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WKB approximation for quantum theory on a lattice
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In this paper we use a WKB approximation to solve the lattice version of some quantum-mechanical
models. This requires the solution of an infinite-order differentia equation (an integral equation) in terms of
a WKB series. The resulting WKB expansion on the lattice is complementary to the high-temperature
expansion on the lattice.

I. INTRODUCTION

L =20' +&M

the lattice expansion parameter is

3/2 (1.2)

For this theory, on the lattice, the high-tempera-
ture expansion for the ground-state energy E has
the form

E(x)=g'~'x'~'(--', ills+/ n„x) .
n=o

The continuum limit (x-~) of the high-tempera-
ture expansion, obtained by a Pade-type extrapo-
lation, ' is the strong-coupling expansion.

In this paper we present an alternative to the
high-temperature expansion of the lattice theory.
Specifically, we use WKB techniques to obtain a
sequence of approximations to the large-& expan-
sion of the theory. Typically, the large-x expan-
sion is a series in powers of 1/x. For example,

In previous papers' ' we developed a prescrip-
tion for finding the strong-coupling expansion of
various quantum-mechanical and quantum-field-
theoretic models. Beginning with a functional-
integral representation of the quantum theory we
factored out the kinetic-energy terms from this
integral. We then evaluated the remaining func-
tional integral. This led to a set of graphical rules
for computing the high-temperature expansion of
the quantum theory on the lattice. This expansion
(which is not the strong-coupling expansion) is a
power series in a dimensionless parameter g.

For example, for the massless gg' quantum-
field theory in one-dimensional space-time (the
anharmonic oscillator), whose Lagrangian density
ls

for the anharmonic oscillator in (1.1) the large-~
expansion of the ground-state energy has the form

However, in this paper we use it to solve for the
eigenvalues of the transfer matrix, an infinite-
order differential equation (an integral equation)
which occurs in a natural w'ay when we represent
the quantum theory on a lattice:

es d /4s y(u) ev(u)-xy(u) (1 3)

For the case of the anharmonic oscillator (1.1},
p'(u}= u'/4 and the smail dimensionless parameter
e that appears here is simply related to the lattice
expansion parameter g that appears in Refs. 1-4:

e=(2x) "' (1.4)

Observe that &-0 in the continuum limit g 0.
This paper is organized as follows: In Sec. II

we show how to derive the integral equation in
(1.3) for the case of the anharmonic oscillator

This expansion complements the high-temperature
expansion in the same sense that the asymptotic
expansion of a Bessel function is complementary
to the Taylor expansion. Observe that unlike the
high-temperature expansion, the large-g expan-
sion has a smooth continuum limit [E(~)=u, ] and
does not require any extrapolation techniques.
[However, obtaining the above series for E(~}
from a WKB approximation sometimes requires
a summation procedure. See Sec. V and the Ap-
pendix. ]

Nor mally, WKB theory is used to solve a sec-
ond-order differential equation in Schrodinger
form

e'y~(u) = [V(u) —X]y(u) .
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(1.1). In Sec. III we give a general discussion of
the WEB solution of (1.3) for a. general class of
potentials V(u). In Secs. IV and V we compare the
WEB approximation for the ground-state eigenvalue
with the high-temperature expansion of the ground-
state eigenvalue for two models, the harmonic os-
cillator and the anharmonic oscillator.

II. DERIVATION OF THE INTEGRAL EQUATION (1.3)

We are interested in the ground-state eigen-
value of the Lagrangian I, in (1.1) on a lattice.
We showed in Ref. 2 that in the absence of external
sources, the vacuum persistence function in Eu-
clidean space is given by a path integral

T/8
&&)0)= lim JDe exp — l.(t)dh

P/2

and that the ground-state energy E of the Hamil-
tonian H= 2 p'+ 4gq associated with this I agran-
gian is given by

To examine (2.6) in the limit u ~ we need to
find the eigenvalues of the operator Q. Because
we will compute these eigenvalues using WEB
theory, it is convenient to write the eigenvalue
equation in differential form. To do this we make
use of the identity

