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We present a real-space renormalization-group scheme for both spin and gauge systems within a
Hamiltonian formalism. The approximation, in particular, preserves gauge invariance at every step of the
calculation. We apply this scheme to the (1 + 1)-dimensional Ising model in a transverse field and to the

(2+ 1)-dimensional Ising gauge theory. We find reasonable results for the critical coupling and for those

critical exponents which are related to energy gaps. We also obtain the correct qualitative behavior for order
and disorder parameters and correlation functions. In particular, the calculation yields exponential decay for
correlation functions in the disordered phase. However, the critical indices we find for spacelike quantities

are not good. This defect of the approximation is related to the asymmetric scaling of space and time under

the renormalization group.

I. INTRODUCTION

Our purpose in this paper is to present a real-
space renormalization-group method applicable to
lattice gauge theories" in a Hamiltonian for-
malism. ' The main feature of this technique is
that it is gauge invariant Bt all stages of the cal-
culation. Satisfying tPis constraint is precisely

.the problem that makes it hard to develop reoor-
malization-group methods for lattice gauge theo-
ries. To our knowledge, the only other gauge-
invariant renormalization-group scheme is the
Migdal-Kadanoff approach. "

The method we devise can be applied to both spin
and gauge systems. It is a block-spin procedure
in which each block is considered in conjunction
with 311 possible boundary conditions. We apply
the technique to the (1 + 1)-dimensional [or sometimes
referred to as the one- (space) dimensional] Ising
model in a transverse field" and to the (2+ 1)-dimen-
sional Ising gauge theory" "in the Hamiltonian
form. " The Ising model is discussed just to illustrate
the technique in a simple situation. In this case we
obtain recursion relations for the coupling con-
stant, energy gaps, magnetization, and equal-
time correlation functions. One important feature
we find is that our technique predicts the correct
qualitative behavior of the operators in the dif-
ferent phases. In particular, the method yields
exponentially decaying correlation functions in the
disordered phase. The numerical results, in this
simplest scheme, however, are not particularly
good. Indeed we get, at best, 20% accuracy (see
Table I). A characteristic feature of the approxi-
mation is that the critical exponents v, for the cor-
relation length and uo for the energy gap are dif-
ferent. This is not the case in the exact solution'

ln2

ln(1+ P,')
(1.la, )

where t3,
' and Z, are, respectively, the slope of

the P function and the change in the energy scale at
the critical point. Since this technique provides a
variational approximation to the ground-state en-
ergy, it is not surprising that v~. is found to be
much better than v, (see Table I).

In the case of the (2+ 1}-dimensional Z, gauge
theory, we compute the critical coupling and the
critical exponents for the energy gaps, string ten-
sion, and monopole ground-state expectation val-
ue. These results are shown in Table II. Vfe

compare them with the results obtained in Refs.
9, 15, and 16 for the analogous quantities in the.
dual model, the two-dimensional. Ising model in a.

transverse field; We get remarkably good results
for the critical coupling (as compared with Pfeuty
and Elliott's" perturbation-theory calculations)-
and the energy-gap exponent.

We argue that techniques such as ours, as well
as other similar ones, ~' wi1.1 give good results for
the ground-state energy and the energies of local
excitations. As they stand, however, these tech-

since, in the critical region, the correlation length

] is the inverse of the energy gap G. This follows
from the fact that this model is the Hamiltonian
limit" of the two-dimensional Ising model which is
rotationally ("space-time") symmetric at the criti-
cal point. " Our approximation explicitly violates
this symmetry.

The exponents v& and v~ are given by
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TABLE I. (1+1)-dimensional Ising model with a transverse field.

+C

Calculated value
Ref. 9
first order

Ref. 9
second order

Ref. 8
7 spins/cell

Exact result
Bef. 10

1.277
0.784

0.913

0.947

0.817
~ ~ ~

0.86

1.482
1.48

0.882

0.075
0.408

0.170

0.145

0.125

0.10

0.275

0.25

0.68
0.68

0.52

0.60

0.5

niques are too crude to produce reliable results
for "spacelike" quantities such as correlation
lengths and, in general, any spatial correlation
function.

The paper is organized as follows: Section II
deals with the one-dimensional Ising model in a
transverse field. The Ising gauge theory in 2+ 1
dimensions is discussed in Sec. III.

