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A path-integral formula for the vacuum wave functional is used to show that merons in quantum
chromodynamics produce long-range vacuum fluctuations of the form of Wu-Yang monopoles, whereas

meron pairs or instantons produce only short-range fluctuations. The existence of long-range vacuum

fluctuations may be related to the problem of quark confinement. The XY model, which describes classical
two-component spins on a two-dimensional lattice, is reviewed. Vortex spin-field configurations, which are
responsible for the existence of a disordered phase in the XY model, are shown to be analogous to merons

in that they produce long-range fluctuations of the spins along a given axis. The analogy is emphasized by
considering the analog of the vacuum wave functional in the XY model. It is argued that the vortex-
antivortex pairs that occur in the ordered phase of the XY model are analogous to meron pairs or
instantons in quantum chromodynamics.

I. MERONS IN QUANTUM CHROMODYNAMICS

Merons are gauge-field configurations in non-
. Abelian gauge theories in four-dimensional Eucli-
dean space. ' They satisfy the Euclidean field
equations but are singular at isolated points and
have infinite action. It has been suggested" that
quark confinement in quantum chromodynamics
(QCD) is a. consequence of the contribution of
merons to path integrals.

In this paper it will be shown that merons pro-
duce long-range vacuum fluctuations of the gauge
fields. These vacuum fluctuations are precisely
of the form of the Wu- Yang monopole configura-
tion. ' Therefore in an ionized-meron phase, i.e.,
a phase in which path integrals are dominated by
meron configurations, the vacuum would contain
arbitrary superpositions of monopole fields and
would resemble the monopole vacuum described
by Mandelstam. It has been suggested that the
existence of long-range vacuum fluctuations might
account for quark confinement in QCD."'

The main purpose of this paper is to point out in
some detail an analogy between the meron gauge-
field configuration in QCD and the vortex spin-
field configuration in the classical. XY model.
The XY model is a well understood model in sta-
tistical mechanics that describes classical two-
component spins on a two-dimensional square
lattice. In this model vortex spin-field config-
urations play a, special role in disordering the
spins and lead to a phase transition between a dis-
ordered phase at high temperatures and a rela-
tively more ordered phase at low temperatures. '
The analogy between the vortex configuration and
the meron solution in QCD is based on the obser-
vation that each of these configurations produces
long-range fluctuations of the corresponding fields.
In this paper the analogy will be drawn by examin-

ing in each theory the vacuum wave functional, de-
fined below. The meron solution will be considered
not in QCD but in the pure Yang-Mills theory with
gauge group SU(2).

In addition it will be shown that the XF model
is an example of a model in which instanton ef-
fects are non-negligible at suitable values of the
temperature, in contrast to some other two-di-
mensional spin models considered recently by
Witten." The field configuration in the Xk model
that is analogous to an instanton in QCD is a vor
tex- antivortex pair.

The outline of the paper is as follows. In the
remainder of Sec. I the vacuum wave functional
will be defined and a path-integral formula for it
derived. Also it will be shown that contributions
to the path integral from merons produce long-
range vacuum fluctuations of the gauge fields that
are of the form of the Wu- Yang monopole field.
In Sec. II well-known properties of the X1' model
will be reviewed. In order to make the analogy
with QCD as precise as possible, the role of vor
tex configurations in producing long-range fluctua-
tions of the spins will be discussed in terms of
the analog of the vacuum wave functional in the
XY model. Finally in Sec. III the parallels between
merons in QCD and spin vortices in the XY model
will be summarized. The analogy leads to specu-
lations about the existence and nature of an ion-
ized-meron phase in QCD that might explain quark
confinement. '

The vacuum wave functional of a field theory is
the Schrodinger wave function of the vacuum state
of the theory. It is a functional. of time-indepen-
dent configurations of the fields. For example,
consider a field theory of a self-interacting scalar
field &p(x) with action S(p). Let ] 0) be the vacuum
state of the theory and i g(x)) the eigenstate of the
field operator at time x, =0 with eigenvalue g(x).
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The vacuum wave
functional%�(g)

is defined as

4(g) =(g IQ& .
4 (g) is the probability amplitude that the field
p(x) at time x, =0 is in the configuration g(x} in
the vacuum state. In this paper the argument
g(x) will be called a vacuum fluctuation of the
field p(x).

It is useful to derive a Feynman path-integral
formula for 4'(g). Consider the Euclidean path
integral

+(T, g)
— D(pie s(IP')

P(r;~)
(1.2)

where p'(x) is a path in field-configuration space,
and the set of paths P(T; g) is the set of paths
y'(x) that begin and end at po, the vacuum expec-
tation value of y(x), at time x, = + T and pass through
the configuration g(x) at x, =0:

where p'(x, 0) is p'(x) at x4=0 and

(1.9)

(1.10}

@2[A((x)]—N J DAIQDyDq)+e s+gg (A' ~ w ~ 8* &

~ P(A~ )

The formula (1.V) can be taken over directly into
gauge theories apart from the additional complica-
tion of the need for gauge fixing. For example,
consider the Coulomb-gauge version of the Yang-
Mills theory, in which the gauge field A, (x) is re-
quired to be transverse sg', (x}=0. Then the
vacuum functional is a functional of time-indepen-
dent transverse fields A,'(x} and the formula (1.V)

becomes

y, at x, =~T

g(x}.at x, = 0 .
(1.3)

The limit T- ~ will be taken eventually. Since
any path in P(T; g} can be split into a path from

y, to g(x) followed by another from»(x) to yo,
the Feynman path-integral formula" implies that
F(T; g) is the product of two Green's functions

+(T; g} = (N, I e "'
I g&(g I e "'

I pg . (1.4}

The Green's function can be expanded in the com-
plete set of eigenstates ln& of H as

(»le " lp, &
= g e ~r(gin&(n I y,& .