& 1 d' exp[- —,'x(t —u)']
exp~ „, 6(t —u) ———— (2.7)

is merely the repeated application of the operator
Q. To see this, consider first the integral for i=1:

d81 1 2 & 4,,(, exp [——,x(z, —z, ) ——,z, ] .
„(2z/x} ~

This is just Ql(z, ), where 1 means the function 1.
Now include the integral over g,. This is the com-
position Q'1(z, ). Clearly, the full expression in
(2.4) is

(0 ~0) = lim hm
~

Q"1(z„„). (2.6)

E= lim-- in(0, 0 ).1
+~oo T

(2.2)
Now let P(u) be an eigenfunction of the operator Q
with eigenvalue e ". Then y(u) satisfies

On the lattice, the path integral. in (2.1) becomes
a multiple integral,

n

(0 ~0)= lim '"
(2 )', &, exp ——(q„, —q,)'

(2.8)

Substituting (2.7) into (2.5) and doing the 6-function
integration gives

1. 4'—4 ggqg (2 3)
exp — ., exp(--,'u')y(u) = e 'y(u).

2g dl (2.9)

where g is the lattice spacing, pg is the number of
lattice sites, and T= gg is the volume of space.

To obtain the high-temperature expansion we re-
scale the integration variables in (2.3) so that a
small parameter appears mult'iplying the kine-
matic term. Thus, we let

q, =z,(ag} '"
and obtain

n

(0 t0)= hm I

"', '„—,exp[--,'x(z„, -z,)'~-o ~ „~- (2v/x)'~'

(2.4)

Finally, letting exp(- —,u')g(u) = y(u} and defining
the small parameter & by

g = (2x)-) )'2

gives the eigenvalue problem

exp(z'd'/du')y(u) = exp(-,' u' —x}y(u), (2.11)

which is of the form (1.3).
The quantity A. is related to the ground-state en-

ergy on the lattice in a simple way. Since d'/du'
and -u~/4 are both negative-definite operators, it
follows that the spectrum of

q = exp(&'d'/du') exp(-u'/4)

is bounded above by 1.' Thus, if e "is the maxi-
mum eigenvalue of the operator Q, then we can
evaluate (2.6) to get the ground-state energy E(x)
on the lattice:

E(x)= -(I/T) ln(0 ~0)

= -(1/7) in[@"1(z„„)]

=~~/r

= x/g

2/3 1 /3g (2.12)

where the dimensionless parameter x is given in
(1.2).

In the conventional high-temperature expansion
we actually treat x as a smaO parameter because
g is held fixed and g is taken large. This allows
an expansion in powers of z which must ultimately
be extrapolated to x= ~.

In this paper we take an alternative route; to
wit, we define the integral operator Q by

Qf(u) =, „—&,
- exp[--,'x(t u)' ——,

' t']f(t) . —
„(2v x}'t'

(2.5)

Next we observe that the multiple integral in (2.4)
In the next section we use WEB theory to calcu-

late A..
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III. VfKB SOLUTION OF t1.3)

In this section we show how to solve (1.3) to sixth order in a WKB approximation. We begin by trans-
forming (1.3) to a more convenient form by substituting

q(u) = I/(u) -&(,

en d /du2y(u) eQ(u)y(u)

The standard WKB form for the wave function y(u) is

y(u) = e s("'/'

(3 1)

(3.2)

(3.3)

The first thing to do is to find the form for the &&th derivative of exp[$(u)/e]. We express the result as a
power series in e (keeping terms of order e') using the symbol

(n, /3) =—n(n —l)(n —3)' ' (n —k+ 1),
dn

en es( u)/ 6 es(u)/6($I)n I+ g( I SII/($I)2+ e2 ( I ) $iu/(SI)3+( I ) ($II)2/(Sl)4
dQ"

~%

3 (nr ) $(4)/(Sl)4 (nr ) Snstll/(Sl)5 ( I / (Sit)3/(Sl)6
„24 12 48

+ e' ' ' s"&/(s')' + ( ' (s")'/(s')' + "' s"s&'&/(s')'
120 ' 72 48

(3.4)

