PHYSICAL REVIEW D

VOLUME 20, NUMBER 10

15 NOVEMBER 1979

Lattice models of quark confinement at high temperature

Leonard Susskind
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
and Tel Aviv University, Ramat Aviv, Israel
(Received 16 January 1978)

" We consider the behavior of lattice models of quark confinement at high temperature. We find that
confinement is strictly a low-temperature phenomenon. At high temperatures a transition to a plasma-like
phase occurs. In this phase free gluons form a plasma which Debye screens the quarks.

L. INTRODUCTION

The properties of matter under extreme con-
ditions of temperature and pressure have always
appealed to the curiosity of chemists and phy-
sicists. Currently we know enough about the basic
constituents of matter to understand temperatures
corresponding to electron-positron pair produc-
tion, i.e., 10 K. At about 10'2 K hadrons begin
to be produced. As long as not too many are
produced, it is reasonable to use the ordinary
hadrons as fundamental constituents. Eventually
the energy density will become comparable to
that within a hadron. Then we must cease de-
scribing matter in terms of protons, neutrons,
pions, etc. and substitute the degrees of freedom
of a more fundamental theory. We assume that
this means quantum chromodynamics (QCD).

Quantum chromodynamics is a theory of strongly
interacting colored quarks and gluons. It is
believed to have the property of quark confinement.
That is to say, only color-neutral systems have
finite energy. The ionization energy for sep-
arating a colored subsystem from an overall
neutral system is infinite.

The quark-confining property is known to be
true in strongly coupled lattice approximations
to QCD but only at zero temperature.”2 We shall
see that at sufficiently high temperatures lattice
QCD undergoes a transition to an unconfined phase.
Roughly speaking, the colored gluons form a
plasma which Debye screens the color of the quark
and therefore destroys the long-range confining
potential.

In Sec. II we review the principles of Hamil-
tonian lattice gauge theory.? In Sec. III the finite-
temperature behavior of strongly coupled Abelian
lattice gauge theory is studied. We find that for
low temperature the confining force is the usual
linear potential. However, a critical point sep-
arates this confined phase from a phase in which
the force law is the ordinary Coulomb law. In
Sec. IV we continue the study of the Abelian the-
ory including a charge-carrying field. Non-Abelian
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lattice chromodynamics is the subject of Sec. V.
As in the Abelian theory a transition between
confined and unconfined phases exists. This time
the unconfined phase is characterized by a short-
range force because the Coulomb force is screened
by a plasma of gluons. The last section discusses
the validity of the conclusions for continuum chro-
modynamics.

II. LATTICE GAUGE THEORY

Consider a simple cubic lattice in 3 space di-
mensions whose sites are labeled by triplets of
integers

r=x,y,2=site.

Directed links of the lattice are indicated by a
site and one of 6 unit lattice vectors called
Py Ty Tl gy Ty Mgy Ty

(r,#) =link .

Each link of the lattice has a degree of freedom
V(r,7) which for the Abelian theory is a phase

V=e'® (Abelian).

For the SU, theory V is a special unitary N-di-
mensional matrix. Each link (v,fz) has a mate
which is just the same link but oppositely ori-
ented. It is the link

r+m, =n).

The two degrees of freedom V(r,7) and V(7 +#, —1)
are related: '

Vr +n, -n)=V'(r,n). 1)
For the Abelian theory
Or,n)=~p 47, -n) . (2)

In the Abelian theory each link carrys an elec-
tric flux E(r,n) which satisfies

E(r,n)=-E(r +n, -n), (3)
[¢(r,n), E(r,n)]=i. (4)

E(r,7n) is the conjugate momentum to ¢ and since
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¢ is an angle E has the integers for its spectrum,
E(v,n)=integer. (5)

In the non-Abelian theory E is a member of the
adjoint representation of SU,. For our example
we will work with SU, so that E is a 3-vector. It
satisfies

[Ea('r, ﬁ)’ Ee("” ;")] =i€a87Ey(7’,;L) ’ (6)

[E*(r,n)E8(r",n")]=0, (r,n)+(r",n").