When T ~ only the lowest-energy state survives
which is the vacuum state IQ& with energy E„=O.
'Thus

4'(g) =N Dy'(x)e 'i'i,
P (n)

(1.V)

where P(g) is the set of paths p'(x} that begin and
end at yo at x, = +~ and pass through g(x) at x, = 0,
and N is a normalization factor chosen so that

Dg x 4'2 q =1. (1.8)

The formula (1.V) for 4'(g) can alternatively be
written

The first factor is independent of g(x) and the
second factor is 4'(g}. Therefore the vacuum func-
tional can be written

where p and cp* are Faddeev-Popov ghost fields
and S,ff is the action plus gauge-fixing and ghost
terms appropriate to the Coulomb gauge. Alter-
nativel. y, consider the temporal gauge in which
the (Euclidean) time component A', (x) of the gauge
field is required to vanish, A'(x)=0. The vacuum
state is required to be invariant under the residu-
al local gauge freedom associated with invariance
under time-independent gauge transformations. '
Again a path-integral formula can be written

4', '(A', ) =N DA,'&e ~ '"a' ',
Po (A& )

(1.12}

where the subscript 0 indicates the temporal-
gauge theory. Here P, (A',) is the set of paths that
begin and end at arbitrary pure-gauge configura-
tions and pass through A,' at x4=0; the endpoints
of the paths are left arbitrary so that 40'(A,') is
invariant under gauge transformations of A,'(x).
The functionals 4'(A,') and 4,'(A,') are related by

y '(A,') = 4'(5',), (1.13)

where A,' is the transverse field gauge equivalent
to A', . Equation (1.11) can be derived from Eq.
(1.12) by changing variables of integration in (1.12)
from A.," to the transverse field gauge equivalent
to A,"; the Faddeev-Popov ghost fields give the
Jacobian determinant as usual.

The functional 4,' (A',) is the probability distribu-
tion of vacuum fluctuations A&(x). It has been
suggested that quark confinement in QCD is a
consequence of the existence of vacuum fluctuations
that are of long range. ~" A long-range field A,'(x)
is defined as one that decreases as Ix I

' as Ix I

~. A simple indication of the importance of
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such fields is that in the covariant derivative

the gradient term and the field-dependent term
both fall off as Ix I

' as Ix I
- ~ if A', (x) is of long

range. This implies, for example, t;hat the in-
stantaneous Coulomb potential of a pair of color
charges in a long-range background field has a
large-distance asymptotic form that decreases
less rapidly than the ordinary Abelian Coulomb
potential (i.e., with A,'=0).' In contrast, if A', (x)
is of short range then D,'~(x} approaches s, &,(, as
Ix I

- and the instantaneous Coulomb potential
at large distances has the usual 1/Ir —r'

I asymp-
totic form.

Long-range vacuum fluctuations do not occur in
perturbation theory. That is, the vacuum function-
al 0»'(A,') calculated in perturbation theory van-
ishes if A, is of long range. To be specific, in
the unperturbed theory (i.e., with coupling cons-
tant g=0} each gauge field is equivalent to a free
photon field. The vacuum functional for a free
photon field in the Coulomb gauge (or the tempor-
al gauge) is

p'(A!'! =p! exp ——,
' f e'x e'y4'(x)

lm

&(D,&(x- y)A&(y),

where D ',&(x) is the inverse of the equal-time
photon propagator

D '„(x)= ~,e ""2~p~
(

&„.— -~

In terms of the Fourier transform A'(p) of the
transverse field A'(x),

+'(A') =Ã exp ——,
' „t,A;(p}A'(-p)2 ~p ~

& (2&)'

(1.16)

To use the formula it is necessary to identify
paths A,"(x) that are of long range at x, =0. It will
be shown presently that the meron solution is such
a path. However, the classical action of any such
path is infinite. " Thus a single isolated meron
configuration, for instance, does not contribute to
the path integral (1.12). Nevertheless, superposi-
tions of merons with finite action do exist and
would produce vacuum fluctuations that are super-
positions of long-range fields over a large range
although at sufficiently large distances the vacuum
fluctuation decreases rapidly to zero. These
vacuum fluctuations would significantly affect the
quark- antiquark potential. '

The meron solution' is given by

1 xA~ =—q~"—
!I g Q x2 (1.18)

where the quantity g,
""is antisymmetric in p, v

and has components

q
j4 .q4)
c . a a)~

~a —
~a&g ~

(1.19}

where

The indices p. , v refer to a four-dimensional
Euclidean space and A," (a=1,2, 3} are the gauge
fieMs of a Yang-Mills theory with gauge group
SU(2). The meron field configuration is a solution
of the Euclidean field equations'4 but is singular
at x'=0. The singularity at x'=0 can be smeared
out without changing the remarks to be made here,
which concern the large-x behavior of the field.

The meron solution can easily be transformed
into the temporal gauge. In that gauge the meron
can be written

A =0
g

(1.20}

Now 4'(A'} vanishes if A'(x) is of long range. For
if A'(x) is of order Ixl ' as Ixl ~ then A'(p} is
singular at p=0 and

1 I x4b(r, x,}=2+2-( ~,)„,.+x4
(1.21)

where f'g) depends only on the angular variables
of p. Then the integral in Eq. (1.16) is logarith-
mically infrared divergent and so 4'(A() =0. Cor-
rections to Eq. (1.16) for (I('(A,'j are, in perturba-
tion theory, only polynomial factors, so this re-
sult holds to all finite orders of perturbation theo-
ry.

In principle, the path-'integral formula (1.12)
provides a way to determine 4'(A,'} for long-range
fields A,'(x) that goes beyond perturbation theory.

Note that the field (1.20) also obeys the Coulomb-
gauge condition. Some limiting values of this field
are important. When x4-- ~, b -0 and the field
A,' approaches zero. When x4-+~, b-1 and the
field tends to a long-range field, but one that is a
pure gauge; in particular its energy density van-
ishes. In fact, the configuration (1.20) with b =1
is an example of a pure-gauge configuration that
obeys the Coulomb-gauge condition pointed out by
Gribov. " When x, = 0, b = &, then A,' is a long-
range field that is not a pure gauge. More gener-
ally, b- & as x- ~ for any finite value of x,. The
field in Eq. (1.20) with b = —, is precisely the Wu-
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Yang gauge-fieM configuration sometimes called
a magnetic monopole configuration. '

Thus if the temporal-gauge meron solution is
viewed as a path with Euclidean time in the space
of gauge fields, it begins and ends at pure-gauge
configurations that are related by a long-range
gauge transformation, and passes through long-
range monopole configurations at finite x4. If an
isolated meron could contribute to the path inte-
gral in Eq. (1.12) it would contribute to the proba-
bility of a long-range vacuum fluctuation A,'(x),
i.e., one that is of order Ix I

' for large lx I.
But an isolated meron has infinite action. The

action is infinite not only because of the singulari-
ty at x'=0, but also precisely because of the long-
range nature of the field. Merons can contribute
to the path integral only if they are combined in
a way such that the action of the resulting field
configuration is finite.