II. ONE-DIMENSIONAL ISING MODEL IN A

TRANSVERSE FIELD

A. The model

The one-dimensiona, l Ising model in a, tra, nsverse
field is a quantum-mechanical spin system with a
Hamiltonian

N N

H= -e Q o, (i) —& Q o,(i)o,(i+ 1), (2. 1)
i~1 fsl

where i runs over the & sites of a linear chain with
periodic boundary conditions. The operators o,(i)

and o,(i) are the standard Pauli matrices

1 0
0'~— ~3=

~1 0' i0 -1i (2.2)

a,t site i.
The parameters & and ~ are dimensional coupling

consta, nts. Indeed any one of them, say e, defines
the scale of energies and the ratio

X= &/e (2. 2)

which yields a critical exponent v~ for the gap
equal to one.

is a. dinzensionless coup/ing constant.
On a one-dimensional lattice this model is exact-

ly soluble (see Pfeuty"). The critical coupling is
A.,=-1 and at this point the ground state becomes
degenerate. The energy gap is given by the ex-
pression

(2.4)

TABLE II. (2+1)-dimensional Ising gauge theory.

Calculated value

Ref. 16(a)
3D Ising model
high-temp. exp.

Ref. 15
2+1D Ising model with
a transverse
field
per turbative calc.

3.280

3.11+0.03

0.622 1.202

0.639

0.63

0.91

0.3125

0.32

1.82 0,349

Bef. 16(b)
3D Ising model
RSRG calc.

0.6289 0.3243 4

Ref. 9
2+1D Ising model with
a transverse
field RSBG calc.

0.724 0.394
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The one-dimensional Ising model in a transverse
field belongs to the same universality class as the
two-dimensional classical Ising model. Actually,
the former is the time continuous (or Hamiltonian)
limit of the latter. "

2i- I 2I 2i+I 21+2

FIG. 1. The two sublattices of the linear chain. The
odd sites (crosses) are the center of the blocks. The
even sites (dots) are the remaining degrees of freedom.

9. The method

The technique we use is a variation of real-
space renormalization-group methods for Hamil-
tonian systems used previously in the literature
by Drell et al.' and other authors '. Like other
schemes, it is an algorithm for selecting a var-
iational ground state for the theory. The algorithm
makes use of the essential fact that it is better to
approximate the ground state for a few number
of degrees of freedom at any one stage of the cal-
culation than to try to guess at one shot the struc-
ture of the ground-state wave function for the en-
tire system. Hence, one typically breaks up the
lattice into blocks, solves for the low-lying states
within a block, and then truncates the Hilbert space
to the subspace spanned by these states. One then
has a new renormalized Hamiltonian, for length
scales larger than the size of the block, which can
always be written in terms of spin operators and
renormalized coupling constants. This procedure
is then iterated until the effective Hamiltonian for
large length scales has approached soD:e limiting
form which can be solved perturbatively. Pro-
cedures of this type, however, generally assume
the blocks to be free of boundary conditions, i.e.,
the blocks are disconnected from the rest of the
system. This then leads to strong edge effects
for the block which eventually induce long-range
correlations in the ground state of the whole sys-
tem. ' As a consequence, correlation functions,
which, should decay exponentially in the disordered
phase, invariably exhibit power-law behavior.
This defect of the approximation is well known and
there are several approaches in the literature for
improving the method. ~ ' '

The method we propose, however, eliminates
this problem from the very beginning. The blocks
are no longer disjoint. In fact, they are coupled
to one another by a set of boundary variables
which provide internal boundary conditions for the
block. In its simplest form the procedure is the
following.

Consider a linear chain of spins and its two sub-
lattices, the even and the odd sites (Fig. 1). A

block will consist of a spin at a given odd site
coupled to its two (even) neighbors. The block
Hamiltonian, at the odd site 2i+1, is given by

The full Hamiltonian (2. 1) may be written as

H=H, +0, ,

where

N/2

H2],

(2. 6a)

(2. 6b)

and

g~= -g 0) 2i . (2. 6c)

X/2

[q(o)) = "
i/)„, (o,(2i -2); o, (2i))(0,(2i)), (2.7)

where („,is the ground-state wave function of the
block 2i —1 and ~a, (2i)) is a complete set of states
that we represent as eigenstates of 0„ the trans-
verse field operator. Notice that g is an operator
when acting on the even sites, since it depends on
the 0,'s at these sites.