I ) (Sll)nslll/(Sl)7 ( I ) (Sll)4/(Sl)3
48 384

S"'/(S')' ' S"S"'/(S')' ' S"'S"'/(S')'
720 240 144

(nr ) Sli(sill)2/(Sl)8 ( I ) (Sil)2$(4)/(Sl)8+ ( r ) (Sil)3$Ni/(St)9+ ( I '($N)5/($I)10
144 192 288 3840

+ e' "' S"'/(S')'+ ' (S"')'/(S')'+ ' S"S"'/(S')'
5040 1152 1440

+ (nr ) Stns&5)/(Sl)8+ (nr ) (Stn)3/(Sl)9+ (nr ) Sttsttts&4)/(Sl)9
720 1296 288

I ) ($II)2$(5)/($I)9+ ( I ) (Sit)2(slit)2/(Sl)10
960 576

1152 2304
I (SN)3$(4)/(Sl)10 I (Sll)4$IN/(Sl)11 I (Sll)6/(Sl)&2 ~,~.

46 080
+''' ' (3.5)

Next we evaluate the expression ex(pe' d2/du) exp[$(u)/e] by expanding the derivative operator, substitut-
ing the result in (3.5), and explicitly evaluating the infinite sums over n:

e2nd26/du28 J 2
e '"'/'=e '"' 'e '"'& (1+ —'es"P(S')+e'[ —'S"'P(S')+-'(S")'P($')]

nt 2 2 6 3 8
ne 0

+ e [—S( &P (S')+ —S"S"P(S')+ —'(S")'P (S')]
24 4 12 48

+ e'[—'S"'P,($')+ —'(S"')'P (S') + -' S"S"'P,($')
12O 5 72 6 48

+ 1 (Sll)2$IIIP (Si)+ 1 (Sil)4P (Sl)]48 384

[ 1 S( )P (Sl) + 1 SNS( )P (Sl}+ 1 Sltis( )P (St) + 1 Sll(SNI)2P (Sl)
720 6 240 144 7 144 8

+ 1 (Sll)2$(4)p (Sl) + 1 (SN)3$ltlP (St) + 1 (Sit)5P (Sl) ]
+ e6[ 1 $(7)P (St)+ 1 ($(4))2P (St)+ 1 Stls&6)P (St)+ 1 SNIS(5)P (St)

5040 1152 144O 8 720 8

+ 1 (S lil) 3P (SI) + 1 SrlSINS( &P (S I)
1296 9 288 9

1 (Sit)2$(5)P (St) + 1 (Sll)2(sill)2P (Sl)
960 576

+ 1 (Sil)3$(4)P (St) + &. (SN)4$INP (St) + 1 (SN)6P (Sl)] + ~ ~ ~

1152 10 2304 11 46 o8o

(3.6)
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where P„are polynomials given by

P,(z) = 2(1+ 2z'),

P,(z) = 4(3z+ 2z'), P,(z) = 4(3+ 12z'+ 4z'),

P,(z) = 8(15z+ 20g'+ 4z'), P,(z) = 8(15+90g'+ 60g4+ 8z'),

P,(z) = 16(105z+ 210z'+ 84z'+ 8z'), P,(z) = 16(105+840z'+ 840z + 224z'+ 16z'),

P,(g) = 32(945g+ 2520z'+ 1512g'+ 288g'+ 16g'), P,0(g) = 32(945+ 9450z + 12600g + 5040z + V20g'+ 32g"),

P,1(z) = 64(10 395g+ 34 650z + 27 720g'+ 7920z'+ 880z'+ 32z"),

P»(g}= 64(10 395+ 124 V40z'+ 207 900g4+ 110880g'+ 23 V60g'+ 2112z"+ 64z")

Next we make the conventional WKB series ap-
proximation which consists of representing the
phase S(u) as a power series in g (s,')'= q,

whose solutions are

(3.8)

I

first of these equations, which determines Spt, is

S(u) = Q S„(u)g".
n=0

(3 7)

and

S,'(u) = q'/'(u) (3.9)

The final step consists of substituting (3.V) into
(3.6} and reexpanding the entire expression as a
series in powers of E. This is an extremely
lengthy calculation which we performed using the
MACSYMA computer program. We have now cal-
culated the left-hand side of (3.2).