For example, a meron-pair fieM can be written

1 „„(x-c)" (x+c)"
g ' (x-c)' (x+c)' (1.22)

where +c are the centers of the merons. This
field satisfies the Euclidean field equations. Its
action is infinite because of the singularities at
x =wc, but if these singularities are smeared out,
as will be done below, then the action becomes
finite. - What is important is that there is no diver-
gence of the action from the long-range behavior of
the field, because when x'- ~ the field & ap-
proaches a pure-gauge configuration. Specifically,
when x'-~, the meron-pair field approaches an
instanton solution. "

A simpl. e way to smear out the singularities of
A,"(x) at x = w is to define a new field +,"(x) as

2;(x)=- g,""f„(x),2 (1.23)

where

1(x-c)„1(x+c)„
f„(x)=2

( )~ +2( },
" otherwise.

The smeared meron-pair field X,"(x) is equal to
the unsmeared meron pair A;(x) outside of two
smal. l spheres of radius & around x=+c, and is
not singular at x=+C."

The action of the smeared meron pair is

+
(x —c)2+ c 2 (x+ c}2

f„(x)=—", + —,", if (x+c)' c &', (1.24)
1 (x —c)„(x+c)„

E""=8"2"-8"A +gga a a abc 5 c (1.26}

The action is a dimensionless function of c' and
c, and is logarithmically divergent as c'/c'-0.

'

Thus S can be written

2 CS= ln —+S
g2 g2 c & (1.2V)

(1.29)

This vacuum fluctuation A,'(x} can be called a
large gauge-field fluctuation in that its magnitude
is of order 1/g."

Although the meron-pair solution produces only
a short-range vacuum fluctuation, if T is large
then the meron pair produces fluctuations that re-
semble those of an isolated meron over distances
comparable to T. For if T is large and x4~-T,
then b is approximately

x4+ T
( t 4) 2 2

[( + T)2++]1/R (1.30)

provided that r' «T'. Alternatively, the energy
density of the configuration A,(x„x), in which x4
is treated as a parameter rather than a time vari-
able, is

4 a a

8 T'
g' [r'+ (x, + T)']'[r + (x4 —T)2]'

x j3[r —(x, + T)(x4- T)]'+4x4'.r ].
If T is large, x4=-T, and r«T then

where S, is convergent as c'/c~-0. The interac-
tion of merons is proportional to the log of their
separation. '

It is a straightforward calculation to transform
the meron-pair field configuration to the temporal
ga~e if the centers +c are on the x, axis, i.e.,
c =(0, T). In that case a temporal-gauge version
of the unsmeared meron pair is given again by
Eq. (1.20) where now

1 1 r'+(x, + T)(x, —T)
2 2[r'+(x4+T)2]' '[r +(x4- T)~]'~~

(1.28)

The function b tends to zero when either x4-*~
(r fixed) or r ~ (x, fixed) ~ If the meron pair is
viewed as a path in the space of gauge fields, it
begins and ends at A,'=0 and passes through fields
that are only of short range. In particular, the
field at x4=0 has

s = —' d~xE ~"E""
a a (1.25)

4 1x =——r" (1.32)

where E,""is the covariant field tensor which corresponds to a long-range field at least
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over the range r «T. Gn the other hand, the en-
ergy density at x, = 0 is

T4

g' (T'+r')' ' (1.33)

which is of order T ' for r«T and falls off as
x ' for r» T. A meron pair with meron positions
on the x4 axis produces large gauge-field vacuum
fluctuations (i.e., with magnitude of order 1/g)
that are of short range. It should be noted that
instantons produce similar vacuum fluctuations. "

If the centers +c of the merons in the meron-
pair solution are not on the x4 axis then the tem-
poral-gauge expression for the field is not simple.
However, it can be shown, for instance, that if
+c are located at equal times c = (c, 0} then the
meron pair is like an instanton' in that it is a
path from one pure-gauge configuration &',

=g, 'Bg, at x, =-~ to another &,' g, 'Sg, at x,
=+ ~, where g, and g, are in different homotopy
classes. " In particular, the meron-pair field has
Pontryagin index 1, as the instanton solution does.
'The pure-gauge configurations A', and &,' differ by
a large gauge transformation" in the sense that

g, and g, are not homotopic.
The problem of finding general multimeron con-

figurations has not been solved but examples of
such configurations have been given. "'" If an
ionized meron phase exists in QCD, i.e., a phase
in which the path integral is dominated by multi-
meron fields in which the merons have large sep-
arations, then Eq. (1.12) for the vacuum functional
indicates that typical vacuum fluctuations would be
superpositions of long-range monopole fields.
This picture of the vacuum state resembles the
monopole vacuum described by Mandelstam. ' It
has been suggested' '" that the monopole vacuum
may describe the confining phase of QCD. This
suggestion is based on an analogy between the
monopole vacuum and the superconducting state
of a metal. ' ' The analogy suggests that the
presence of monopole fluctuations in the vacuum is
just what is needed to make the disorder parame-
ter defined by 't Hooft large.

In the next section the XF model will be reviewed
in some detail and the analogy between merons in
QCD and spin-field vortices in the XI' model des-
cribed.

will be reviewed for the sake of completeness.
The similarity between these theories will be indi-
cated by considering the analog of the vacuum
functional in the XF model.

The XF model describes classical two-compo-
nent spins on a two-dimensional square lattice
with nearest-neighbor interactions. The Hamil-
tonian is

H=-J g S(x} S(x'),
&x, x'&

(2.1)

where J' is the coupling constant, S(x} the spin at
lattice site x, and (x,x ) stands for the link joining
nearest neighbors x and x'. The two-component
spin S(x) is of unit length S2(x) = 1, but can point
in any direction. The XF model in statistical
mechanics can be thought of as a lattice version of
a (1+1)-dimensional field theory, namely the
O(2) o model. To emphasize this correspondence
the lattice site x will be given components (x„x,}
and x, identified with the Euclidean-time coordin-
ate, x, the space coordinate.

The classical spins S(x} can be specified by their
angles y(x) with respect to an arbitrary axis. In
terms of the angle variable y(x), the Hamiltonian
is

If =Z P (1 —cos[y(x}—p(x')]).
& x& x'&

(2.2)

Z =
Jt D y(x) e "'" ',

where the action A.(y} is'

(2.3}

a(V) =K p (1- cos[q(x) —q(x')]&
&Xyx'&

(2.4)

For later purposes it should be noted that H is in-
' variant under a global transformation and a local

transformation. The global transformation is
q&(x}- cp(x)+ a for all x where n is a constant angle.
The local transformation is y(x) - p(x}+2v inde-
pendently at each point or set of points in the lat-
tice. The invariance under these transformations
arises because the field y(x) is an angle with re-
spect to some axis. In this paper, the local trans-
formation will be called a gauge transformation.