The renormalized Hamiltonian will be the old
one restricted to the subspace (2. 7)

If- -=(q(o) ~H ~y(o')), (2. 8)

where
~
P(a)) and

~
g(o')) are two states of the form

(2. &).
Let us now evaluate the ground-state energy E

and wave function P for the block. This can easily
be done. The ground-state energy, for arbitrary
boundary conditions, is found to be

E,q, (o, (2i —2); o, (2i))= Eo —eB(A.)o,(2i)a, (2i —2),

The procedure can be generalized to larger blocks
in an obvious manner. What is important to ob-
serve here is that the Hamiltonian for the block at
the site 2i -1 depends on the state of the spins at
the two nearby even sites, a, (2i) and a, (2i —2).
These spins act effectively like arbitrary boundary
magnetic fields with strength ~. Since their trans-
verse fields are not included in the block Hamil-
tonian then, from the point of view, of the block,
they behave like classical variables (i.e., commute
with H, &,).

The strategy is first to fix an arbitrary configur-
ation at the even sites and then to diagonalize all
the block Hamiltonians in that configuration. We
will then truncate the Hilbert space to the set of
states of the form

&,) „———ea, (2i+ 1)

—&o,(2i+ 1)[o,(2i)+ a (2i+2)]. (2.5) where

(2.9)
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B(X)= -', [(1+ 4A.')'/' —1] (2. 10a)

(2. 10b)

Notice that the ground-state energy is explicitly
invariant under the inversion of the spins at the
boundaries. This is aconsequence of the invariance
of the block Hamiltonian itself under an overall
spin flip. Moreover, we emphasize that the ground
state is uniquely specified for all values of A. and
for all boundary conditions.

The (normalized) ground-state wave function of
the block has the form

(2, ,(o,(2i -2); o, (2i))

+ E„(X„,e„)],

where

e„=Z(A„,)e„,, (2. 17a)

(2. 17b)

It is important to stress that Z depends only on the
effective coupling A, and that, unlike P, it does not
depend on the configuration (s, s') of the even sites.
It is this property which guarantees that no new
couplings are generated by the renormalization.

Clearly this process can now be iterated such
that after n iterations we find

, „, [ I
t)+a(s, s')It) ], (2. 11)

where s -=o,(2i), s ' = o, (2-i —2), and
I
0) and

I
&) are the

eigenstates of the operator o,(2i —1). The ampli-
tude a(s, s') is given by E„=C„+2E„,,

C„=——', e„[l + (1+4K„')'/'] .

(2. 17c)

(2. 17d)

(2. 17e)

We see that the ground-state wave function of the
block depends on the configuration of the spins at
the boundaries and hence is an operator on the Hil-
bert space of the even sites.

We now proceed with the renormalization pre-
scription stated above by keeping only the ground
state of the blocks and defining the new Hamiltonian
using (2.7) and (2. 8). We find

The renormalized Hamiltonian (2. 16) determines
within our variational approximation the dynamics
for length scales greater than 2"a.

C. Phases of the model

Using the recursion relations (2. 14) we can now

discuss the phases of the model. Let us define the
P function

N/2
—a'(A, ) Q o, (2i)c,(2i+ 2) .

~1( ) g +(X) (2. 14b)

Note that the renormalized Hamiltonian does not
contain any new interactions. The renormalized
couplings e'(A. ) and &'(A. ) are given by

(2. 14a)

such that X„,, —A.„-=p(A.„). The zeros of the function
P(A. ) are the fixed points of our renormalization
group. We find two infrared-stable fixed points
at A, = 0, which determine the long-distance
properties of the model and a critical coupling (an
infrared-unstable fixed point) at A, ,= 1.277, which
is the boundary between the two phases A. & A., and
X (A., (Fig. 2).