Setting the expansion of the left-hand side of
(3.2) equal to the right-hand side and matching co-
efficients of like powers of & gives a sequence of
algebraic equations for S0(u), s,'(u), S,'(u), . . . . The

l

S,'(u) = —q'/'(u) . (3.10)

Once the solution for S,'(u} is chosen, the solu-
tions for S,'(u), S,'(u}, . . . are uniquely determined.
This shows that although (3.2) is an infinite-order
differential equation, it has only two linearly in-
dependent solutions having WEB expansions.

As in Ref. 7 we choose the solution in (3.10) and
proceed to solve for the next six terms in the WKB
series (3.7). The results are listed below:

(3.12)

(3.14)

(3.16)

s,'=--', q'/q--', q', (3.11)

St 1 q q1t/t2 1 qttq-3/2 1 (ql)2q-1/2 5 (ql)2q-5/2
6 8 24 32

Sl 1 qltPq 2 1 qlqlt/q+ 9 qlqPtq 3+ 1 (ql)3q 2 15 (ql)3q 4+ 1 qttt (3.13)16 24 32 48 64 12

Sl 1 q(4)q3/2 1 q(4)q 5/2+ 1 qtqtttql/2 7 qlqlltq, 7/2+ 1 (qtt)2ql/2+ 19 (qtt)2q 7/2+ 1 (ql)2qPtq 1/2
90 32 30 + 32 40 128 720

1 (ql)2qllq 5/2 221 (qt)2qtlq 9/2 1 (ql)4q 3/2 25 (ql)4q 7/2 1105(qt)4q 11/2
24 256 1152 768 2048

Sl 1 q(5)q 1 q(5)q-3+ 5 qPq(4)q-4 1 qlq(4)+ 1 qttqtttq 2 17 qttqtttq-4 1 qltqttt+ 1 (ql)2q /Pqtt
60 64 32 30 48 64 18 240

1 t 2 ttt 3 225 t 2 ttt ~5 1 t tt 2 153 t tt 2 5 1 l 3 tt ~2

P(ql)3qtlq '4 1695 (ql)3qltq 6 1 (ql)5q 3 5 (ql)5q 5 1695 (ql)5q 7 (3.15)64 512 576 64 1024

Sl 1 q(6)q5/2+ 1 q(6)q1/2 1 q(6)q 7/2 1 qlq(5)q3/2 27 qtq(5)q 9/2 1 qlq(5)q 1/2
945 120 128 126 256 240

61 qtlq(4)q3/2 1 qttq(4)q 5/2 55 qtlq(4)q 9/2+ 1 qtlq(4)q 1/2 53 (ql)2q(4)ql/2
3780 64 256 720 5040

(qt)2q(4)q 3/2 5 (ql)2q(4)q 7/2 815 (ql)2q(4)q ll/2 1 (qlPt)2q3/2+ 1 (qttt)2q 5/2
576 768 1024 105 64

+ 69 (qe)2q 9/2+ 1 (qttl)2q 1/2 13 qtqttqNlql/2 1 qlqllqtttq 3/2 7 qtqPtqtttq 7/2 1391 qtqltqlltq 11/2
512 144P 420 480 96 512
49 (qt)3qtttq-9/2+ 1055(qt)3qt0q-13/2 1 (qt)3qteq-1/2 103 ( q)

tt3lq/ +21 (qe)3q-3/2
768 256 1680 15 120 960
19 (qtl)3q 7/2 831 (q0)3q 11/2 37 (ql)2(qtl)2q 5/2 133 (qt)2(qPt)2q 9/2

768 1024 3840 3072

+ 34503(ql)2(qll)2q 13/2+ 1 (qt)2(qtt)2q 1/2 7 (ql)4qttq 3/2
4096 20 160 34 560

+ 5 (ql)4qllq 7/2+ 5083 (ql)4qltq 11/2 248475(ql)4qttq 15/2
9216 12 288 16 384

1 (ql)6q '5/2+ 175 (qP)6q 9/2 12155(qt)6q 13/2 414125 (qt)6q 17/
27 648 36 864 49 152 65 536
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Now we impose the WKB quantization condition
which will determine the eigenvalues A. of the
equation (3.2). We use the same approximate
quantization condition as was used in Ref. 7,

f co

g"S'(u)du = K7/ (Z= 0, 1, 2, . . . ), (3.17)

where K is the number of the eigenvalue and the
contour encircles the branch cut joining the two
turning points (we assume for simplicity that there
are only two}. The turning points are solutions
of q(u)=O.