The partition function Z of the XF model is

II. THEXYMODEL

A. Definitions23

The purpose of this section is to discuss the XV
model in a way that makes the analogy with QCD
as precise as possible. Vfell-known properties of
the model, ' ' specifically, the role of vortices in
the creation of long- range spin-field fluctuations,

and K=JlkaT. The functional integral notation
means

Dp x =— dc/ x) .
X

(2.5)

In analogy with the vacuum functional of field the-
ory, a functional 4 (q) will be defined as in Eq.
(1.9)
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O'(O)= —f D(e(x)e ""' O[(~(x„O) —O(x)].,

(2.6}

x, axis defined by
e

E(x -x') = (S(x,0) 5(x', 0)&

can be written

(2.V)

In statisticalmechanics, 4'(q) is simply the reduced
probability distribution in which the spin variable
along the x, axis is specified to be j)(x,). Here
the field-theoretic terminology will be used and
@'(q) called the vacuum functional. Also, the ar-'

gument j}(x,}which is the specified spin field at
time x, =0 will be called a vacuum fluctuation of
the spin field.

The vacuum functional 4'(g) can be used to eval-
uate expectation values of operators at x, =o. For
instance, the spin-spin correlation function on the

E(x —x') = Jt Dq(x, }4'(q) cos[q(x) —)}(x')]. (2.6)

As in field theory, a generating functional Z[j(x}]
can be defined by

De'

8[j(x))=—f DD(x)e ""'exp i g j(x'I(e(x)
X

(2.9)

In terms of Z[j], the vacuum functional can be
determined by

O (O) =— DO(x)e ''C "Dl (e)exO jg, te(e, )[D(x„O) —O(x, )[I
x1

=C
JI D(jj(x,) exp ig-&(x,})}(x,) Z[(()(x,) 6(x,)],

Xy

(2.10)

where C is a normalization constant.

(q') =-'& g [I( ) —p( ')]' ~

&X, X'&

Furthermore the angle variable y(x) is allowed
to range over the entire domain -~ + p & . The .
SW approximation is valid if the sum over fields
is dominated by small fluctuations of (I()(x}. In
field-theoretic language the SW approximation is
lowest-order perturbation theory: A»(p) is the
unperturbed action and the interaction terms A(c)())

—A«(y) are neglected.
In the SW approximation all functional integrals

are Gaussian integrals and can be evaluated. ' It
is useful to rewrite the action as

(2.11)

A«(P) = 3K+ g P(x')L(x' —x")p(x"), (2.12)
XD XII

where

I (x' —x")= g g [2&(x', x) &(x,x")
X j=l y2

—2 &(x', x) ~(x,x"+ aDe, }], (2.18}

B. The spin-wave approximation

'The starting point for this discussion of the XF
model will be the spin-wave (SW} approximation
of the model. ' In the SW approximation the action
A(y} is approximated by expanding the cosine in

Eq. (2.2} up to terms quadratic in p(x)

where e, is the unit vector in the &th direction and

a, the lattice spacing. If this form of the action is
used in the definition (2.9) of the generating func-
tional, then Z [j] becomes

&' d'q e "'@'0
G(R) =

I, , (2v)' 4 —2cosq, —2cosq, ' (2.16}

In the continuum limit Rja, -~ the Green's func-
tion is formally'4

"d"
G(R) = e j'"—

(2 )2 $2
(2.17)

The functional integral in Eq. (2.10}for the
vacuum functional is again Gaussian. Thus the
SW approximation of the vacuum functional 4'«~(j})
can be determined to be

4'»'(q) = C exp-5&Q Q q(x}jM(x —x '}q(x'}
x g'.

(2.18)

Z»[j]=exp — g g j(x)G(x- x')j(x')
2K

(2.14)

where the Green's function G(x- x') is the inverse
of L(x- x'):

g &(x- x')G(x' —x")= 6(x, x") . (2.15)

The lattice Green's function G(R) can be expressed
as the Fourier transform
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where M(x —x') is the inverse of the Green's func-
tion at equal times G(x —x'); explicitly,

M(R)= q' e~~~R~ OM(q ),
~'d

~ -, 2r

where

(2.19} FIG. 1. A spin-field configuration along the x& axis
with winding number zo = 2m .

(2.20)I f'dq,
M(q,), , 2v 4 —2cosq, —2cosq, '

In terms of the Fourier transform q(q} of q(x},
4»'(g) can be reexpressed as

g xi++o g x
X ]

or, in continuum notation

+No eg
w= jl dx,

~ OO

(2.25)

(2.26}

dq4'»2(g) = C exp ——,K —7(q}q( q)39 (-q)

J

(2.21)

F,„(R)=exp(- —[G(0) —G(B)]). (2.22)

In the continuum limit R/a, - ~ the Green's func-
tion is asymptotically'4

Thus in the SVf approximation the probability dis-
tribution 4»2(g) is Gaussian centered at q= 0 with
width determined by KLI4(q}.

The vacuum fluctuations with probability distri-
bution 4»'(g} are sufficiently large to prevent
strong ordering of the spins for any value of K.'
To be precise, the spin-spin correlation function
E»(R) defined in Eqs. (2.7), (2.8) can be shown
to be

Figure 1 shows a vacuum fluctuation of the spin
field with zo =2m.

A long-range fluctuation .g(x, ) will be defined as
one with nonzero winding number for which Bq/ax,
dec~eases to zero as x, ' as x, -s~. Fields q(x, )
with winding number zero or for which &q/sx, de-
creases more rapidly than x, ' as x, -+~ will be
said to be of short range.

In the SW approximation there are no long-range
vacuum fluctuations. This is analogous to the fact
that in QCD there are no long-range gauge-field
fluctuations in perturbation theory. But in the XY
model even more is true: There are no vacuum
Quctuations with nonzero winding number of either
short or long range. That is, if g(x, ) has nonzero
winding number then 4»'(g) =0. To see that this
is so, suppose that the winding number of q(x,} is

Then the Fourier transform q(q} of q(x} is
singular at q =0 and

G(0) —G(R) -—ln —+ constant,
B
a (2.23)

i(q) =g n(x)e""'~

so the asymptotic form of the correlation function
as 8-~ is

(2.24)

where c is a constant Since E.», (R) decreases to.
zero as R- , the spins are not ordered. On the
other hand, E»(R) decreases only as a power of
8 ', so there is no finite correlation length for
spin alignment. Therefore the spins are said to be
critically ordered. The exponent of 8 is inverse-
ly proportional to the coupling constant K= J/k~T.
In the SW approximation, critical ordering occurs
for all values of E.

