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Do non-asymptotically-free known interactions invalidate the unification hypothesis' ?
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The running coupling constants and possible unification of the known interaction- group product are
considered. For fractional and integral quark charges, non-asymptotically-free U(1) gauge and quartic scalar
coupling constants are shown not to exceed order unity prior to appropriate embedding mass scales for
unification with gravity and for lepton-hadron unification, respectively. Empirical boupds on the mass scale
for lepton-hadron unification are shown to be somewhat lower than. previously estimated. Essential quartic
scalar-field conplings within proposed [SU{4)]'embedding symmetry are shown to be non-asymptotically-free.

I. THE UNIFICATION HYPOTHESIS

The idea that strong, electromagnetic, weak,
and gravitational interactions may be contained
in a single embedding group structure is an ex-,
tremely attractive one, for it suggests funda-
mental unity in nature. " The symmetry of such
a structure is, of course, broken in order to
account for the different particle interactions,
and that is where difficulties begin. %e note,
however, that the unification hypothesis is some-
what more than wishful thinking. The hypothesis
has already been shown to provide insight into
why the strong interactions are stronger than the
weak-electromagnetic interactions, the origins of
lepton-hadron universality in the weak charged-
current interaction, ' and the relation between
empirical weak-angle values and hierarchical
symmetry breaking. "6

It is no accident that these successes pertain
to the magnitudes of gauge coupling constants,
rather than the scalar-field self-couplings or
the Yukawa couplings of the embedding theory.
There is consensus among physicist's that the
strong interactions are described by local chro-
modynamic SU(3) invariance and the weak-elec-
tromagnetic interactions by some product of
SU(2) and U(1) local gauge groups. The decoup-
ling theorem allows us to see how corresponding
subgroup gauge coupling constants can evolve
from a single gauge coupling constant of a larger
embedding theory. ' Thus, the fundamental coup-
lings of nature become equal at sufficiently large
Euclidean momenta. Since the embedding theory
is non-Abelian, all U(1) factors in the weak-
electromagnetic sector eventually become asymp-
totically free.

Therefore, the unification of known interaction
subgroups allows gauge coupling constants to
be eventually anchored to a single UV-stable

. fixed point (zero); is it possible that nongauge
couplings show similar behavior? Unfortunately,
there is presently no consensus as to the nature
or structure of symmetry breaking, except that
realistic spontaneously broken gauge theories
are seldom asymptotically free. " The problem
is further complicated by the fact that the de-
coupling theorem is no longer useful when con-
sidering scalar-field multiplets of the embedding
symmetry, because light scalars do not always
decouple within a given multiplet. Since there is
some agreement about the Higgs structure of the
known interactions, it may be more useful to
concentrate on the embedded rather than the
embedding symmetry.

In this paper we assume that the known inter-
actions are based on the local gauge symmetry
SU(2) &U(1) xSU(3). For the theory with unbroken
color, the single quartic scalar coupling constant
present is shown [in addition to the U(l) gauge
coupling constant] to always be non-asymptoti-
cally-free. If color is broken, the corresponding
quartic coupling is shown to be non- asymptoti-
cally-free as well. Coupling-constant values at
low momentum scales, however, are constrained
to be small (- tr'~2) by the relative strength of the
weak interactions, i.e., by the empirical Fermi
constant and weak angle. Thus, a picture emer-
ges in which running non-asymptotically-free
known interaction coupling constants increase
above their physical values with an increasing
scale of momenta. For all couplings to be even-
tually U&-finite, some kind of embedding must
occur before those non- asymptotically-free
couplings diverge. Specifically, we want scalar
[and U(1)] known interaction particle multiplets
to be embedded in the multiplets of a larger
unifying group whose coupling constants are
asymptotically free. The larger group structure
manifests itself at' appropriately large momenta,
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henceforth denoted as the "embedding mass
scale." Presumably, this mass scale [corres-
ponding to the mass of non-SU(2) XU(1) XSU(3)
gauge bosons in the embedding group] corres-
ponds to the scale of momenta at which diverging
known interaction coupling constants "turn
around" and begin to diminish in magnitude with
subsequent increases in momentum scale." The
statement that all nature (not just the gauge
couplings) is eventually UV-finite corresponds
to what we will mean henceforth by the "unifica-
tion hypothesis. "'3

In Sec. II of this paper we review the minimal
known interaction model [SU(2) &&U(1) X SU(3)] for
fractional and integral quark charge assignments.
The non-asymptotically-free behavior of the U(1)
gauge coupling constant is examined for both
choices of quark charge and for an arbitrary
number of quark flavors. By tying the running
U(1) gauge coupling constant g' to o. and the phy-
sical weak angle at f =0 (p, ~ mv), we are able to
show that g' will not exceed order unity until
p, »Q„,„', the momentum scale at which unifi-
cation with gravity is expected. We claim
therefore, that the U(1) coupling constant remains
UV-finite over a sufficiently large range of
momenta that no intermediate embedding symme-
try is necessary prior to unification with gravity.