As is the case with the ordinary WKB series'
the integrals in (3.1'f) corresponding to odd values
of pg are trivial to evaluate. This is true because
S~, S3 S5', . . . are all representable as total deriva-
tives:

s'= —(--, inq --,q),
d'

du
(3.18)

(3.19)

s'= —[-—'(Q")' ——' Q&'&Q ——' Q'Q"'- —' Q&'&Q-'

e'S,'(u)du = 0.1
2j&

[Evaluating lnQ(u) once around the contour gives
4m' because the contour encircles two simple
zeros (turning points) of Q(u). ]

Substituting the above results into the quantiza-
tion condition in (3.1'f) gives, to sixth order in
powers of &,

du [S,'(u) + c'S2'(u) + e'S4'(u)
2 2ic

+ e'S6'(u) + ], (3.21)

where we have taken K=0 because we are only
interested in the first eigenvalue X. We show in
Secs. IV and V how to use this general .esult to

QIQNIQ 4+ 1 (qlt)2q 2~ 1 (ql)2qllq~
64 96 96

5 (ql)4q 4+ 1 (ql)2qll/q+ 1 (ql)4q 2

256 240 1152

+ 5 (qn)2Q 4 113(ql)2qllq 5+ 555 (ql)4q 6]
64 256 2048

(3.2o)

All terms being differentiated in (3.18)-(3.20) are
single-valued except for —-', lnQ. Thus, the con-
tour integration gives

1 , m

kg
cs'(u}du= --,

fI c3S3'(u)du= 0,1

solve for the eigenvalues of the infinite-order dif-
ferential equation in (3.2).

IV. APPLICATION OF THE GENERAL WKB FORMULA
TO THE LATTICE HARMONIC OSCILLATOR

We showed that the graphical expansion for the
ground-state energy E consists of summing over
all closed polygon graphs (one graph in every or-
der}. The final result was'

E= -~sin -~x -(-x)", , (4.2)
m " 1 „(2l'3) l

u (ul}' '

where g=yn g"' and g is the lattice spacing.
Observe that this high-temperature expansion

is a power series in x. This is typical of any high-
temperature expansion. By contrast, the WKB ex-
pansion on the lattice is a series in powers of 1/x.
Our intention here is to reexpand (4.2) as a series
in powers of 1/x and then to comps. re the result
with the predictions of the WKB series in (3.21).

We begin by expressing (4.2) as an integral:

E=——Wx lnx - v x
m "dt/ 1
2, , t k 1+4t '/'

m "dt
2 „ t (1+4t)'/' '

Next we expand this integral as a series in powers
of 1/x:

m " dt " (-1)"(2k)l
4 t3/2 ~ 18(u )i't'

a=o

m " (-l)2(2y) l

2 + 18'(f3l)2x2(2k+ 1)

3
2 I, 24„640m 7168&3 (4.3)

Next we turn to the WKB expansion of E. The
integral equation corresponding to (2.11) is

e42d2/ d62y(u) e(1/2)u -1y(u) (4.4)

where again 4= 1/V2~. Also, the equation corre
sponding to (2.12) which relates the ground-state
energy E with the eigenvalue X is

(4 5)

We have just derived in (4.3) an expansion for E
and the WKB series in (3.21) will give an expansion
for A.. We must compare these two expansions.