The vacuum functional 4'(g) is the probability
distribution for spin-field configurations q(x, )
along the x, axis, i.e., for vacuum fluctuations of
the spin field. As in QCD the question arises
whether long-range vacuum fluctuations occur.
In order to characterize vacuum fluctuations it is
useful to introduce the minding number so of the
configuration g(x, ). The winding number co is the
net change of g(x, ) along the x, axis,

-Qadi —as q -0.
g

On the other hand, Eq. (2.20) for M(q) implies
that

M(q)-2~q
~

as q-0. (2.28)

Thus the integral in Eq. (2.21) for 4»'(g} is
logarithmically divergent at q =0. This infrared
divergence implies that 4'»'(q) =0 if cu c0.
'Vacuum fluctuations g(x} with nonzero winding

number can be called large fluctuations in that
g(x} must be nonzero over an infinite part of the

x, axis. But it should be noted that these fluctua-
tions are not necessarily large when described in
terms of the original spin variable S(x). For ex-
ample, in the short-range ft.uctuation with sv =2m'

in Fig. 1, the spins are aligned except over a fi-
nite segment of the axis. The origin of the total
suppression of these fluctuations in the SW approx-
imation is the fact that the SW approximation does
not respect the invariance under local gauge trans-
formations. In particular, under the transforma-
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tion y(x) - p(x)+ 2ri for all points x in an infir. ite
region, A(p) is invariant but A.a„(y) changes by an
infinite amount. It will be shown below that a path
that produces a large vacuum fluctuation, i.e.,
one with nonzero winding number, is the analog
of an instanton' in that it interpolates as x, —+~
between different pure-gauge configurations. "
These paths are totally suppressed in the SW ap-
proximation because &»(y) is infinite for these
paths. 2'

C. Vortex configurations

Kosterlitz and Thouless pointed out that the SW
approximation should be improved by including in
the sum over states spin-field configurations that
are superpositions of vortices and antivortices. '
It will be shown below that inclusion of these con-
figurations restores the symmetry under large
gauge transformations, which was broken by the
8% approximation, and leads to a vacuum function-
al 4'(g) with vacuum fluctuations with nonzero
winding number. The most important effect of the
vortices is that they create at high temperatures
a disordered phase of the system that is not pres-
ent in the SW approximation.

Figure 2 illustrates examples of vortex con-
figurations. In Fig. 2(a), two examples of isolated
vortex configurations are shown; the spins on the
lattice are tangent to the indicated lines of flow.
In Fig. 2(b) an antivortex configuration is shown.
The configuration in Fig. 2(e) is a vortex-antivor-
tex (vv) pair with centers on the x, axis.

Vortex spin-field configurations are specified
by the vorticity m(I') of the fieM for arbitrary
closed paths ~. Let X' be a closed path through n

o)

lattice points x, (i =1, .. . ,n). The vorticity m(Z')

of I' in the spin field y(x) is defined by

m(I') = g [y(x„,) —y(x,.}], (2.29)

or, in continuum notation

m(I') = dx &y(x}.
r

(2.30)

In terms of the spins S(x), the vorticity m(I') is
the angle through which the spin rotates as the
loop X' is traversed. Since the spins are single
valued, m(1') is an integer multiple of 2ri for any

The vorticity in the vortex configurations of
Fig. 2(a) is 2ri if I' surrounds the vortex center;
in the antivortex configuration of Fig. 2(b) it is
~ 21T ~

Explicit formulas for vortex configurations are
expressed most simply in a notation that involves
compl, ex numbers. Let ~ =x, +i@,where x, and x,
are the components of x. Then the first vortex
configuration shown in Fig. 2(a) is

y(x) = argz; (2.31)

the second one is a global gauge transformation
of the first

y(x) = argz + —,'ri . (2.32)

Similarly the antivortex configuration in Fig. 2(b)
is

y(x) =-argz .
Finally the vv pair in Fig. 2(c) is

y(x) = arg(z —c) —arg(z+ c) —2ri,

(2.33)

(2.34)

where c = c, +ic, and c = (c„c,) is the position of
the vortex, which lies on the negative x, axis. A

general multivortex configuration denoted p(x) can
be written

b)

c).

FIG. 2. Vortex configurations in the x~, x2 plane:
(a) Examples of an isolated vortex; (b} an isolated
antivortex; (c) a vortex-antivortex pair. The spins are
parallel to the indicated lines of flow.

(2.35)q(x) =g arg{z —c,) —g arg(z —c,),
(~1 )~1

where n+ {n-) is the number of vortices (antivor-
tices) and c, (cr) are their positions. Of course
a constant angle & can be added to P(x) without

changing either the vorticity or the action of the
configuration.

The analogy between vortices in the X~ model
and merons in QCD follows at this point from an
inspection of the vacuum fluctuations produced by
vortices. It can be seen in Fig. 2(a) that the spin-
field configuration along the x, axis (i.e., vacuum
fluctuation) produced by an isolated vortex has
winding number + ~ if the vortex position c has c,
&0 and -w if c,~0. Furthermore, the vacuum
fluctuation is of long range because by Eq. (2.31)
for q(x), sy(x„x,)/&x, -x, ' as x,-~ with x,
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fixed. Also, as x, — the vortex configuration
approaches one in which all spins point in one di-
rection, and as x, -+ one in which all spins point
in the opposite direction. Thus if the isolated vor-
tex is viewed as a path in the space of spin fields,
it begins and ends at pure-gauge configurations
that differ by a long-range gauge transformation,
and it passes through long-range fields with wind-

ing ~umber ~~ at finite x,. This is the basis of the
analogy between vortices in the XY model and
merons in ~D. Similarly the antivortex in Fig.
2(b} produces a long-range vacuum fluctuation with
the opposite winding number.

The spin field along the x, axis produced by a
closely-bound vv pair can be determined from Fig.
2(c). The winding number of the field p(x„x,)
with x, fixed is either 0 or +2m depending on the
position and orientation of the vv pair. The field
y(x„0) in Fig. 2(c) has winding number 2v. Also
this field is of short range by Eq. (2.34) which im-
plies that &p(x„0)/sx, decreases more rapidly
than x, ' for x, &

~
c ~.