Thus the E’s are angular momenta and have the
spectrum of integer and 3 integer angular mo-
menta. The E’s generate left and right group
transformations on the V’s,

[E¢(r,7), V(r,n)] =12 V(r,i), ' (M

where 7% are the Pauli matrices.
The E’s do not satisfy Eq. (3) but rather

E( +#, -n)=-V(r,n)E@,n)V'(r,n), (8)
where
E=E%T*. 9

However, the E’s do satisfy

E@,n)?=E(r +n, -7)2. (10)

In order to express the Hamiltonian we will need
a set of operators to identify with the magnetic
field energy. Thus consider an elementary square
of the lattice bounded by the directed links 1,2, 3,
4 as in Fig. 1. We label such a square I" and
define (Abelian theory)

V(D) =v(1)V(2)V(3)V(4)
=il®(1)+0(2)+0 (334 (a) ] (11)
and (non-Abelian theory)
Tr V() =Trv(1)V(2)V(3)V(4). (12)

The Hamiltonian for Abelian lattice guage theory
(LGT) is _

SN

FIG.1. An elementary lattice square.
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where 20, s and 20,05 indicate sums over un-
directed and unoriented links and boxes. For
non-Abelian LGT

He= Z gZEZ

lims 2@

- Eééz-'rr[v(r) LD (14)

boxes

The space of states includes unphysical states
which are purged by applying a subsidiary con-
dition. The physical subspace consists of vectors
lzp) satisfying

V,.E=Q E(r,i)|d)=0allr, (15)

where E,, indicates a sum over the 6 lattice di-
rections. Equation (15) is the lattice version
of Gauss’s law which says that the total flux
leaving a site must equal zero. It is modified
when sources are included.

III. ABELIAN GAUGE THEORY AT FINITE TEMPERATURE

We shall argue later that if a transition to an
unconfined phase occurs the transition temperature
is bounded from above by ignoring the magnetic
term in H. In other words, if we find a transi-
tion to the unconfined phase when H,q 011 iS
ignored then the full Hamiltonian surely has one
at a lower T,. For now we shall simply work in
the strong-coupling approximation in which

£ Blr,n) (16)
H= =—E(r,n)?. 16
lims 20 ’

In this approximation confinement is rigorous at
zero temperature.?

The calculation of the partition function for the
Hamiltonian (16) would be trivial if we did not have
to impose Gauss’s law on the allowable states.

We define

Z(8)= " exp(-pH)

=Z'exp(—BZ%Z—E2>, | 17

where 20’ means that the sum over states is
restricted to those states satisfying (15).

We may impose Gauss’s law by introducing 6
functions of total flux at each site. Thus introduce
a factor for each site
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5%1_ j:’ exp[ia ZE(V,%)] .

5(9, -E)=5(§E('}',n)) -

Accordingly

Z@)=D_ 11 exp(———Ez)

E links sites

SUSSKIND 20

(18)

8 f da(r exp[m(r)}:E'r n] (19)

In (19) we have dropped an insignificant factor of 1/27 for each site:
By an obvious manipulation we may rewrite Z in the form

Z(B)= fﬂ Hda(r) H [Z exp(— %g—azE(r,ﬁ)zn[a(r) —alr +;L)]E('V,;l))] . (20)

- r links E

To understand Eq. (20) better we introduce the
so-called periodic Gaussian function

Ze-r(mzmy)zzé-yoz_ (21)

m
It consists of a periodic superpositron of Gaus-
sians and closely resembles the function
"% exp(2y cos¢) ' (22)

for large vy.
To express (20) in terms of periodic Gaussians
we use the identity

1/
S eertiaz =(_C7[) *easaraz (23)
E .
giving
{
B) f da(r) H e~ (a/ 28 a(r)-a(rsn)12
links

@Y

The numerical factor (27a/Bg?) 2 for each link
may be ignored for our purposes. The remaining
structure defines the well-known Villain approxi-
mation to the planar Heisenberg model® defined
by

Z= f da(r)nexp{ Bzcos[a('r oz('r+ﬁ]}.

links
(25)

Note that the usual inverse temperature of the

Heisenberg magnet is. —a/Bg?, which is proportional

to the tewperature of the original problem. In
fact as the temperature of the lattice gauge world

increases the effective temperature of the mag-
netic model decreases leading to a transition to
a magnetized or ordered state.

