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Cross-section calculations for v, + d ~n +p + P,
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The cross section of the reaction v, + d ~n + p + v, has been calculated for an equilibrium fission
spectrum as a function of the proton energy chosen to serve as a variable detection threshold, The results are
intended to permit as accurate a determination of the neutral-current isovector axial-vector coupling constant
as the experimental conditions permit. With the theoretically plausible constant G„= —1.49X 10 "
MeV and a most recent semiempirical equilibrium fission spectrum the total cross section is calculated to
be 7.27)& 10 cm; half of this cross section leads to proton energies of 150 keV and above.

OBJECTIVE

Since feasibility has been established of an ex-
periment for the determination of the axial-vector
coupling constant associated with the semileptonic
interaction of the neutral components of the iso-
vector current, ' it is appropriate to provide theo-
retical values in terms of said constant of the
actually-to-be-measured quantity and, of course,
with an accuracy at least as high as the experi-
mentally expected one. The quantity to be mea-
sured is the cross section of the reaction

~e+ d ' &+P+ ~e

for incident equilibrium fission neutrinos, as a
function of the detection-threshold proton energy.
Calculation of the theoretical values required for
comparison will thus necessitate (1) calculation of
the cross section differential with respect to pro-
ton energy for monoenergetic incident antineutrinos
dv/dE, followed by (2) its integral over the fission
spectrum, and (2) the integral over the desired
proton energy range.

Anexperimentalaccuracy of 25% is expected in
the short term, eventually to be followed, it is
hoped, by one close to 10%. Any ingredient of the
theoretical cross section readily lending itself to
calculation with greater accuracy than the men-
tioned experimental ones is treated accordingly.

As is rather well established, the fission neu-
trino spectrum decreases by one order of magni-
tude within the first 3 MeV beyond the binding en-
ergy of the deuteron and again within the next 2
MeV. At 10 MeV it is more than 3000 times
smaller. ' The cross-section calculation may thus
be performed with sufficient accuracy in the al-
lowed approximation.

THE MATRIX ELEMENT

-- =2gG dQdQ'p K

K= P Tr P ~ 'f dv —', P 4,, P v„r~
ma g

$ f denotes the interacting final -state wave func-
tion, the subscripts N and I stand for nucleon
and lepton, respectively, and p is used for the
density of final states; the solid angle element
dQ is associated with the proton of energy E, and
dQ with the emitted antineutrino whose two spi-
nor is Q'. The other symbols should be self-ex-
planatory.

With the deuteron as a pure 8-state configura-
tion, the matrix element has been treated else-
where, ' evaluation of the space part of the heavy-
particle factor generally proceeding according to
Bethe and Longmire. Keeping the angular corre-
lation, one has

8 y si'6,
1-yr, k'

~

~

y+kcot6, r, +r, '
q q'

(2)

At this point, the "effective ranges" appearing in
Egs. (2) and (2) are still functions of energy,

r~= 2 vga —
usaf dr )

Here, y= &MB, with M the nucleon mass and B the
magnitude of the deuteron binding energy, and k'
=ME„, with E„ the exit energy of the two nucleons
in their c.m. frame; j and q are the directions
of the antineutrino momenta. In the mell-known
manner, cot6, may be usefully expressed as fol-
lows:

With the modest but realistic accuracy aspired
to here, the basic theoretical expression is, ex-
cept for 6„, the model-independent

vg) —uD dr

u, , and uD being the radial parts of 4,, and
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respectively, and e«and eD their respective
asymptotic forms, normalized to one at the origin.
Equation (2) is then accurate to within better than
1%. Substituting the standard effective ranges at
zero energy has little effect: Firstly, the energies
replaced by zero, B, and E„are very small corn
pared to the nuclear potentials; secondly, Eq. (2)

depends on the effective ranges in a way which
makes it rather insensitive to changes in them.
In fact, eliminating z, and y, altogether brings
about a change in the right side of Eq. (2) of only
a few percent. For a straightforward demonstra-
tion consider Eq. (2), using Eq. (3) and letting
Q'«y',

iglli 1 —yr, am+ I/a, 2 y' 4 & 3

(5)

The last approximation is fairly good since I/a,
«y and y(r, + r,) s 1. Noting finally that r, =x,
allows one now to infer quite physically the rela-
tive unimportance of the ranges. Without the sub-
sequent simplifying approximation, Eq. (5) con-
tains a "range correction" of 5%.