In Sec. III we examine the quartic scalar-field
couplings of the SU(2) XU(1) XSU(3) theory for frac-
tional (unbroken color) and integer (broken color)
quark charges. At least one minimal-model
quartic scalar-field coupling, constant is proven
to always be non-asymptotically-free, regard-
less of whether color is broken or unbroken. For
either case, however, the domain of "temporary
asymptotic freedom" is shown to extend past
appropriate embedding mass scales. For frac-
tional quark charges, such a mass scale would
be the Planck mass (Q~„'~ ); for integer quark
charges the embedding mass scale is the mass of
the leptoquark boson (which mediates the decay of
quarks) .'4

Empirical bounds on the leptoquark-boson mass
are shown to be lower than has been estimated
previously in Sec. IV. Moreover, the coupling
of leptoquark bosons to fermions is demonstrated
to be an archetypal example of a coupling constant
that appear to be non- asymptotically- free at low
momenta, but which becomes identified with an
asymptotically-free embedding coupling constant
at high momenta.

We conclude Sec. IV by showing how the pro-
posed [SU(4)] embedding symmetry contains at
least one non-asymptotically-free quartic scalar
coupling constant, associated with (4, 4)-type
scalar-field multiplets. Such multiplets are

essential for the realization of a low unification
mass scale in the [SU(4)]4 theory. We further
show how an increase in the number of flavors
will salvage asymptotic freedom for such coup-
ling constants, but argue that additional scalar
fields necessary to break resultant higher sym-
metry will contribute other non- asymptotically-
free couplings. Thus, we end this paper pessi-
mistically, suggesting that either the unification
hypothesis is untenable (not all couplings are UV-
finite) or that some kind of eigenvalue'~ or induced-
scalar-coupling prescription' is necessary for
symmetry breaking to remain consistent with the
unif ication hypothe sis.

II. THE MINIMAL MODEL

We assume that the known interactions of na-
ture are described by a gauge theory based on
spontaneously broken local SU(2) XU(1) &&SU(3)

symmetry. Such a choice is justified both by the
success of the Salam-Weinberg model' in ex-
plaining neutral- current phenomenology' as well
by the considerable qualitative insight into lepto-
production scaling phenomena obtained by gauging
the color group. '9 We shall denote the SU(2)
xU(1) x SU(3) model to be the "minimal model"
for the known interactions. The minimal model
may contain fractionally or integrally charged
quarks. For the former case, color is unbroken
and quarks are presumably confined. For the
latter case, additional spontaneous symmetry
breaking is necessary to break the color group.
In either case, however, there exist non-asymp-
totically-free couplings that will diverge unless
the minimal model is embedded in a larger
asymptotically-free theory. We seek to obtain
some insight into the momentum scale at which
this embedding should be manifest.

We begin by listing essential features of the
SU(2) &&U(1) XSU(3) minimal model. We borrow
heavily from the 1973 paper of Pati and Salam
that describes an SU(2) && U(1) && SU(3) model with
integer charge quarks, ' for the notation of that
paper is appropriate for fractionally charged
quarks as well. Moreover, the SU(4) xSU(4)
classification symmetry of fermions presented
in that paper is suggestive of higher embedding
symmetry, implications of which are considered
in Sec. IV.

We assume there are four quark flavors, corres-
ponding to two weak doublets in any given color.
In addition, let there be two weak lepton doublets.
We list the fermions of the model in such a way as to
exhibit SU(4) x SU(4) classification symmetry [ex-
tensions to SU(F) x SU(4) for F & 4 are straightfor-
ward to obtain"]:
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Gauge bosons of SU(3) &&SU(2) xU(l) are denoted
by V", We, and U, respectively (A=1, . . . , 8;
8=1,2,3); the interaction of fermions with gauge
bosons is given by Zz %y D ——4 (Ref. 1):

-3
D,C,- B„C, +Zg 3V„

~ u+~
A+cg~ W

5-i, j 5-j, & z~3 j

3 R
P.~i

~ f+zg U~ 1~35-i, j 5-$, ~~
1 —45~4 4'i~

(2.2)

Lg„g~, and g' are the gauge coupling constants
of SU(3) XSU(2) XU(1).] The Salam-Weinberg
model'7 is realized by introducing one or more
scalar-field doublets P, transforming in the
(2, 1,1) representation of SU(2) XU(l) X SU(3)
(Ref. 1):

D„gg ——B„gg+~gs(~rg~) W&P~+ fg( U~„)Qq (2 3)

A. =sin8~ W'+cos8~ U

e-2 g
-2 +g&-2

(2.5)

(2.6)

If quarks are integrally charged, an additional
scalar-field representation is necessary. Pati
and Salam' introduced a scalar-field multiplet
o that transforms in the (2+2, 1,$) representa-
tion of SU(2) xU(1) X SU(3):

p, ie p, ia. 82 y, & A
5-iy f65-j o p Z

+ig'U„nq~/6 —igs ~ V„A~~cr)8 . (2.7)

(Z~ =
~
D„Q,

~
) . Spontaneous symmetry breaking

through the P multiplet gives appropriate masses
to W' and Z, where

& =(g~W'- g'U)/(g~'+g") "'
=cos8~ W —sin8~, U. (2.4)

If quarks are fractionally charged, the photon is
orthonormal to Z and color is unbroken:

The structure of this representation can accomo-
date vacuum expectation values (VEV's) from
which color gluons are able to obtain equal
masses, consistent with global color symmetry.