The Villain model is known to have the following
properties: (1) For small a/Bg? the system is
disordered. This means

<eia(0)e-ia(r>> ~ e-ulrl . (26) .

pooo
(2) For large a/Bg? the system is magnetized
or ordered:

ia(0) ,~ia(r)\ _, t
(e e y—const. @17

In fact for very large a/Bg? spin-wave analysis
shows the correlation to behave like

2
<eia(0>e-io¢(r)>_,c exp (_:B%) , (28)

Next let us consider the Abelian theory with
a pair of static charges of magnitude +g at lo-
cations » =0 and » =R. These sources are intro-
duced by changing Gauss’s law to read

ZE(’V,%):O, 7#0 or R
i

2_E(0,A)=1, (29)

Z‘E(R,ﬁ):—l.

This is implemented by changing the 6 functions
in (18) at =0 and » =R. The result is to intro-
duce an extra factor of

exp[ia(0)] exp[-ia(R)]

into the integrands of (19), (20), and (24). Thus
in the presence of sources we define
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Z(8,R) =ffd0£(1’)H é-{a/zg:%[a(r)-a(rm)ﬁ
T .
Xeiot(o)e-ia(R)
=Z(3) <eia(0)e-ia(R)> A (30)

Now consider the free energy of the system with"
sources (subtracting the free energy of the source-
less system):

W(BR) = _[an(BR) - an(ﬁ)]/B
= lln<eia(0)e-ia(R)> (31)
3 .
From Eq. (26) we see that for small temperature

(1/8<g?/a) the potential is confining and linear:
W(BR) ~ % R]. (32)

For high temperature (8 >g2/a) Eq. (28) gives

2

i.e., a normal Coulomb force.

IV. ABELIAN CHARGE-CARRYING FIELDS

The existence of charge-carrying fields modifies
the results of Sec. III. The charge-carrying field
we will use is particularly simple. At each site
introduce a phase variable ¢(r). The complex
charge-carrying field at site » is exp[i¢(»)]. The

2a
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charge in units of g is the canonical conjugate
to ¢ which we call (). Q(#) has integer spec-
trum '

The energy stored in the field ¢ will be taken
to be

me?,
where m can be thought of as the mass of a singly'
charged site. In a more refined model, gauge-
invariant hopping terms can be added to H to

allow the charges to move through the lattice.
The new model Hamiltonian is

H= 2. %E(r,n)ﬁm QW) (34)

links sites

and Gauss’s law must be modified to account for
the sources on the sites:

V,.E=Q(). (35)

The partition function in Eq. (19) is modified
in two ways. First the 6 function is modified to

5 D E(r,n)-QW) (36)

and second we must include the factor

H e-Bsz(‘r) . (37)

sites

Thus

z@=2 11 exp(-ﬁg—zEZ) I esme* [ " aat) exp[iat) Zre,n) |exnl-iatr) o). (38)

E, Q links sites

Using Eq. (23) gives

Z(B)=f d()t(’}’) H é-(a/zﬂgz)[a(r)-a(rm)]zH é-(l/qgm)[a(r)]2. (39)

links sites

This is the Villain approximation to the planar Heisenberg model with an external field:

= (a/ ge?)cosa (r)=a(ren) (1/ 28m)cosa (r)
ZHeisenberg-fda H A alri—alrs II e pm)cosa (r) (40)

links sites

As before, the temperature for the magnetic
model in Eq. (40) is Bg2%a which is inversely
proportional to the temperature of the lattice
guage theory. The external field is given by 1/
2m so that in the limit m - « the charges have no

effect.

The properties of the Villain model in the
presence of an external symmetry-breaking field
are summarized by the phase diagram in Fig. 2.