&(&)
Z(Z) (2. 14c)

The renormalization constant Z(A. ) for the energy
scale e (or transverse field) is given by the rela-
tion

Z(X) -=(ps&- i(s, s')
I ps~- i(~,s'))' l.277

(2. 15)
FIG. 2. The P function for the one-dimensional Ising

model in a transverse field.
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For A, &A,, we find that

lim A,n= 0

lim &„&0 A. A,
n" «

lim ~„=0
n

(2. 18)

Thus, this is a disordered phase with an energy
gap G, for a single spin-flip excitation

The function Z(A) changes very slowly in a neigh-
borhood of the critical point A, Thus given an
initial value of ) S A,„ it follows that, for a number
of interations n &n,„, Z remains essentially con-
stant, i.e., Z(A.„) =Z(A. ) = Z(A, ,). Here n, „ is the
number of iterations necessary to make the cou-
pling A.n weak, i.e.,

(2.25)

For values of n greater than n „, Z(&„) rapidly
approaches its asymptotic limit

G, =—2 lim &„.

For A. & A., we get

(2.2o}

(2. 28)

limA. =
n

, n "~

lim~„=0 ) A. &A,
n-«

lim ~„40
n» Oc

(2.21}

G~= 41im ~„.
n» oo

(2.22)

. This phase is characterized by a spontaneous
breaking of the global spin-flip symmetry with a
local order parameter M, the magnetization,
which is the ground-state expectation value of the
operator

0=-g Q o,(i).

D. Critical exponents for the correlation length.
'and the energy gap

The energy gaps G, and G~ may be computed
using the recursion formulas (2. 17a) and (2. 17b),

n-&

The ground state of the fixed-point Hamiltonian is
degenerate with all the spins aligned and pointing
in either one of the two possible directions. Hence
in this phase G, =O. But there is a gap in this
phase which is related to the energy needed to ex-
cite a kink, antikink configuration" and is given by
the relation

ini(Z, —X„)/(Z, -X) I

+max

ln(1+ P,')
(2.28)

Hence, the energy gap G„close to A,„is given by
the expression

o,(~, x) =2~[z(~.)1" *=«»I&.-&I"" (2»)
where c(A.) is a smooth function of A. ,

(2.so)c(X) =2~(X, —X„)"&.,

and the gap exponent v~ is found to be equal to

in[1/Z(~, )]
ln(1+ P,')

(1.1b')

Analogous arguments show that the gap G~ behaves
like (2. 23b) with an exponent vG:

in[a, /f)(X.)]
ln(1+ P,')

However, the, fixed-point relation

We can obtain an expression for n,„by linearizing
the P function (2. 18). We obtain

= (1+P,')" -(Z —X}

+ 0((z, -x)'), (2. 27)

where P,'=dP/dA, I„ is the slope of the P function at
the critical point. Thus n „is determined by the
relation

G, = 2& lim
n» oo

z(~,), (2.23a}
(2. 32)

G~= 4&lim
n» Do

(2.2Sb)

with Ao =A, ~

Near the critical point these gaps behave like

G, =c,!x-x.I'~. ,

G, =c, !x-z, I"&~,
(2.24)

The exponents v~ and v~ can be computed graph-
ically or, alternatively, .by means of the following
sealing arguments: Consider the spin-flip gap G, .

implies that both exponents are identical, i.e.,
v~ =v~ . Using the values P,'=0. 596 and Z,
=0.682 we find v~=0. 817. This result is to be
compared to the exact result found by Pfeuty, '
v~= 1. Thus we get about 20 j~ error for this
quantity.

The correlation-length exponent v, can be cal-
culated by standard scaling arguments. " One as-
sumes that the correlation length, near the critical
point, has the functional form
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a
lx-x, l"~ ' (2. 33)

However, after one interation of the renormaliza-
tion group (RG) we obtain the same laboratory val-
ue of g expressed in terms of the new length scale
a'=2a and new coupling A. '=A. + P(X). Equating the
two expressions for $ one immediately obtains

ln2
ln(1+ P,')

' (1.1a)

This result can be also understood by noticing that
the correlation length is the distance at which cor-
relation functions begin to deviate from their scal-
ing behavior. In terms of the renormalization
group, this is the distance $ = 2"a at which the ef-
fective coupling A.„ is small (or large), i.e., it
satisfies (2.25). But this is exactly the definition
of n „[Eq. (2.28)]. Thus Eq. (1.1a) follows. If
we plug in our numerical results, we get v,
= 1.482, which deviates by about 50% from the
exact result v~ = 1."