Vfhen o acquires a nonzero VEV, the color
gluons VA acquire mass. Flavor couplings in
(2.7) attach flavor components to the color gluons
coupling to diagonal currents. The photon re-
mains orthonormal to these (now massive) states
by acquiring a color component:

A/e=W /g&+U/g' —(V +V /M3)/g3,

'=g '+g' '+4
(2 8)

%e shall now consider. the running value for
the non-asymptotically-free U(1) coupling con-
stant g' (running values for quartic couplings
in the scalar-field potential will be considered
in Sec. III). Let po be the subtraction mass at
which g3, g2, and g' are at their renormalized
(physical) values. If the momenta of external
lines are rescaled from P& to P, (p/po), the re-
scaling of g' with t —= lnp/p, , can be obtained from
the fermionic couplings of Eq. (2.2):

16m g' =40g' /9.

Vfe have neglected contributions to running g'
arising from scalar-field multiplets. [The
role of scalars is inconsequential compared to
that of fermions. For fractional- and integral-
quark-charge- models, the right-hand side of
(2.9) acquires additive factors of g'3/12 and
5g"/36, respectively, from scalar-field multi-
plets. ] Equation (2.9) is easily generalized to a
minimal model containing 2n flavors. If the num-
ber of lepton and quark flavors is the same,

16w'g ' =20ng" /9 .

(2.9)

(2.10)

Since g' varies quite slowly with p. , we may
choose p.&

——m~ as the value at which g' and g2
have their physical values. From Eqs. (2.4),
(2.5), and (2.6) we see that for t =0

g'(0) =44vn /cose~, (2.11)

12 4wn

cos'8~ —[10nn/Bv) ln(p/m ~)
' (2.12)

For example, if there are four flavors and we let
sin 8~=—,', we find that

where o. =»& and cos8~ is empirically determined.
For the case of integer quark charges, n in
(2.11) is replaced by n/(1 —4n/3n, ) (n, =g, '/4v).
If n, (g=3 GeV) &0.2, n, (p=m~) is sufficiently
greater than n that this correction (-5%) may be
ignored.

We now apply the boundary condition (2.11) to
Eq (2.10) and obtain
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g'2( p) =0.12/ [1—0.007 ln( p/m~}] . (2.13)

In Eq. (2.13) g' does not approach order unity
until p/m~ is of order 10'0. Even if there are a
total of eight flavors (corresponding to the exis-
tence of an additional four-flavor mirror multiplet
in the [SU(4)] embedding theory)6 and we choose
sin~e~= —,', g'. (p) does not grow large until p/m~- io".

Thus, the running value for the U(1) coupling
constant remains small over enormous changes
in momentum scale, provided it is anchored to
its small physical value at empirical energies.
We note that the scale at which gravitation is
expected to play a role is p,~=9 „' -10' nz~. 3

The value of g' at p,~ remains quite small, so
that perturbation theory remains valid over the
entire subgravitational range of p, . We conclude,
therefore, that the non-asymptotic freedom of
the U(1) gauge coupling is not really a problem
for the minimal model; limits obtained from g'
on the size of an embedding mass scale ate
truly cosmic.

&o) was chosen because it gives equal masses to
all color gluons, consistent with global color
symmetry. The gluon mass matrix arising from
the le „o, l' term in Eq. (2.7) is just

I„,'V" V'/2=g 'V"V'X' ~",C„,/4. (3.4)

If C z is proportional to the identity matrix, then
m»' —(g, 'C/3) 5», and global color symmetry is
preserved. The VEV (3.3) satisfies this property.

We seek to obtain physical constraints on the
quartic scalar couplings A.,-A4 before we shall
consider the magnitude of their running values.
For the theory to have a bounded energy spec-
trum, we require V(o, Q) to be positive as classi-
cal fields o and Q become infinite, independent
of the relative magnitudes of o and Q. Thus, if

l Q I
-~, and o/Q -0, V(o, P) is greater

than zero only if X, &0. Similarly, if P/o-0,
X&C'+X2C ~C~ must be greater than zero, in
which case X=—A, , +X,/3 )0.

Similarly, we can ob'tain a lower bound on the
magnitude of X4. First note that for X2&0,

goo /~+IXI

III. FURTHER LIMITS ON THE EMBEDDING MASS v(o, Q) ~ XC /2+134 /2+A4C4/2 ~ 0. (3.5)

The scalar-field potential in the SU(2) x U(l)
xSU(3) minimal model is given by

v(o', Q) =-
g& 4'/2 —p,2'C/2+X, C'/2

+X2C qC~ /2+X3C /2+X44'C/2

+&5 [(l

uc�io».