The centers of the vortices in Fig. 2(c) lie on
the x, axis. As another example of a vv pair,
consider a vv pair with centers on the x, axis
obtained by rotating the configuration in Fig. 2(c)
by &&. Specifically, let

p(x) = arg(z —c) —arg(z+ c), (2.36)

where c =c, is real. This field plays the role of
'an instanton' in the XF model in that it interpo-
lates between pure-gauge configurations that dif-
fer by a large gauge transformation. To be pre-
cise, at x, =+~, p(x) = 0; but at x, = —~,

cp(x) = 2v8(c, —x,) 8(c,+x,}.
That is, all the spins with -c, ~x, - c, are rotated
through -2n as x, goes from - to + . The gauge
transformation is called large because the field,
is rotated completely through 2r for -c &x, & c.

Thus isolated vortices are analogous to merons
and vv pairs are analogous to meron pairs and
instantons. The contribution of an isolated vortex
to the path integral in Eq. (2.6) gives a vacuum
Quctuation of long range with winding number r,
the analog of a Wu- Yang monopole in QCD. These
vacuum fluctuations have been called kinks. '7 The
vv pairs, which tunnel between pure-gauge con-
figurations that differ by a large gauge transform-
ation, produce short-range vacuum fluctuations
that have large magnitude, pairs of kinks and an-
tikinks. " When multivortex configurations are
included in the path integral, they restore the
symmetry under large gauge transformations that
was violated in the SW approximation. This simi-
larity of vortices in the XY model and classical
configurations like instantons and merons in QCD

was also mentioned by Polyakov ie

Next, formulas for the contributions of vortices
to the partition function and the vacuum functional
4 (g) will be derived as in Ref. I. There it is as-
sumed that the statistical sum over states is
dominated by spin fields y(x} of the form

y(x) = y(x)+g(x), (2.3'I)

2

g D x eA(e+f),
I,n! (2.38}

the factor (n/) ' is the Boltzmann counting factor
needed because configurations that differ by inter-
changes of c,.'s or c&'s are identical.

The multivortex configuration y(x} given in Eq.
(2.35) is the minimum-action configuration with
vorticity specified by the requirement that vor-
tices occur at c,. and antivortices at c, , i
=1, . . . , nP' The action A(y+g} is then approxi-
mately'

A(q + g) A(p) +A»(g), (2.39)

where A»(g) is given in Eq. (2.11). Terms linear
in P are absent because y is a local minimum of
A(y), and terms of higher than quadratic order
in g are neglected. The action A(y} of the vortex
configuration is'

Ir, —r,. I

A(y) =2nIu —2@X q, q&ln.
i J' Q

where r,. are the positions of vortices and antivor-
tices, and q their vorticities. That is, for i
=1, ... ,n, r,. =c,. and q, =+1; fori =n+1, .. . , 2n,
r,. =

c& „and q, =-1. Vortices interact by a logar-
ithmic potential, attractive for a vv pair, repul-
sive for a vv or vv pair. The parameter p,
which is the action of a vv pair separated by the
minimum possible separation aQ and can be iden-
tified as the chemical potential of a vv pair, i.s
given approximately by p, =mme.

Since the spin waves g(x} do not iriteract with
the vortices in this approximation, the partition
function Z factorizes

(2.40)

+SW+ (2.41}

where g(x) is small and where y(x) is the multi-
vortex configuration in Eq. (2.35). The dependence
of p(x) on the positions c„... , c„; c„.. . , c„of the
vortices is left implicit. The spin variables p(x)
in Eq. (2.3) for the partition function are replaced
by the collective coordinates c,. and c. that deter-

28mine y{x) and the small variations g{x) 2' Actual-
ly only fields with an equal number of vortices
and antivortices contribute to the sum because the
action of y(x) is infinite otherwise; therefore in
Eq. (2.35) for p(x) take n, =n =n. Then the parti-
tion function becomes
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where Z» is the SW approximation of tbe partition
function and

z
C] ~C]

(2.42)

where C~„' is given in Eq. (2.18). This formula
makes it clear how vortices introduce vacuum
fluctuations with nonzero winding number.
48„'(y(x„0)—g(x,)) vanishes unless the winding
numbers of y(x„0) and q(x, ) are equal. The con-
figuration y(x) contains an equal number of vor-
tices and antivortices. Therefore the winding
number of y(x„O) along the x, axis is an integer
multiple of 2v. More precisely, p(x) approaches
zero as lx

l

—~ in any direction [see Eq. (2.35}],
so the vorticity of the curve that bounds the lower-
half x plane with x, &0 is equal to the winding num-
ber of y(x„O) along the x, axis, or

-m = 2v(v- v), (2.44}

where v (v) is the number 'of vortices (antivortices)
with x, & 0. Thus multivortex configurations pro-
duce vacuum fluctuations with winding number 2mk,

k an integer.
The effect, of the vacuum fluctuations produced

by vortices on the spin-spin correlation function

E(R) can be determined from Eq. (2.8) for E(R).
If the form (2.43) for 4'(i}) is used to calculate
E(R) the result is

E(R) =E8W(R)F„(R), (2.45)

where Es„(R) is given in Eq. (2.22) and Ji„(R}is
'the contribution from vortices

E„(~-~')=—Q —
l Q e "co&1 1~

z. . =t&. , —.

"

x cos[y(x, 0) —y(x', 0}]. (2.48)

At this point tbe question of the existence of
lang-range vacuum fluctuations in the XF model
can be addressed. The multivortex field y(x}
contains equal numbers of vortices and antivor-
tices. Closely bound vv pairs produce vacuum
fluctuations of short range. If, however, the vor-
tices and antivortices are widely separated then
long-range fluctuations will be produced by the
individual vortices. The question is whether the
partition function Z„ is dominated by configurations

Because spin waves and vortices do not interact,
the vacuum functional has the simple form

@2(g)— Q l Q e-A(v)1
Z„ „ jnt

v'(q (x„0)—g(x,)),
(2.43}

in which the vortices are free or those in which
they are bound in vv pairs.

The vortex partition function Z„ is equivalent to
that of a two-dimensional gas of positive and nega-
tive charges that interact by a logarithmic Cou-
lomb potential. Kosterlitz and Thouless' showed
that this system exists in one of two phases de-
pending upon the value of K=J/ksT. If K is large,
the system is in an ordered phase in which the
vortices are bound in vv pairs. The mean square
separation ~' between members of a pair can be
estimated by the following simple free energy ar-
gument':

2vrdr r exp[-2vKln(r/a, )]

. ~l 2wrdr exp[-2vKIn(r/a ))
'0

, ~K-1' nK-2 ' (2.47)

On the other hand, if K is small tbe system is in
a disordered phase in which the vortices are free.
The phase transition point K~ at which the vv
pairs ionize can be estimated heuristically as fol-
lows. The energy of an isolated vortex is [see
Eq. (2.40)] E - wZlnL where L is the linear size of
the system. The phase space available to an iso-
lated vortex is just the volume of the lattice space
so its entropy is 8-k~lnL'. In the ordered phase
the energy term dominates the entropy and vice
versa in the disordered phase. The phase transi-
tion point is roughly the point at which energy and
entropy balance E-TS; that is,

wJlnL -2k~T 1n4 . (2.48)

where K,«depends on K. Comparison of this re-
sult to the SW approximation [Eq. (2.24)] shows

Thus K„=J/ksT„=2/w. A more careful estimate'
gives the value K„=2.24/v.