Let us take Q(u) to have the general form

Q(u) =A+ Bu', (4 8)

In Ref. 2 we derived the high-temperature ex-
pansion for the harmonic oscillator defined by the
Lagrangian

(4.1)
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where A and 8 are constants. For this ansatz S0' in (3.10), S,' in (3.12), S,' in (3.14), and S6' in (3.16)
reduce to

1/2S,'= -q'/,
S'= —'Bq'-/'+ -'ABQ '/'+ 'B-q '/'- -'ABQ '/'

2 8 8

Sl 1 B2ql/2 7 AR2Q-1/2+. ( 1 A2R2 3 B2)q 3/2+ 17 AB2Q 5/2
8 180 72 16 24

+ (297 n2 25 w2n24~ 7/2 663 z n2n 9/2 1105A2R2Q 11/2+128 48 128 7

Sl 1 B3ql/2+ 289 AB3Q 1/2~ (
9 B3 29 A2B3)q 3/2+ (

1 A3R3 2081 AR3)q 5/2
6 ——

16 15120 64 2160 432 2880

( 515A B3 891 +3)q 7/2
( 5555AB3 175A3R3)q 9/2

(
50139B3 —~ 2"A'B')Q

576 256 576 1024 768

+ ( 12155 A 3 a3 386 487 )s zP%~~13/2 745 425 A 2n3~ 15/2 414 125 A 3 n3~ 17/2AB g~ +- As~768 1024 1024 1024

(4.7)

(4.8)

(4.9)

(4.10)

An enormous simplification now takes place be-
cause Q is quadratic. Specifically, the contour
integrals are

I

Finally, we use the relation

4:=1/v2x

and
() Q "/'du = 0 (72 = -3, -5, -7, -9, . . . ) .

The only nonvanishing integrals are

~) ql/2du -' wAR-1/2

(4.11)

(4.12)

X=Z/(mv x)

to transform (4.14) to the form

m 1 . 17 367
2E 24x 5760x' 967 680x'

1
q ' 'du= wB ' '

2i
(4.13) To solve for E we must invert the power series on

the right-hand side of (4.15). The result is

For our case Q(u) = 2 u' —X, so A= -X and 8= 2.
Thus, after combining (4.7)-(4.13), the WKB ser-
ies in (3.21) becomes

m 1 3 5E-
2

1 —2~ + 640, —
q168 3 + y 4616

—=- (-'wing 2)+ &(-'w4 2 ——'wXv 2)
2 12

+ e'(- —' why 2+ —' wkly 2 )

+e'( ' wee 2 "' wan 2)+ ~ ~ ~

256 120 960

Multiplying this equation by W2e/(wX) gives

1 g2 17 ~4+ 367 ~6+ ~ ~ e

12 1440 ' 120 960
(4.14)

which is precisely the series in (4.3).
Thus, WKB theory gives the exact series for

the harmonic oscillator on the lattice in powers of
1/x. WKB theory also gives the exact eigenvalues
for the continuum harmonic oscillator. In Sec. V
we consider the %KB expansion for the lattice an-
harmonic oscillator where we do not expect %KB
theory to be exact, but to give a sequence of ap-
proximations to the exact expansion.

V. APPLICATION OF THE GENERAL WKB FORMULA TO THE LATTICE ANHARMONIC OSCILLATOR

From Refs. 1-4 the high-temperature expansion on the lattice for the ground-state energy of the anhar-
monic oscillator defined by (1.1) is'

E=gl/'x /'fln[2I'(1/4)7'w/x]+ 2Rx —-', x'+(- 'R'+ 2R)x +(--14R + 3R' —-')x

+(- -"R'-4R'+ —"R)x'+(64R'-36R'+ —,",R' ——,')x'+( ","R' —80R'+ —,
'R'—+—-',R)x'

+(396R' 84R' "'R'+ —"'R'- '"')x'+(- ""R'+1136R'—"4'R'+ —"'R' "R) '
10

'

20 4032 9 252

+ ( 6656R10+ 3280R8 1004 R6 502R4 ~ 1889R2 899 ) 10
5 5 105 1008

( 161 280R11 64R9 44.912R7 11 852R5+ 119153R8 3761R)glll 15 15 1575 1260

+ ( 28480R12 36 ] 28R10+ 221 524B8 5456 R6 175 799R4+ 49 369 R2 7751 ) 12+ ~ ~ ~ $
3 15 3 6300

+
2520 12096 + 3 t (5.1)
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R = 1 (3/4)/I'(1/4) = 0.337 989 120.