I'+
I &» o5-~..I'}] (3 1)

Z(g) =~('+~,g+~, o-0. (3.6)

E($) has a minimum with respect to $ when g
=- X4/2X. We require E(g „)~ 0, in which case

4Q3- X4 ~ 0 ~ (3.7)

Let $
=—C/4. Since C and 4 are positive-definite,

where 4—:Qg Qq~ C~g = )~o)g,oand C =C~~. The
term in square brackets contracts the SU(2} in-
dices of Q with the SU(2)l.'~~ indices of o (all
summations in the square brackets are Z,'.,). If
color is unbroken in the minimal model, the o

field is not present and

V(o, Q) =- p, , 4/2+X, C'/2 . (3 .2)

For the present we shall consider the minimal
model with broken color. In their discussion of
this model, Pati and Salam assumed that Q, and

o, acquire vacuum expectation values (VEV's)
of the form'

o 0 0

Ocr 0

0 0 o

(3.3)

0 0 0

These VEV's are possible only if A,, is chosen to
be zero. Hence X~ will be chosen to be zero
henceforth. 2' The VEV &Q) breaks the weak sec-
tor into the steinberg-Salam theory. The VEV

m =g, &P)/v 2, (3.8)

where &Q) =(p, /2X3)'~ ." The parameter p,
corresponds to the mass of the physical Higgs
particle after spontaneous symmetry breaking.
X3 is related to physically accessible parameters
by the relation

Xg =gg p, g /4m@2 2 2 (3.9)

Thus the empirical lower bound (- 10 GeV) on the
mass p, , of the physical Higgs field ' limits the
magnitude of the renormalized X3 coupling. Since
g2'=4wo. /sin e~, X3=0.1 g, /m~ (sin 8~= —,').

For the minimal model with broken color, the
masses m~ (of colored vector gluons) and m~
are given by (sin'e~ = 4):23

[If X2&0, (3.7) becomes 4(X, +A2)X3 —X4'~0. Since
&&(X,+&2) if X, &0, Eq. (3.7) remains valid. ]

Further constraints on the quartic scalar coup-
lings are obtained from spontaneous symmetry
breaking. If we choose not to break local color,
corresponding to the potential (3.2), it is well
known that
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mv =g3 4 C/6 ~ 2 GeV,

m~ =g) 4 4/2 = 75 GeV.
(3.10)

v 4 = u 2 m ~/g, = 170 Ge V .
If X~=0, the VEV's minimizing V(o, Q) that are

consistent with constraints A. &0, X3 &0 and Eq.
(3.7) are

4 =(2Xtj., —X4 p, )/(4XX, —X4 ),
C =(2X3p, —A4 p, , )/(4M. , —X4 ),

(3.11)

Assuming n, ~0.2 at appropriate vertex momenta

(4 ™v)~

v'C/3 =M2m~/gp &1.8 GeV

unbroken color has two NAFC's, g' and A3. To
demonstrate that X3 is a NAFC, we parametrize
Eq. (3.13) as follows:

16m &3
——

gq ($q+gqr+$3r ),
where X3(t) =[a(t)gq (t)], r(t) =g' (t)/g, '(t), and
where

(3.14)

$, =12a' —9a+4,

gq ———3a+-, ,
3 (3.15)

3

Since r is real, X3 cannot be less than zero unless
x is between the real roots of the polynomial in
Eq. (3.14). However, the discriminant of that
polynomial,

in which case gp'- 4g)(, =9(—3a'+2a- —,'), (3.16)

C 2X3~2 ~4k'4 Z y0-4
2 2

34 6XP&' —3X4P2'
(3.12)

We now consider the behavior of the running
quartic scalar coupling constants A.,(p). The
renormalization mass p, corresponds to the scale
of momenta entering the interaction vertex. By
using the physical constraints obtained above for
A,, to establish boundary conditions for p, &no~,
we are able to determine how large p. must be
before any non- asymptotically-free couplings
(NAFC) diverge (or, more relevantly, until
perturbation theory ceases to be valid). The
unification hypothesis requires that any larger
embedding group must manifest itself before the
NAFC's become too large. Thus the value of p,

at which NAPC s do become too large is an upper
bound on the embedding mass scale. [Recall
that growth of NAFC's is curtailed in the unifica-
tion hypothesis by the appearance of the larger
(asymptotically free) group structure at values
of p exceeding the mass of any gauge particles
in the embedding theory which are not also con-
tained in the known interaction subgroup. ]

Let us first consider the minimal model in
which color- is unbroken; the 0. scalar-field
multiplet is absent. The only quartic scalar
coupling constant present is A3 The differential
equation for the associated running coupling
constant is straightforward to obtain from the
potential (3.2) and the interaction of scalars
with gauge particles [Eq. (2.3)]~0:

16' X3
——12k.3 —9g2 X3 —Sg X3

+4 (g~') +4(g"g,') +-'(g") (3.13)

We show below that 13&0, independent of the
relative magnitudes of A3, g„and g'. Therefore,
the minimal theory of the known interactions with

16m g' =163g' /36,

16m gq =- 55gg'/12,

16m g3 =- 25g3 /3 .