THE PHASE-SPACE FACTOR

This brings us to the phase-space factor, the
central point of this paper:

dN I E2E3p, p3
dp, dn, da, (2~)' (Z, +Z,)p,' Z, p, (p-p, )

is an exact expression for the density of states '

available to three particles of total momentum p.
With a stationary target of mass M~, the total
incident energy shall be called @+M~ and the in-
cident momentum q. The equation

M~+m, = m„-B

defines a reaction energy B. The conservation
laws are

target. Noting that also within 1/0 (henceforth E,
means E»„)

p, 'dp, = (2M'E, )' "dE, ,

we obtain for incoming neutrino and outgoing lepton

B,p, '(2M'E )"'
(2v)' p, ' Z, p, '(g p, )/M

'

In particular, for m, =0 [p, -=Q', see Eq. (5)]

q "(2M'B,)'~'
(2~)' 1-q "(q-pi)/M '

Since our independent variables are an outgoing
nucleon energy, the associated direction, and the
outgoing lepton direction, we need a suitable ex-
pression for the outgoing lepton energy. We use

E B ~l P2
2M

where

p2=4 —pz-53 ~

With m, =0 we obtain, again to within 1%,

For the sake of approximating, below we note the
relation

Z, m, +E, r-(B m, ),
where T is the incident kinetic energy.

For incomin jneutrinos m, =0, with energies
within the fission spectrum and outgoing neutrinos
or electrons as particle 3, we have

q —(B—m~) 6 M /100,

with M the "nucleon mass, " and thus to within 1%

dÃ 1 ME p p
dp, dA, dQ, (2w)' Mp, '-E, p, (Q-p, )

B-m, is the magnitude of the binding energy of the

(12)

For a chosen q the maximum nucleon energy is

q-B q q-B q'
1 ~ax 2 2 M 4M2 7

corresponding to the momentum

q2 1/2
pi = —+ M(q —B)——

ha

where p,, and p,» stand for the cosines of the an-
gles between the incoming direction and that of
particle 1, and between the directions of particles
1 and 3, respectively. From Eqs. (10) or (11) we
find the condition on p,„

M (q —B—2 B~) —q'/2
q(2M, )'"
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the minimumbeing zero as long as q & B(1+B/2M),
an extremely mild condition.

Instead of as in Eq. (10), the final neutrino en-
ergy may also be expressed by

q'=q-8-E -E, (14)

where E„ is the previously mentioned relative en-
ergy of the two nucleons [see Eqs. (2), (3), and

(5)], and E, the energy of their c.m. motion,
E,=p,'/4M O.n the relation (14) one can build
the phase-space factor

q'=q B —E„q'/4M .-
However, when E„and 2E, differ appreciably,
which they can at their smaller values, q' is
hardly affected by either one. On the other hand,
large nucleon energies, necessitating dominating
antiparallel components of the nucleon momenta,
make the percentage difference of E„and 2E,
small. Besides, for very large nucleon energies,
q" and with it the phase-space factor become
quite small. For these reasons the reduced nu-
cleon spectrum has previously been regarded
as representative of the nucleon, specifically the
proton spectrum (see Ahrens and Lang, Ref. 3).
But, in that procedure, clearly no meaningful
error bars can be given, Not only are we dealing
with the complex comparison of the two phase-
space factors, the matrix element also enters the
picture, and it contains, due to the final state
interaction, the low-energy sensitive term
(E„+E,) '. What can be said is that for very low
proton energies the rigorous differential energy
cross section will be considerably smaller than
that based on dÃ/dE„[see Eq. (15)] and the identi-
fication E„=2E,. This is made explicit by con-
sidering the following equation:

2
pc2'-E.=~ 'pc- 4~ ~

For small E, the asymmetry of E„about E, is ap-
preciable. Thus for @=4 MeU and at E, =25 keV
we obtain 17 keV & E„&99 keU. By comparison,
we get at E,= 500 ke V, 850 keV & E„~1150 keV.