In the ordered phase K&K~ the closely-bound
vv pairs produce only short-range vacuum fluctua-
tions and play a role analogous to that of instantons
and meron pairs in QCD as explained earlier. The
density of vv pairs is proportional to e "where p
is the chemical potential p. = r'K. For K» K+, p,

is large and the vv pairs can be neglected so the
SW approximation is an adequate one. As K de-
creases and approaches K~ the vv pairs affect the
system, for example by changing the large-dis-
tance behavior of the spin-spin correlation func-
tion, Eq. (2.45). It has been shown" that in the
ordered phase the correlation function at large
distance is asymptotically of the form

(2.49)
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that the effect of vv pairs is a renormalization of
the coupling constant. The renormalization cons-
tant z =—K,«/K approaches 1 as K- ~. As K de-
creases to K~, z decreases slowly; at K=E~, K,ff
=2/w (Refs. 'I and 8) so from the earlier estimate
of K+, z =2/2. 24 =0.88. Thus the system remains
critically ordered for E &E, but the exponent des-
cribing the asymptotic form of F(R) is changed by
the vv pairs. The change is rather smal. l, z = 0.88,
because even at K=K~ =2.24/& the chemical poten-
tial p= w %=V.O is still rather large.

On the other hand, in the disordered phase K
&K+ free vortices produce long-range vacuum
fluctuations. These disorder the spins more
strongly than spin waves and vv pairs do and pro-
duce a finite correlation length for spin alignment.
That is, the correlation function E(R) decreases
rapidly as 8-~

E(R) -R '~4f(R/$) (2.50)

where f(x} decreases rapidly for x»1 and ( is a
finite correlation length.

The following picture of the vacuum functional
of the XF model has emerged. In the disordered
phase, ionized vortices produce contributions to
@'(g) in Eq. (2.6) where g(x, ) is a, superposition of
long-range fluctuations with winding number +r,
i.e., of kinks and antikinks. In the ordered phase,
vv pairs produce large vacuum fluctuations that
are superpositions of short-range fluctuations with
winding number 0 (kink-antikink pairs} or +2m

(pairs of kinks). This picture of 4'(q) has also
been described by Fradkin and Susskind" in a
discussion of the XF model in a transfer-matrix
formulation of the problem.

Finally the above qualitative statements about
the nature of vacuum fluctuations in the XF model
can be illustrated quantitatively by a rough calcula-
tion of the probability of producing large vacuum
fluctuations by vortices or vv pairs. Consider the
winding number of y(x„0) along the segment of
the x, axis from -r to x, defined by

&y(x„0}
Xg

(2.51}

The ordered phase consists of a gas of vv pairs
of characteristic size & given in Eq. (2.47). A
vv pair makes a significant contribution to w(r}
only if the position of the pair is in the region with-
in a distance & of the segment (—x, r); the area
of this region is 4r& Thus let. P(m) be the proba-
bility that rn vv pairs lie in this region; the prob-
ability P(m) is a measure of the effect of vv pairs
on the vacuum functional for large vacuUm fluctua-
tions. For a rough approximation of P(m) the vv

pairs will be treated as noninteracting, i.e., as a
perfect gas. Then the partition function is just

OO

g= Y' —p" d'c ~ ~ d2c =e'~
n (2.52}

where Z is the total area. of the lattice; the density
parameter p is, by Eq. (2.40),

1p=, exp~ -2p, +»K»—l.a02 Qo)
(2.53)

The probability P(&r, m) that m vv pairs lie in a re-
gion with area 0 is

P(a", m) =—g —p "a"(Z —a)"1 1 „„n~
...(ap)

m!

The probability P(m) is P(m) =P(4r&; m) so

(2.54}

( )
(4 p)

mf (2.55)

If 4r~p is large this probability distribution is
sharply peaked at m -4r~p. More precisely, the
mean value of m is

(m&=gmP(m) =4r~p
m~0

(2.56)

Thus the mean number of vv pairs that lie within
a distance ~ of the x, axis per unit length is

=2Ap. (2.57)

These vv pairs produce large but short-range
vacuum fluctuations along the x, axis, with density
2~p. Since the fluctuations are of short range their
effect is just to renormalize the coupling constant
as in Eq. (2.49). Since the density of fluctuations
is small for E &K~, the renormalization is fairly
small.

The disordered phase consists of a plasma of
free vortices gad antivortices. An isolated vor-
tex significantly affects w(r) if it lies in the region
bounded by the circle whose diameter is the line
segment (-v, r) Specifi. cally, the absolute value
of the contribution to w(r) from a vortex (or anti-
vortex) inside the circle is greater than zw. A
multivortex configuration contributes significantly
if there is an imbalance in the number of vortices
and the number of antivortices. A rough measure
of the effect of vortices is given by the probability
P(m) that the vorticity of the lower-half circle
m(c ) minus that of the upper-half circle m(c, ) is
m J

A curve ~ has vorticity A if v, —v =k where v,
(v ) is the number of vortices (antivortices) in fhe
region bounded by I . Once again the vortex plas-
ma will be treated as a perfect gas, so the parti-
tion function is
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1 1Z= p"+'" dc chic dc dcn~n~ 1 ff

f3~ ~tT +

e2PC
y (2.58)

where the density p is p= (1/ao')e '". The proba-
bility P(I', k) that I' has vorticity k is then

P(r;k) =—g, ,
p"""-1 1

tf+ ~ lT +

Ov g O
n+-v&v-k g O

n -v+k

=e I~(2p(T) ~ (2.59)

where o is the area of the region bounded by 1",
and I, denotes the modified Bessel function of or-

y 30

The probability P(m) is

P(m) = g P(c,;k)P(c; k —m) .
0

The area of c, is —,'wr'. Thus

(2.60)

P(m) =e "~ g I~(pwr )I~ „(pwr')

2=e "'"f„(2pwr') . (2.61)

The probability distribution P(m} is peaked at m
-2pwr when r is large. The effect of ionized vor-
tices is much larger than that of vv pairs because
they need not lie near the x, axis in order to pro-
duce a significant contribution to so(r), but only
within a, region of area -r .