(3.17)

(Four flavors are assumed to be present. Color
is unbroken. ) The renormalized coupling con-
stants are empirically known for p, &m~; we
know that sin g~=4, n =

—,
', and for p, -= 3 GeV,

o.,(lu) =—0.2 (this last constraint is sufficient to
establish a value for g3 at p =m~). '4 By choosing
t =ln(p/m~), the running coupling constants are
anchored to their renormalized values at t =0,
and we thereby obtain boundary conditions for
the running-coupling-constant differential equa-
tions. We find from the minimal model relations
e =g, +g' ~, tane~ =g'/g„ that [g'(0)]~=0.125
and [g&(0)] =0.375. The renormalized (t =0)

is less than zero for all real g. Thus, roots of
(g, +$,r+(,r ) are complex. Moreover $3 &0, in
which case $, +g,r+$3r~ must be greater than
zero for all real x, and X3 is greater than zero
regardless of the magnitude (or sign) of a(t) and

r(t).
We stress that the breaking of weak symmetry

alone is sufficient to destroy asymptotic freedom,
even if g' is chosen to be zero or is otherwise
argued away. The only way noneigenvalue asymp-
totic freedom can be realized for A3 is by even-
tually embedding the weak scalar-field doublet
in a representation of some larger embedding
group.

To determine a bound on the mass scale at
which such embedding must manifest itself, we
combine Eq. (3.14) with expressions obtained
for the running gauge coupling constants from the
scalar and fermion interaction Lagrangians of
Sec. II'.
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ent.
Boundary conditions X;(t=0) are more difficult

to ascertain because the number of parameters
available exceeds the number of VEV and bound-
energy- spectrum constraints. The most favorable
circumstances consistent with the VEV constraint
(3.12) and the continued validity of perturbation
theory are those in which p, ,'«p, , X4 ——2X3lu, '/p, '.
For this choice of parameters, A.3(t=0)
=g&~(0) p, , /4m~, as was the case for unbroken
color [see Eq. (3.9)]. Moreover, A4(0)
=2&3(0)p~ /g& «X3(0), thereby permitting X&(0)
and A (0) to also be small compared to y3(0)
without contradicting the constraint of Eq. (3.7).
For this choice of boundary conditions, the
results are approximately the same as those ob-
tained for unbroken color: The embedding mass
scale may be as large as the Planck mass pro-
vided the physical weak scalar boson has a mass
p, , &m~. 'Since p, ~«p& this parametrization
requires the existence of many light (p, «m~)
colored scalar particles, corresponding to six-
teen unabsorbed degrees of freedom in o,-

In fact, it is quite difficult to avoid the pre-
sence of light colored scalars in the broken-
color theory. Both the numerator and denomina-
tor of Eq. (3.12) must be separately positive since
the numerators and denominators of the (positive-
definite) VEV pa'rameters 4 and C are separately
positive [compare, Eqs. (3.7) and (3.11)]. There-
fore, X, &2x, p~ /pi and A., (2xltji /Itj~ Suppo se
p, , and p, ' are comparable in magnitude and no
miraculous cancellations (such as in the ease
considered in the previous paragraph) occur in
the numerator of Eq. (3.12). If p, =p,

X4 & 2X3 & 6 && j.0 (3.23)

We see from (3.11) that if X dominates A3 and X4,
then

(3.24)

and X,(0) =g,~(0) p, ~/4 m~' e' s/in'-8~ From (.3.23),
A, (0) is at least 3000 times as large as X3(0), and
"asymptotic freedom" is impossible, even at
low energies. If p.&

& p, &
the results are even

worse. The only way to avoid premature scaling
violation is to have A. less than or comparable to
33, in which case consistency with (3.12) and
(3.7) requires either p, » p.,' or a miraculous
cancellation in the numerator of (3.12).

Since p, , cannot be too much larger than 4m~
without A3(0) acquiring too large a, value (3.9),
p, &

is expected to be considerably smaller than
nz~. Hence, we expect the broken-color theory
to contain light colored scalars in addition to
light unconfined gluons and quarks. The detection
of such partict. es is beyond the scope of this

paper. '5

In Fig. 1(b) we have assumed that X(0) and
X,(0) are comparable, and have plotted the evolu-
tion of running coupling constants. Specifically, we
have chosen X,(0) = X (0) = A3(0) =g, '(0)/4, consistent
with a choice p~ «p&' ——m~ for the scalar masses,
a choice that allows (3.12) to be satisfied. More-
over, A~(0) (2X,(0)p, '/p, ' «X3(0) . Figure 1(b)
illustrates how perturbation theory remains valid
out to p, & 10'3 GeV. This mass scale is below
the Planck mass, but well above the embedding
mass necessary to explain the instability (and
consequent nondetection) of integer charge quarks
in broken- color theories. ~6

