —v, ') V~"+)q„,

P~' = M~'2 '(v~' —q'M~') '[M~'(v»' - q2M)')g" ~+ (2 ~v' +q'M&')6'" 6'~+ SM)~q" q~ —SM~'vz(»P"q'+ q"6")],
P~~' =M~'(v)' —q'M~') '[-v~(v~' —q'M)')g"' —Sq'vP' 4'~ —3v~M~'q q~+ (2v~'+q'M ))(6'"q'+ q"6")].

Applying these projection operators to the equation

I'dx
W„","(q', v~)= g J~d'R, ' —G(x, k, )W~»(q', v),

j¹P)I
me obtain

"'(' ~ )=g J" '
j¹p)n

W" (q' v ) = g d'k,
j¹P)n

W"~(q', v~) = g ' O'Tc
j¹P)n

W",~(q', v~) = g J d'R,
j¹p)tt

W",'(q', v„)=g J~d'R,
j¹p)tt

—G (x, ki)[W", »+A, W",'],
0

~'dx
Jl

—G(x, T )gW"»
0

'

. —G(x, k, )CW",»,
0

'd'x—G («, %, )[DW",»+ W",»+ Z W",»],
0

t ~
v
2
j ~

5
~

t

'Cx—'G(x, T,)[ZW",»+GW",»],
p x

yhere A and J3 are given by E»1. (5.V),

C = (q M~ —v~ ) [-xv» + v)(»1» '%~) + C~],

C, =q [2(1-x)] '[(1 —«2)M~'-M'-R~'],

D= [2(v„' —q'M~')'] '[ ~' vD+ v~(»1,
' k, )D, +q'D, ),

D, =
I 2(1 -«)]'Q.'+ 27.'[M' - 2(1 —«)'Mu'1+ 4«(1 —x}Ma'[M'-(1-x)Mu']+ [(1-«)'M~'- M']'],

D2 ——3(1 —x) M„[M~ (1 —x) -M —ki ],
DB=M~'[4(1 —x) ] [M„(1—x)' -M ]',

g =[2(v, -q M, ) ] [v, Z, -M„'v„'(»i„k,)+ v,q E, -2q'M, '(q, k„)],

Z» ——(1 + 2x)M, - (1-x) '(M + k, ),

E2 =(1 -x) M» [M + k» —(1 —x}Mg ],
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E =(vd —q Md ) [vd E'( + 2 d ((ld kd)E2 vdq F3 —q ( ld kd)F4] «

E( ——(1 —x) [x(l —x) Md —xM + (1 —2x)kd ],
E, =(2x-l)M, '+(1-x) '(M'+k, '),
E3 ——-3Md q (q, 'k, ) +x(x+2)M, -Md'(1 —x) '[2xM +(1+x)k, ]

—3[4(1-x}'] ']k,'+ k, '[2M' —2(1 -x')M, '] + [(1-x')M, ' -M']'j,

E, =M, '(1-x) '[(1-x'}M,'-M'-k, '],
(vd q Md ) Ixvd (qk kd)vd +q vd G( + vdq (qk kd)Md +q G2] «

G, =- -,'M„'(1+ 3x) + -,'(1-x) '[M'+ k„'],

G2 ——Md [2(1-x)] ~[(l —x )Md -M —k, ].
In the deep-inelastic limit,

Ws'(q, ss)= P fd'k—'G,(xk) W('+k ';)Ws' (,
i=p~ n X 2M~|

Ws (q, ss )=g fd k,dxxG(x, k, )W", ',
i=p~ n 0

Ws (q, ts )=g fd kf dxG(x, k, )W«',
j-"p~ n 0

' x
kxs'(q, x,)=lx fd k'—, G(x, k, ))Ws',

i=p~ n X

s

W",'(q', ~„)= g d'k, dxG(x, k, )W",*.
i=py n 0

Defining

W",'=E", , ;M, 'W, '=F,"', v,M, 'g," =E", ,
-2 d d 2 4 Vlf

W4 =E((«vdMd Wq F5-
and»mila»y for W' by changing vd- v, we can rewrite E(1. (D15) as&5

+s', s, s(q' ss ) = Z f —G(x)&l!s.s(q', ss)q(ss -(),
i=p, n 0

E2'(q'«(dd) =Q J~ dxG(x)E2*(q', u))6(u) —1),
i=pen 0

' x
E4'(q', (~d ) =Q ~G( )Ex'(qd', &u) &((d —1) .

i=p~ n 0

(D13}

(D14)

(D15)

(D17)

Simple direct consequences of Eq. (DlV) and of the normalization condition are the wave-function-inde-
pendent sum. rules for the neutrino scattering:

l d(d y
2 FI.,z(q' «(dd) = ~ g F~I((q, (d),

i=p, n )

vg 2 Y dK &i

~ GE4 (q «&d)=dd —~F4'(q, cu),
q'-„P, n g QP

(D18)

— — dE5(q ~d)=d ~F5(q ~),l d(dg ldd, 2 ~ d(d &i 2

COg i-p, n
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where
&i,s -=2(+i v&3) ~

The higher-moment sum rules can also be easily obtained.
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eleon system, equal to 4(M +k ). Notice that there is
no physical basis for this equality.
From Eqs. (2.3) and (2.4) w'e see that

Clearly, the identification of )gz{k) I as the nonreI. a-
tivistic deuteron wave function is not correct since
Jd k l)~%) I'2 w 1. On the other hand, for quantitative
purposes, it is not a bad approximation to set [/If') t~

equal to the usual nonrelativistic deuteron wave func-
tion. This identification is not inconsistent with the
approximation given by Eq. (3.11). This equation im-
pHes that

(x) =— x G(x) dx =-,'.
0

Following Sec. II we find

Estimates from various deuteron nonrelativistic vrave
functions gives values of (T) which vary from a few
MeV up to 22 MeV (see Ref. 1). Thus

(x) = M/Mq ~ 2.