In Fig. 2 the horizontal axis separates states
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{cosa) >0
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{cosa) <0

FIG. 2. Phase diagram for the Villain model in an ex-
ternal field.

in which the magnetization M(=cosa) is positive
and negative. Along the line between the origin

and the critical point labeled ¢ there is spon-
taneous magnetization. The magnetization vanishes
on the remainder of the horizontal axis. For var-
ious values of # the magnetization behaves like
Fig. 3. ‘

For h+0 the magnetization is a smooth function
of a/Bg? and is always nonzero. The implications
of this for the force between external sources is
interesting. Equation (31) still applies. Since
(e©@ gmtaR)y myst tend to the square of the mag-
netization as R —« and M does not equal zero
for any a/Bg? (unless % =0) we find that the po-
tential V(R) always tends to a finite limit as R
.=, Thus it might seem that there is no confine-
ment of charge even at zero temperature. This
is not the right interpretation as we shall see.
But first let us consider the behavior of V(R) for
large R.

In the presence of an external field the cor-
relations in a magnet always behave like

[1+cR)e ™) M2 (41)

for large R where c(R) falls at most like a power.
This gives

W(R)=C(R)e™F +InM?2, (42)

i.e., a short-range Yukawa-type force law.

The result of a short-range force between sources
even at zero temperature would seem to conflict
with the known confining properties of our model.
However, this is false. Consider a pair of sources
separated by distance R on a lattice. When no
quantized sources exist the force law at zero
temperature is

=M

{cosa)

h=0\_ ¢
Bg%/a

FIG. 3. Magnetization temperature at fixed external -
field.

WR)~ £ R (43)
2a?

corresponding to a string of flux between the
sources. However, if quantized sources exist
a configuration with much less energy can exist.
It is constructed by simply cfeating an opposite
charge from the quantum source right on the ex-
ternal sources thus neutralizing them. This gives
an energy 2w which is consistent with the mag-
netic picture. Thus it seems that for m = a
sharp transition between confined and unconfined
phases does not exist. However, we do believe
that there is a very large qualitative difference
between low and high temperatures. At high tem-
peratures we think the long-range Coulomb force
found previously is screened as in a plasma. This
is very different from the pairing which takes place
in the confined phase. For example, if a fractional
charge is immersed in a plasma it is screened
just as effectively as an integer charge. Therefore
it would be very interesting to embed external
charges of fractional magnitude in the high-tem-
perature quark configuration and see if the long-
range forces are screened.

Unfortunately the formalism we are using does
not permit fractional charges. This is because
the E fields are integers and therefore

V.« E =integer.

However, we can replace the quantized charged
described by the field ¢ by sources with two units
of charge. It then becomes interesting to ask if
the high-temperature configuration of doubly
charged objects can screen a singly charged ex-
ternal source.

The model Hamiltonian is identical with Eq.
(34) but now Gauss’s law becomes

V,-E=2Q() (44)
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and Eqgs. (39) and (40) are replaced by

Z(B)=f da [] st/ setam-acem

links

% H G-/ 10pmza 2 (45)

sites

ACIE fda H eta/pg2)cosla(r)-alren)]

links

X H e(l/zem)cosza ) . (46)

sites

Evidently the expression in Eq. (45) is periodic
with period 7 instead of 27. )

The symmetry-breaking field now has a discrete
symmetry

a@)=alr)+m; 47

at low temperature [high temperature for the
Villain-Heisenberg (VH) model] this symmetry
is not broken. Thus

(cosa(r))=0, (48)
(et g=1a Oy L axp(_ ). (49)
The external field does cause
- M=(cos2a(r))+0
so that
(e2ie P gm2iatr)y _an2(1 ¢ ghT) (50)

Equations (49) and (50) mean that at low temper-
ature singly charged sources experience linearly
forces but doubly charged sources do not. This is
consistent with the usual confinement picture.