The salient point of this analysis is to demon-
strate the presence of NAFC's in the Higgs sec-
tor of the minimal model, as well as to show how
such couplings are still compatible with perturba-
tion theory for a large range of t=ln(Q /m~').
The connection between unabsorbed Higgs field
masses and the embedding mass scale is demon-
strated. Improved limits on the mass of the sur-
viving Salam-Weinberg Higgs field'~ (or, for that
matter, detection of such a particle) would pro-
vide insight into how the known interactions can
be eventually combined with gravity. Finally,
we stress how light colored Higgs fields in the
broken- color model seem to be necessary for
X- X3- e'/sin'8~; otherwise X» X3, and partons
cannot appear to be relatively free (i.e., scaling
should not occur) in the present energy range.

IV. LOW EMBEDDING MASSES

We now change our focus from the embedded
theory to the embedding theory. The results of
the previous three sections indicate that we may
choose boundary conditions for embedded-theory
coupling constants that allow all NAFC s to
remain small out to extremely large values of t.
Hence, the phrase "temporary asymptotic free-
dom" is shown to be more than a slogan. We
wish to consider here whether the embedding
symmetry can (or should) appear at lower uni-
fying mass scales.

Low unifying mass scales are, in fact, re-
quired for integral- quark- charge models. In
such models lepton number is the fourth color,
and the chromodynamic SU(3) is contained within
an SU(4) group. Gauge bosons V'-V' of this
SU(4) correspond to SU(3) gluons; V —V'4 are
leptoquark bosons (LQB) that couple quarks
directly to leptons [V" is a diagonal generator
which eventually donates a component to the
U(1) survivor of symmetry breaking]. ~'~8 The
bosons V —V'4 also mediate the decays of integer
charge quarks which must be sufficiently unstable
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to explain their present nonobservation (v,- 10 —10 sec) 9 Sufficient instability will
occur provided the LQB's are not too heavy; the
value mL@~ «10' GeV has been quoted in the litera-
ture as compatible with quark-lifetime estimates. 2~

Moreover, the leptoquark boson cannot be too
light or else the unobserved decay K'- e'p. '
should have been seen [Fig. 2(a)]. Let f d'enote
the coupling of an LQB to a quark and a lepton.
The nonobservation of K —e'p, ' implies that

K

d
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LQB LQB LQB LQB

LQB
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I
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FIG. 2. The leptoquark-boson (LQB) mass and coupling
strength (f) to fermions is subject to empirical and ana-
lytical constraints. {a) demonstrates how the unobserved
K ep, decay is mediated by LQB exchange, thereby
providing a lower bound on the LQB mass. (b) lists
one-loop diagrams contributing to the renormalization
of f . If SU(4) is broken to SU(3) and p «m L&., only the
top three diagrams contribute nonvanishing contributions
to P(f); all other diagrams contain massive particles
in their internal loops. {c) shows how f and g3 are to
be identified with the embedding SU(4) gauge coupling
constant Z4 if p, »mL&~. The behavior of the chromody-
namic coupling constant g3 is contrasted with that of f;

f'/mL&a' ~ G„o.'. If f /4w is order' unity (as
proposed in Ref. 4), mL@a should be greater
than or of order 10 GeV, thereby providing a
lower bound on the embedding mass scale barely
compatible with quark instability.

We show here that this lower bound on the lep-
toquark-boson mass should be reduced. More-
over, we also show that the coupling constant f
is an archetypal example of an NAFC that be-
comes asymptotically free at momenta where
embedding symmetry is manifest. In Fig. 2(b) we
show the one-loop terms contributing to the run-
ning value of f. Only the first three diagrams do
not contain massive LQB's in the UV-divergent
loops. We consider renormalization subtractions
from the point (p, , —p;, 0) where the fermion
momenta p,. are at the Euclidean point p, =- p, .2 2

If p, »m+QQ the p, dependence of divergent re-
normalization constants Z, may be expressed as
In(A/p) +O(m~aa'/p, ). Thus, the LQB mass
may be ignored and the coefficients of the diver-
gent parts of each graph may be used to show
that the P function for f is the same as that of a
massless SU(4) theory (to lowest order). How-

ever, if p. «mL+~, no contributions to the running
value of f is obtained from any loops containing
LQB's. For these loops, the p, dependence of re-
normalization constants Z, is of the form
In(A/mLaa) +O(p'/mLqa'), and psZ)/8 p,- p, '/mL@a'-0. 30 Only the first three diagrams
of Fig. 2(b) give nonvanishing contributions to
P(f). Since fermion self-energy becomes zero
in the Landau gauge, only the quark-lepton-loop
contribution to the LQB vacuum-polarization dia-
gram contributes, and the contribution of this
term to P(f) is positive: f =P(f) =3 $3(E)f3/16m