Evaluating the coefficients in (5.1) numericaliy gives

E(x) =g'/3x' '(-2 lux+ 2.553 53465+ 0.6V59"/8 24x -0.5x + 0.4'$ 054 28x' -0.464 99022x4

+ 0.456 659 35@' —0.431 354 22g'+ 0.3'79 54V 37'' —0.294 484 96@'

+ 0.173 023 54x' —0.017 163 21x' —0.164 390 V6x + 0.35511252x + ' ' ' ) . (5 2)

Equation (5.2) is the analog of (4.2) for the harmonic oscillator.
What does WEB theory predict about the large-z behavior of the function E7 To answer this question

we substitute

Q(u) = A+ B34',

where A and B are constants, into the expressions for S,' in (3.10), S,' in (3.12), S,' in (3.14), and S,' in
(3.16). The results are

S0= -Q
S7 BM2( 8 ql /2+ 2 Aq 1/24. q 3/2 5 AQ 5/2)

2 "
3 3 2

S'=B[ 'Q' —8AQ' +( A' -')Q ' +(9A —'A')Q +(14-IVA')Q ' '
9 15 3 9

+ ( 25A3 501A)q 7/2+ 1989A2q 9/2 1105A3q 11/2]
3 4 8 8

Sl B2 2[ 8528 q3/2+ 7496Aql/2 ( 32A2+ 44)q 1/2+ (
164 A3 244A)q 3/2+(1342A2 4 A4 152)q 5/2

135 135 9 g 135 15, 27 3

+(4»5A 685A3)q-7/2+(175A 2463A2+ 6'11)q-9/2+(»371A 4 A)q6 9 9 12 4

( 330141A2 12155A4)q 13/2 911 075A3Q 15/2+ 414 125A4q 17/2]
8 12 16 16

(5.3)

(5.4)

(5.5)

(5.6)

Next we evaluate the contour integrals in the quantization condition (3.21), taking A= -X and B= 4. The
results are

~ S (M}du = - - — 9 2m X /-3 4

3~ (5 8)

—.() S'(34)d34=R~2W(2 g5/4- -'X '/4)2/2 8
(5.9)

S'(u)d34= (- " X'/4+ —'X '/'+ " X '/')
2520 1g2 . 6144

1 S6'(34)dM=RV'277(""X"' ——'"X'"+ "X-7/4+ 4'" X-"/')
2$ 8100 960 5120 245 760

Inserting (5.8)-(5.11) into the WEB series (3.21) and simplifying, we get

(5.10)

(5.11)

g3/4e2( 2y5/4 1'
g 3/4)R+ e4( 61 y7/4+ 5 y 1/4+ 11 y 9/4)/R

3R 5 8, 2520 192 6144

+ e6(.2509 $9/4 733 /11/4+ 83 g 7/4+ 4697 g- 15/4)R + ~ ~ ~

8100 960 5120 245 760
(5.12)

which is the analog of (4.14) for the harmonic oscillator.
Foll.owing the approach w'e took in Sec. IV for the harmonic oscillator we eliminate the expansion pa-

rameter a in favor of g using

&=1/&2x

and we eliminate X in favor of E using

1/3 2/3g

[This last equation follows from (2.12).] For simplicity we define the dimensionless quantity

1/3

In terms of the new variable E and x, (5.12} becomes
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4 /4 R 3/4 Q /4 4/3 11 g/4 5 2/4 4/3 61 7/4 3/3+ I(-.6 +. , +I(6164R +192R 2620R )
I/

469V „„/4 83R I' '/ x /' 733R ~/4 3/3 2509R
(491 520 10 240 1920 16 200 (5.13}

which is the analog of (4.15).
Observe that (5.13) is much more complicated than (4.15) because the eigenvalue F appears implicitly

rather than explicitly. Each term in parentheses corresponds to an additional order in WKB theory. Thus,
. if we solve (5.13) for E as an expansion in powers of 1/x (or, more precisely x '/') then unlike (4.1,6),
every coefficient of this series continues to change with each new order of WKB theory. Specifically,
solving (5.13) for P to 0th, 2nd, 4th, and 6th orders in WKB theory and multiplying by g'/3 to obtain E
gives