The probability P(m) is even in m, P(-m)
=P(+m) so the expectation value of m is zero.
But the mean-square fluctuation (m') is of order
(2pwr )'. This is a measure of the density of kinks
in the vacuum.

III. SUMMARY

The analogy between merons in QCD and vor-
tices in the XY model consists of the following
similarities. Isolated merons and isolated vor-
tices both create long-range fluctuations of the
relevant fields in the subspace with Euclidean
time equal to zero. Merons produce Wu- Yang
monopoles; vortices produce long-range kinks
with winding number +m. Also, closely bound mer-
on pairs and vv pairs both produce large vacuum
fluctuations of short range, and both serve as in-
stantons" by interpolating between pure-gauge
configurations that differ by large gauge trans-
formations. In both cases what is meant by a large
field is one whose magnitude ip of order 1 in con-
trast to the gluon or spin-wave fluctuations of per-

turbation theory which are of order g or K ' 2.
In both QCD and the XF model, the perturbation-

theory vacuum functional describes Gaussian fluc-
tuations away from the zero field, and fails to
describe correctly the large vacuum fluctuations
produced by merons or meron pairs and vortices
or vv pairs. This effect is more striking in the
XY model in which all fluctuations with nonzero
winding number, even those of short range pro-
duced by vv pairs, are completely suppressed in
the SW approximation; the short-range fluctuations
produced by meron pairs in QCD are not complete-
ly suppressed in perturbation theory, but nor are they

. correctly described by perturbation theory. In both
cases the vacuum functional vanishes for long-
range fields because the exact action is infinite for
paths such as single merons or vortices that pro-
duce long-range fluctuations.

Isolated merons and vortices both have infinite
action. The action of a pair of merons or a vv

pair is proportional to the log of the separation of
the pair. In the XY model it is possible to write
the general multivortex configuration, Eq. (2.35).
Presumably there' exist analogous multimeron
configurations. In the ionized phase of the XY mod-
el the vacuum fluctuations are superpositions of
long-range kinks. If there. is an analogous ionized-
meron phase in QCD (Ref. 1) then there should be
vacuum fluctuations that are arbitrary superposi-
tions of monopoles.

The XY model is an example of a theory in which
the behavior of the system is controlled by differ-
ent kinds of classical field configurations at dif-
ferent values of the coupling constant. When K
=J/keT is sufficiently large the SW approximation
is valid. As K decreases, vv pairs begin to affect
the system. Finally for K less than the phase tran-
sition point K, , free vortices occur and disorder
the system. It has been suggested that QCD is al-
so an example of such a theory. '

In the ordered phase of the XY model near the
phase transition point, i.e., for K K+, instanton
(i.e., vv pair} effects" are observable. There-
fore the XY model differs from the generalized
spin models considered by Witten. In those mod-
els, which are two-dimensional models with high-
er-dimensional spins, contributions to the parti-
tion function from configurations consisting of a
dilute gas of instantons are overwhelmed by the
contributions of configurations with large quantum
fluctuations, i.e., for which the supposedly small
variations g(x) are large. Perhaps this difference
is not surprising. Indeed, Kosterlitz and Thouless
arguedv that the existence of the low-temperature
ordered phase, in which instantons play a role, is

. a special property of the two-dimensional spin
system with two-component spins; in contrast,
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they argued that; such a phase would not occur in a
two- dimensional system with three- component
spins, the so-called isotropic O(3} Heisenberg
model. Since this latter model is a lattice version
of the Euclidean O(3) a model, one. of the models
considered in Ref. 9, this would account for the
absence of instanton effects in Witten's models.

The difference between the XY' model and the
O(3) Heisenberg model involves both topology and
mechanics. Minima of the action of the O(3)
Heisenberg model can be labeled by a topological
invariant, the index q defined by' '

1 . 88 9+ 98 9(p
q =— d'x sin8

4m ex, ex, ex ax,
(3.1)

where 8(x) and y(x} are the polar angles that de-
fine the three-component spin at x. The minimum-
action field with q =1 is"

y(x) = argz,
(3.2)

tan —', 8(x) =
fz I

'

where z =x, +is, and ~ is an arbitrary positive
scale parameter. This field is the analog of an
isolated vortex in the XF model, not of a vv pair,
because it produces long-range fluctuations of
the spins; the index q is the analog of the total
vorticity (i.e., over all space).

The existence of the ordered phase in th'e XY
model is a consequence of the fact that states with
a given. value of total vorticity are truly metas-
table: A change of the vorticity requires creation
of a vortex which has large energy, of order
logL, where L is the size of the system. At suf-
ficiently low temperature, only the vv pairs con-
tribute to the partition function and these do not
disorder the system. In contrast, in the O(3)
Heisenberg model, states with a given value of q
are not really metastable in that the action separ-
ating states with different values of q is only of
order 1; more precisely, the lowest-action state
with index q has action 8'." Thus there is no
action barrier to limit the effect of fluctuations
such as that in Eq. (3.2) and the system is disor-
dered at arbitrarily low temperature.

In this paper, instantons have been identified
with classical fields such as vv pairs that produce

4w—=K. (3.3)

Then the speculation is that when g' is small, per-
turbation theory is valid. As g' increases, effects
of instantons and meron pairs appear. At suffici-
ently large g' there is a. phase transition point at
which meron pairs ionize. In the ionized-meron
phase the vacuum state includes long-range fluc-
tuations similar to Wu- Yang monopoles. Quark
confinement might occur in this phase.

It is natural to try to push the analogy one step
further and to repeat the heuristic estimate of the
phase transition point [Eq. (2.48)] for meron ioni-
zation in QCD. By Eq. (1.2V) the action of an iso-
lated meron is A - (3v'/g') lnR where R is the line-
ar dimension of four-dimensional Euclidean space.
The volume 9" of phase space available to a single
meron is presumably just the volume of 4-space
times some finite factor related to the volume of
group space orientations, 8'-cR'; the entropy is
S =lnW=4lnR apart from the finite term. The
phase transition point g~ is identified as the point
at which action and entropy are equal, which is

g~ 9m

4~ 16
' (3.4)
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short-range fluctuations and do not disorder the
system, In this sense, the field in Eq. (3.2) does
not qualify as an instanton in the O(3) Heisenberg
model.

The analogy between merons in QCD and vor-
tices in the XY model leads to the speculation that
the phases of QCD resemble those of the XI' mod-
el.'" Comparison of the actions of the two theories
[Eqs. (1.2V) and (2.40)] implies the correspondence
between coupling constants
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