+O(p, /mL&a )." Thus, the running value of f
grows with p, until p, approaches mL&~, at which
point f behaves like an asymptotically-free SU(4)
coupling [Fig. 2(c)].
f should therefore appear to be a NAFC in the

present empirical range of momentum transfers.
In Fig. 2(c) we show schematically how f and g,
devolve from an embedding SU(4) coupling con-
stant —f is expected to be much less than g3 at
present energies. In particular, the bound on the
LQB mass obtained from Fig. 2(a) must be re-
vised. The momentum transfer is only -1 GeV,
in which case f is much less than unity. The
lower bound on m~@~ must correspondingly de-
crease below 10~ GeV. 3

Earlier calculations have stressed the need for
a mass scale much larger than mLB, claiming
that embedding must occur near the Planck
mass. 3' Otherwise, the quantity n, /n is too
small at known energies to account for its diver-
gence at 0.2-0.5 GeV. ' We emphasize that



270 VICTOR E LIAS 20

while n, must be small enough at SLAC momen-
tum transfers to explain scaling, it must still
be sufficiently large to bind quarks into hadrons
and preclude the premature onset of scaling at
even lower energies. Data in the scaling region
suggest that o.,(p=3 GeV) =0.2» n.

Recent work has shown that o.,/o. can be suffi-
ciently large without employing an astronomical
unifying mass scale. ' The calculation assumes
that an [SU(4)]' =SU(4)~ x SU(4)s x SU(4)~ x SU(4)s
color-flavor, left- right-symmetric theory is
broken to an intermediate stage at which the
weak SU(2) xU(1) group and a chiral color group
SU(3)r, xSU(3)s are preserved. This chiral color
group must subsequently break into conventional
vector chromodynamics, but there is no reason
for this breaking not to occur at or below the
weak interaction mass scale m~. Hence, the
known interaction subgroup is enlarged to include
chiral color, doubling the number of gluon ex-
changes that contribute to the decline of g3 with
increasing p. Consequently, ot,/n requires a
much smaller range of p, to become appropriately
large; if n, (p=3 Ge&) =0.1—0.2, the unifying
mass scale is found to be as low as 10' GeV,
corresponding to energies accessible to cosmic-
ray experiments.

A critical ingredient in this split-color pre-
scription is the existence of a unified-theory
scalar-field multiplet that is capable of breaking
intermediate chiral SU(3) x SU(3) symmetry into
conventional SU(3) chromodynamics. Such a
multiplet transforms as (3,3) under SU(3) xSU(3).
Thus it was proposed that the SU(4)z xSU(4)s
color-containing portion of the [SU(4)]4 model
include a (4,4) scalar-field multiplet capable of
giving mass to axial-vector combinations of can-
onical SU(4) gluons. ' Had we chosen the unifying
group to be [SU(N)], corresponding to an N
flavor theory, the same reasoning would require
an (N, N) scalar multiplet of the SU(N) xSU(N)
subgroup containing chiral color.

We show below that an (N, N) scalar-field
multiplet of SU(N)xSU(N) cannot have asymptoti-
cally free couplings unless ¹ 5.33 This result
not only implies that a (3,3) scalar-field multi-
plet of SU(3)xSU(3) breaks asymptotic freedom;
it also implies that the proposed embedding of
such a multiplet in a (1, 1, 4, 4) multiplet of
[SU(4)] remains inconsistent with 'asymptotic
freedom, thereby contradicting the unification
hypothesis.

To demonstrate these results consider a
scalar-field. multiplet cr,- that transforms as
(N, N) under SU(N) xSU(N) (the indices i and n
both run from 1 to N). The terms in the poten-
.tial invo?ving quartic g, self-couplings are

V(o) =X, (o, o,*. )'/2+x, o, o,*,o,* tr, ,/2. (4.1)

We neglect for now couplings of o with any other
scalar fields, since these can only destabilize
asymptotically free behavior. ' The differential
equations for the running coupling constants can
be derived'0 using the potential (4.1) and the
scalar —gauge- field inte raction

Z, =(g'/4)m, .M*...
I,.=[(~"V",),,o,.—(~"V"„),.o„].

(4.2)

0 =(2N +8)ki +8Nkik2+6k2

+[16m' —b 12(N' —1)/N]k, +3(3N'+4)/N',

(4.4a)

0 =12k(kq+4Nkq +[167r b —12(N —1)/N]kr

+3(N'- 8)/N . (4.4b)

We optimize the range of real solutions to Eqs.
(4.4) by letting the terms linear in k,. be as nega. —

tive as possible. Thus, we let b approach zero
(corresponding to the saturation of asymptotic-
freedom behavior by other fermion or scalar-
field multiplets). In the b =0 limit, we solve
(4.4b) for k, and substitute that solution into
(4.4a):

ki ———Nkq/3+(N —1)/N (N —8)/4Nk—q, (4.5a)