E„d„4„„~e=@2/3(0.389 215 68 -0.020 392 45x /'+ ' ' ' ),
„4,~s g2/-3(0 377 6. 59V8-0 046.43909x /'+0. 00628307x '/'+ ' ' ' ),

E 4„3„„4„~sg'/ (03.31253548-0.21200319x /'-1. 03063108x '/3-12. 9171729x +''') ~

(5.14)

(5.15)

(5.16)

(5.1V)

Note that (5.14)-(5.1V) are converging to a ser-
ies representation for E(x} in powers of x

E(x)=g' 'Q a„x '" '. (5.18)
neo

However, the convergence is in an asymptotic
sense. That is, each coefficient of a given power
of x ' ' in the series {5.14)-(5.17) approaches the
corresponding coefficient in (5.18) for a while and
then veers off. For example, the eigenvalue of
the. continuum anharmonic oscillator is E(~}=a,
= 0.420 805. Second-order WKB theory gives the
best approximation to this answer and as the order
of WKB theory is increased the approximation to
a, gets poorer. (Note that for eigenvalues larger
than the ground-state energy the accuracy of the
WKB series is dramatically improved. See Ref. 7.)

Thus, in order to extract better results from the
WKB series, it is necessary to use a summation
procedure. We discuss one such procedure which
uses continued fractions in the Appendix. From
the information we now have we believe that it is
likely that the series (5.18) has the following prop-
erties: (i) it is alternating. (ii) It is rapidly con-
vergent (a, is roughly a,/10 and ag is roughly a, /
10). The series in (5.18) is the analog of (4.16) for
the harmonic oscillator. It is also the complement
of the series in (5.2) in the sense that it gives the
large-x rather than the small-x behavior of E(x).
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APPENDIX

37 089 126 931059g 39/4
57 174 604 644 352 (Al)

where each new term on the right-hand side of
(Al) corresponds to one new even order of WKB
approximation.

The exact value of F is 0.420805. . . . The WKB
approximations to F are obtained by truncating
(Al) and solving for E. The sequence of solutions
for F ultimately diverges:

0th-order WKB F= 0.34,

2nd-order WEB F=0.39,
4th-order WKB F=0.38,
6th-order WKB F=0.31,
8th-order WKB F=0.45,

10th-order WKB F= 0.56,
12th-order WKB no positive roots,

14th-order WKB no positive roots .

In this Appendix we show how a summation meth-
od can improve the predictions of the WKB series.
We investigate here only the %KB series for the
continuum case (that is, the series with x= ~).
Using the results from Ref. 7 the WKB series in
fourteenth order for the ground-state energy is

R 3/4 11 ~ g/4 469VR
3R 4 6144R 491520

390 065 2I /~ 53 352 8938 27/4
234 881 0248 1 610 612 736

122 528 437 805
9 070 970929152R
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1
C F-3/21+

C F-3/2
1+ 2

C F-s/2
1+ 3

~ ~ ~

P~ y-3/4
4 (A2)

The first seven continued fraction coefficients
in(A2) are

3+2
Cx= 16 -0.0214193V

C2= 2
= 0.041 2VO 31,11—288'

605+ 450912R
-84 48QR + 2 2] 5 84OR

The following summation procedure makes 'a

dramatic improvement. We rewrite (Al) in the
form of a power series in F '/',

00

3n/2 ~g 3/4+ ~ =
4

w

n= 1

and convert the left-hand side of this divergent
series to a continued fraction

C~ = 2.281 321 5,
C, = —2.129 416 8,
C6= 2.226 30V 6,
C, = —5.63948V 3.

Next we solve for F by truncating the continued-
fraction expansion. Nom, rather than diverging,
the solutions for F could mell be slowly converging
to the exact answer for F:

0th-order WKB continued fraction F= 0.34412V,

2nd-order WKB continued fraction F= 0.385 V48,

4th-order WKB continued fraction F= 0.380225,

6th-order %KB continued fraction F= 0.38V V60,

8th-order %KB continued fraction F= 0.3VV 142,

10th-order WKB continued fraction F= 0.385461,

12th-order WKB continued fraction F= 0.3V9 919,
14th-order WKB continued fraction F= 0.386 2V1.
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