1 dN 1 1 q'~(ME„) i

(4v) dE, (2v)6 2 1 —q' ~ ($ —|I')/2M (»)

The distributions in E„and E, [see Eq. (9)] are
similar. Let us look at the differences: (1) The
anisotropy of the denominator on the right of Eq.
(9) is relatively weak, though it may reach several
percent; that in Eq. (15) is negligible even by our
present standards [Eq. (15) is based on a "reduced
nucleon, "which, of course, is not involved in the
momentum balance]. (2) q' is effectively a much
simpler function of E„than of E, [see Eq. (11)],
since, again to within 1%,

Thus, to obtain a reliable cross se-ction dif
ferential suith respect to the proton energy is to
evaluate the integral on the right of Eq. (1) mth
the energy E equated to the energy E, of the
phase-space considerations. The energy E„oc-
curring in the matrix element must therefore be
expressed in terms of the integration variables,

9' —&
~ E O'Pj. Wy 9'

1 P&Wy3

2 ' 2M 2 M
(18)

Because E„may be (and most likely is)' the small
difference of large quantities

Er 9' ~ & Ec ~

it becomes necessary to draw on Eq. (10) rather
than Eq. (11):

q —B —2Ei+ q(pg p.i —q/2)/M
1+(p,p„-qp, ,+q'/2)IM

The desired accuracy is obtained by iterating once.
The differential cross section as given in Eq. (1)

refers to monoenergetic incident antineutrinos.
If one wishes to integrate over an incident spec-
trum, then the lower limit on q for a particular
nucleon (in particular proton} energy is

q =M+ p, —[(M+p, )' —2(MB+p, ')]'"
= (B+E,)(1 p, /M)+E-, . (20)

The numerical integrations here were carried
out twice, that is, by two different methods. One
program code was a PASCAL adaption of a Monte
Carlo multidimensional quadrature with adaptive
stratified sampling, originally published in Algol
60.' The second method (in FORTRAN) used adap-
tive quadrature, that, . for multiple dimensions,
hybridiies Gauss, Tchebychef, Newton-bootes, and
Simpson quadratures. The calculations were each
done twice, in the belief that this redundancy is
more likely to turn up errors. The two methods
seldom differed by as much as 1%%uc, and the con-
sistency across methods was as good as the con-
sistency within. The computations were carried
out on a Cyber 74 (CDC 6400/6600).

CROSS SECTIONS

A previous evaluation of the differential cross
section do/dE„with and without effective ranges
[see Eq. (2)] demonstrates the relative unimpor-
tance of the ranges: For energies between 50 keV
and 1.5 MeV the values r, = 1.22 x 10 '/MeV and

r, = 8.67 x 10 '/MeV result in a range correction
everywhere less than 2%, for comparison see Eq
(5) and the subsequent remarks. The total cross
sections from q = 2.5 MeV on up are never affected
by more than 1.5/0. ' Therefore, in this work, the
calculations of do'/dE are based on the matrix ele-
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TABLE I. Differential cross section as a function of proton {or neutron) energy E for inci-
dent antineutrinos of energy q and for equilibrium fission antineutrinos. Energies in MeV,
cross sections in 10 5 cm /MeV.

2.5 3.0 4 5 7.0 10 Fission

0.01
0.02
0.04
0.08
0.16
0.32
0.64
1.28
2.56

3.06
3.00
2.11
0.653

26.9
29.5
26.9
18.4
7.50
0.453

231
266
265
218
138
60.0
11.2

920
1110
1170
1030

722
387
139
22.1
0.171 (-2)

2030
2560
2890
2730
2040
1170

490
124
10.1

26.4
30.5
30.7
25.2
16.2

7 ..10
1.85
0.166
0.175 (-2)

ment with zero ranges,

El/2(E1 /2+ E 1/2)2
SM"' (E„+E,)(E„+E)2 '

(21)

E, = 1/Ma, s = 0.0738 MeV

B=2.23 MeV.