P, N +P4N +P2N'+Pa=0, (4.5b)

where

P6
——2k2 /9 —4k2'/3 +7k2 /3 —k2 +s,

P4 16k2 /9+8k) —3——4—k2 /3+8k2- ~,

P, =(6k23 —20k, /3+73k2/3+1)k, ,

P()
——8&2 —8k' +32 .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

We have grouped the quartic equation in k, by
powers of N in order to consider the large-N
behavior of the solutions to (4.6). The coeffi-

The resulting equations for the running quartic
scalar coupling constants are

16m X, =(2N2+8) Xi'+8NX, Aq+6X~

—12[(N —1)/N]Xjg +3[(3N'+4)/N ]g,
(4.3a)

16rr i2 =12k.(A, +4NX, —12[(N —I)/N]A2g'

+3[(N' —8)/N] g', (4.3b)

where g is the SU(N) gauge coupling conStant.
Let ~&

=—k&g and A.2=—k&g . Since g is assumed
to be asymptotically free, (g ) =—bg, where
22N/48rr &b &0. Fixed points occur when k, =0,
in which case
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cient of N' has double zeros at k, =—,'+(—,)'

P6 2[~2 2+(2)"']'[~2 2 (2) ] /9 . (4 7)

P6 is greater than zero everywhere except its
roots. Thus we must look at the coefficient of
N to see whether a locus of real zeros can be
maintained. Curiously, the coefficients of N
share the same zeros of P6:

P, =[a, ——,'+(,') '"][a,——.'- (-,'}'"]
x (- 1@(2 /9+8@)/3 —2) . (4.8)

In the directed neighborhood of the real zeros
defined by k2=~+(2)'~'+ )c~, N P is -+)e

(
N',

while N P4- —~&~N . Thus, there always exists
a sufficiently small value of

~

e
~

such that

PGN +P4N &0. (4 9)

Since NGP6 ~ 0, we see that (4.5b) always con-
tains a locus of four real zeros for sufficiently
large N. The second and fourth largest zeros
are UV-stable in k, .

This result is quite useful in that it shows an
economical way to break half the generators of
SU(N) x SU(N} (for sufficiently large N) without
destroying asymptotic freedom. Unfortunately,
N=4 is not sufficiently large. It is easily veri-
fied by minimizing the left-hand side (4.5b) that
the left-hand-side polynomial is greater than
zero everywhere if N=4. 34 If N=4, the coeffi-'

cients of N and N are sufficiently positive to
remove the locus of real zeros; N must be
greater than or equal to 5 for the locus to exist.
Thus, the [SU(4)]4 unified theory is manifestly
inconsistent with conventional asymptotic free-
dom —the quartic scalar couplings that must
occur to break chiral chromodynamics cannot be
asymptotically free.

The above may be construed to be an argument
for more flavors in a unified model; for example,
an [SU(6)] theory can contain asymptotically free
couplings of (6,6) scalar-field multiplets. How-

-ever, no embedding theory that spontaneously
breaks into the known interactions has been con-
structed that does not destroy asymptotic free-
dom. ~5 For example, the flavor SU(N) X SU(N)
sector of an [SU(N)] model must eventually
break down to the U(l) group of electromagne-
tism. It is well known that no "noneigenvalue"
asymptotically free solutions have been found
for the spontaneous breakdown of even SU(3) to
U(1).'0 It is doubtful that SU(N&3) can be spon-

taneously broken to U(l), without disrupting
asymptotic freedom; the .larger N is, the more
doubtful the possibility.

In light of these remarks, is the unification
hypothesis tenable& The idea of unification has
more profound motivations than having all parti-
cles act free at short distances. It may be that
hadronic constituents are subject to strong forces
at extremely short distances from the exchange
of scalar fields. We also note that asymptotically
free theories have been found in which all coup-
ling constants keep a fixed numerical proportion-
ality to the gauge coupling constant, provided
there exists a sufficiently rich structure of
Yukawa couplings. " Models which employ
these so-called "eigenvalue" solutions have had
to employ exotic fermion multiplets to obtain
the needed Yukawa structure, in addition to all
the scalar fields necessary to break a given
symmetry. The requirement that couplings be
related by strict numerical proportionalities to
obtain desired solutions seems fundamentally
unphysical, unless more profound reasons exist
for nature to variationally select appropriate
eigenvalues.

It is also possible that symmetries are not
broken by scalar fields at all, but by some other
dynamical means. Present and continuing suc-
cesses of the Salam-Weinberg model in explaining
neutrino-interaction phenomenology, ' as well as
the occurrence of the same phenomenology in the
spontaneous breakdown of larger groups, are
powerful arguments for the existence of the Higgs
mechanism; we cannot lightly dismiss the idea
of spontaneous symmetry breaking through sca-
lar-field vacuum expectation values. 3' Perhaps,
the quartic scalar-field couplings are themselves
induced and need not occur in the basic Lagran-
gian. Such an approach has been proposed by
Salam and Strathdee" and may well resolve pre-
sent inconsistencies between asymptotic free-
dom and the eventual unification of the interactions
of nature.
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