At high temperatures (low in the VH model) the
system becomes magnetized,

z@=Tr 1 exp(—B ‘g—;Ez) et

links sites
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M ={cosa)#0, (51)
(i gmia Ny L pr2(1 4 ¢ o747 (52)

thus resulting in the screened short-range force
between singly charged sources. This type of
charge neutralization is entirely different from
the pairing of opposite charges to form bound
neutral systems. It occurs in plasmas and is
called Debye screening.

V. NON-ABELIAN THEORY

For the non-Abelian theory we consider the
model strong-coupling Hamiltonian

H= §—Z S B4, n)E*(r,n) (53)

1inks

supplemented by the constraint
V,.E%= 3 _E%(r,n)|)=0. (54)
n

The operators E,,E“ are algebraically angular
momenta. To implement Eq. (54) we introduce
projection operators at every site which project
onto the zero-angular-momentum state. These
operators are constructed as follows:

Parametrize the three-dimensional rotations
by vectors 1. The direction of T is the axis of
rotation and the magnitude is the angle of rotation.
If we form the operator

G’(’V)=f exp(iT“E E"‘(af,n))d'f, (55)

where d1 is the group-invariant volume element,
then Eq. (55) is the operator which projects out
vectors satisfying Eq. (54).

The partition function is

=Trfaf(1f) H exp[—-%g;Ez-.iT(v) “E(r,7) =1i(r +7) -E(r +n, —ﬁ)] . . (56)

links

Let us now focus attention on a single link (,7). Define 1(r) =1, T(» +n)=f’, E(r,n)=E, E(r +n,-n) =E".

The link (#,7#) contributes the factor

g2 - -
Trexp(—B%Ez— il.E~il -E') .

The states of a singie link are spanned by a basis

Ij;a’b)’

(57)

where j is an integer or half integer and a and b are “magnetic” quantum numbers. The magnetic quantum

numbers each run over 2j +1 values



2616 LEONARD SUSSKIND 20

a,b=j,j—1,j—2,...,—j.

The states |j,a,b) are eigenvectors of E?, (E’), E,, and E;

E?|j;a,b)=(E)?|j;a,b)=j(j +1) |j; a, b}, \ (58)
E,|j;ab)=alj;ab), Ejj;ab)=b|j;ab). (59)
Thus the trace in Eq. (57) is a sum over all integer and 3 integer j,
3 (isab|exp (-85 5118 10 .27) isa0) = Dewp (-6, 161 +10)x, 005,07, (60)
fayd a 7 2a
where x; is the character of the group element 7.
x,(T)=Trexp(~il.T)), (61)

where T; are the angular momentum matrices for spinj. They are easily evaluated,

sin(j +3)1
sinzl

x](T) = ) ' (62)

where [ is the angle of rotation (magnitude of 1. Thus Eq. (60) becomes

1 2 s AN i 1V,
- j(j 2 . 6
m ;exp[ Bg /2a](]+1)] Sln(]+2)l sin(j +z)l (63)
The sum can be evaluated in terms of periodic Gaussians giving
eB/e%/8a - 5 .
_ [ 5" a/2p82)(1+1) /2 e-(a/zegz)(l-l' )/ 2 . 64)
singl singl’ { + } (
The functions
é(a/zagz)[(ul’)/zl

are periodic in ! +! with period 4. The factor exp(8g?/8a) can be ignored as it will contribute a numerical
factor to Z which will cancel when averages are computed. The factor in curly brackets will be denoted
' F( +17,1 _l;)=_é-(a/zsez)[(hl')/2]2+é-(a/23g2)[(1-l‘)/2]2' (65)

It is periodic in ! 1’ with period 47 and is antisymmetric under interchange of I +I’ and 7 —1’. It also has
the property of being vanishingly small for large 8 unless