(23)

6„=-1.49x 10 xa
MeV '. (22)

This value is based on the nuclear-P-decay vector
coupling constant G~=1.42x 10~' erg cm', the ra-
tio of P-decay coupling constants G„'/G„'= -1.25,
and the Cabibbo angle 8 whose sine is 0.238.' Us-
ing the relation

G„=G„'/cos8

E,= 1/Ma, 2.

It may be of interest that the final-state interac-
tion introduces the factor (B' '+ E,'/')'/(E„+E, ).
For representative values of the differential cross
section see Table I. For integral cross sections
see Table II. In Table III is listed the quantity of
specific experimental interest, the integral cross
section with the detection-threshold energy of the
proton as the lower limit.

The coupling constant used in the computations
ls

The antineutrino spectrum due to equilibrium fis-
sion is more recent than that in Ref. 2." Some
representative values are recorded in Table IV.

Comparison of the values in Table I and further
results not exhibited here with values of do/dE„
interpreted with the identification E„=2E shows
the following: For the incident neutrino energies
considered here, the two kinds of differential cross
section intersect near E=100 keV. This energy
increases slowly with increasing q. For q = 6 MeV,
e.g. , the overestimate due to use of the approxi-
mate cross section amounts to 12'%%uc at E= 12.5 keV,
the underestimate 21'%% at 1.60 MeV.

The cross sections appearing in Tables I and III
have not been calculated previously. Those of Ta-
ble II have, since the complete integration does

TABLE III. The differential cross section for fission
antineutrinos (d&)/dE integrated from the lower proton
(neutron) energy limit E,h to Em«.

TABLE II. Integral. cross section for monoenergetic
and for fission antineutrinos.

0. (10 45 cm2)

0.172
3.41

59.3
362

1120
7.27
7.36

2.5
3.0 .

4 5
7.0

10.0
Fission

3.25

conforms with the theory of Glashow et al.' Re-
cent observations on the branching ratios of D-
meson decays' have given crucial support to this
theory. The other constants used are

f s{ )d(c10 "cm')

0.0204
0.123
0.259
0.551
0.81$
1.21
1.84
2.28
2.86
3.60
4.05
4.57
5.18
5.87
6.64

8th (Me&)

1.5
1.0
0.8
0.6
0.5
0.4
0.3
0.25
0.2
0.15
0.125
0.1
0.075
0.05
0.025
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No. /Me V q (MeV)

1.338
0.9875
0.7301
0.3356
0.1341
0.4752
(-1)

0.3797
(-2)

0.3450
(-3)

0.4544
(-5)

2.0
2.5
3.0
4 0'

5.0
6.0

8.0

10.0

12.0

TABLE IV. Number of antineutrinos per MeV due to
the equilibrium fission of ~ ~U, normalized to 6.1 per
fission (Ref. 10).

value can be completely accounted for by the dif-
ference in coupling constants used.

To summarize, within the approximation of an
S-state deuteron, the results obtained here and
exhibited in the various tables and figures should,
conservatively speaking, be accurate to within at
least 5%. This statement implies, of course,
that the fission spectrum, whenever used as input,
is taken at face value. Judging by its history,
this spectrum may still lead to errors of between
10.to 15%%u~ once one has confidence in an accuracy
of better than 10%, the publication of deuteron
disintegration calculations involving finer details
such as the D-state admixture and weak magne-
tism becomes indicated.

not require the complex intermediate step of ob-
taining cross sections differential with respect to
a nucleon (e.g. , the proton) energy. Thus we are
able to compare our o (fission spectrum) with
previously computed values. Limiting ourselves
to recent computations, one of us, in collaboration
with Lang, obtained 6.6x 10 ' cm', ' Lee obtained
7.1& 10 "cm', "Avignone and Greenwood obtained
7.4& 10 ' cm2, ' and Avignone, using his latest P
spectrum, obtained 6.5 x 10 ' cm'." The differ-
ence between our 7.3x 10 "cm' and Avignone's
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