I=l'orl=-1". (66)
The entire partition function can now be written
.. F((r) +1(r +n),1(x) = 1(r +n))
dl 2[L1(r 2 . 67
f I;I (r) sin”[51(r)] JL sins1(7) sin3 1 (r +n) (67
r
The integrations over ! must go from 0 to 47 in y Z E(r,7)=0, 7+0,R
order to cover the whole SU, group space. The " ’ ’ ’

factor dl/sm? /2 is the group-invariant volume
element. ZE(O,ﬁ):Ql,
Before considering the possible phase trans-
itions which can occur, let us consider the par- ‘
tition function in the presence of static sources. ZE(R’ﬁ) =Q,,
The sources are a pair of SU, quarks of color 1.
They are described by 7 matrices and have color
operators @, and @,. They are located at =0 and the partition function integrand has the ex-
and ¥ =R. Thus Gauss’s law is modified to tra factors
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Trell©-o; e“(R’°2=x1,2[l(0)] %,/,[L(R)]
=cos31(0) cos3I(R). (68)

Following the logic' of the Abelian model we find
the potential between quarks to be

V(R) = :El—ln(cos%l(()) cos3I(R)). (69)
The intergrand of Eq. (67) has the symmetry
1-1+2m (all 7). (70)

‘Unless this symmetry is broken
{cos31)=0 (71)

since cos3! changes sign under Eq. (70). In this
case

{cos31(0) cos3I(R)) —~e™#R

and the quark potential is linear. This is cer-
tainly the case for large B.

For small B the symmetry (70) is almost cer-
tainly broken. Let us see why. For small 8
|F(@ +17,1 =17)| is vanishingly small except for
1=1" orl=-1’+4w. Thus suppose 1(0)=¢. Then
the neighboring sites must have

l=porl=4r-¢.

Repeating the argument we find that to avoid
vanishing small probabilites all the I’s must equal
¢ or 4m - ¢.

Now consider the factors 1/[sinz1(r)]* for each
site. Since 3 sin¢ =sinz(47 — ¢) we will have a
factor

1 N
((Sin§¢'5‘*) ’
where N is the total number of sites. This means
that the values -

¢ =0 (same as ¢ =4m)
or
¢ =21

are very strongly favored and will dominate the
configurations.

The values I =0 and I =27 will not both occur at
different sites. The factors F enforce all the I’s
to be almost the same (mod4w). We have there-
fore a conventional spontaneous breaking of sym-
metry; the broken symmetry is Eq. (70). We see
that in the spontaneously broken states

(cos3ly=%1
for infinite temperature. Accordingly
(cos31(0) cos3I(R)) = M2(1 +ce™R)

and quarks are unconfined.

The mechanism for the short-range force un-
doubtedly involves the fact that the non-Abelian
gauge field can carry color. Thermal fluctuations
eventually cause the colored gluons to form a
plasma which Debye screens the quark.*

VI. CONCLUSIONS

We have considered the influence of thermal
fluctuations on a particularly simple model of
confinement. The model consists of dropping the
magnetic part of the lattice-gauge-theory Ham-
iltonian and retaining only the electric terms.
Two questions naturally arise. The first is: To
what extent are the conclusions modified when the
magnetic terms are included? The second and
far more difficult is whether the phase transition
occurs in the continuum limit.

The first question we feel is relatively easy.
When the magnetic terms are turned on the critical
temperature decreases. We have not proved this
in general, but is seems obvious that eliminating
the magnetic parts of H maximizes the confining
tendencies of LGT. We have been working on
various methods of incorporating H, . .+;. and the
message is always the same. If a phase transi-
tion to an unconfined phase is possible without
H,,,,. it is even easier with it. Thus we feel the
following statement is correct:

Without H,,,, if a phase transition occurs it is
pure LGT at a temperature B, satisfying

where A is a number of order of magnitude 1.
When H,,, is turned on the critical temperature
decreases,

2
Tc= 'g&—xf(gz);

where f(g?) is a fraction less than 1.

Now what about question number two? This
unfortunately is much more difficult. The con-
tinuum limit of LGT involves letting g -~ 0 with a
according to the rule

c
—Ina

g%a) -

or

a—ecle?,
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The critical temperature behaves like
. Ag?
T,=lim éﬁr/;zf(gz)
&=0

Ag2ec/e?
=lim g;

£-0

(g3 .

Thus it is not possible to say with certainty whether -

SUSSKIND 20

the transition occurs in the limiting theory with-
out knowning the behavior of f (g?) for g2—0.
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