It is easy to convince oneself that the two expo-
nents v, and v~ should be equal to each other. It
is true in the exact solution. ' But, more im-
portant, they should be equal because the Ising
model in a transverse field in any dimension is
the Hamiltonian limit of a classical (or "Eucli-
dean") Ising model. We thus expect both models
to be in the same universality class. At the criti-
cal point the Ising model exhibits rotational invar-
iance. ' This implies that the energy gap should
be equal to the inverse of the correlation length,
near the critical point. Thus both exponents v~
and v, should be identical.

The source of this discrepancy is found in the
unequal space-time scaling generated by our re-
normalization group. Indeed after one iteration,
lengths scale by a factor of 2, while energies, on
the other hand, scale by a factor of Z, . Thus
time scales like 1/Z, which is not equal to 2 in
our case.

This result shall haunt us throughout the paper.
In general, we shall find that energy gaps, i.e.,
quantities which scale with dimensions of time,
are generally better within our approximation than
quantities which scale with dimensions of length,
e.g. , magnetization or correlation functions. It
is worth noting, however, that the method of
Hirsch and Mazenko' apparently provides a way of
correcting this asymmetry. '

E. RG equations for operators

We shall now congider the behavior of operators
under our RG. For that purpose we need to know
how the true ground state is constructed using our
prescription. Equation (27) tells us which states

we are keeping after renormalization. But it also
says how a. given state, for instance the ground
state, is mapped under the RG, i.e., if ~0&, repre-
sents the ground state for a .coupling constant A, ,
after one iteration we obtain

[ o)„=
' q„,((r)

)
o)„, , (2. 34)

ja ].

where A. and A.
' are related by the P function P(X).

Thus if 8 is any operator, its ground-state expec-
tation value „&0 e 0&~ at a coupling A. renormalizes
as

,&o (
e ~o&„=„,&0

)
vq(o)evq(c') o&„. . (2. 35)

e'- =-
& 4(c')

~

e
~
(I)(o')&,

i.e., e restricted to the subspace (2. 7).

(2. s6)

L Mugnetization

Let us consider the magnetization M, which is
the ground-state expectation value of the operator

1 N

e= —Q v, (i).

The renormalized operator e is given by (2.36).
To compute 8'" it is useful to write 8 as follows:

N/2 1 N/2
e= —Q o,(2i)+ —Q v, ( i2—1).

j=l j=z

Making explicit use of the wave functions (2. 11)
we find

(2. 37)

1 N/2
ere)) ~ o (2i)

N ~
1 N/2

+ 0' — 0'3 2$ —1 0'

j.il
After some algebra we get

2 "/'

(2. 38)

(2.s9)

As a result of the definition of the magnetization

M= 0 — 0i 0 (2.4o)

and Eqs. (2.35), (2. 36), (2. 39), we find that the
magnetization satisfies the recursion relation

(2.41)

After an infinite number of iterations we obtain

Clearly to evaluate this expression we must under-
stand how the operator 8 renormalizes. We shall
define the renormalized operator 8"' by the ex-
pression
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(2.42}

for appropriate boundary conditions.
Let us now evaluate this expression. In the dis-

ordered phase A. &A.„A. iterates to zero, Z iterates
to one, and B(A.)/A. iterates to zero like A.. Thus
the magnetization is unstable in this phase, i.e.,

(2.42)

In the ordered phase, however, (A. &A.,), the situa-
tion is reversed. Here A, iterates to infinity,
Z(X) iterates to -'„and B(X)/X iterates to one.
Then —', + Z(A, )B(A.)/A, rapidly approaches one and
the magnetization is stable. Thus we obtain a
finite, nonvanishing result.

(2.44)

where the magnetization exponent

ln(-,' +Z, B,/X, )
ln(1+ P',)

(2.45)

a,nd m(/(. ) is a smooth function of /(. , i.e.,
m(~) =

~

x„-x,
~

-'M( x„).
Note M( A.„)may be computed ln perturbation
theory since A.„ is large enough. Using (2.45)
and our numerical results, we obtain P= 0.075
which is to be compared with the exact result P
=0.125 (see Table I).

(2. 45)

Using (2.41) we can now calculate the critical
exponent P. Analogous arguments to those used
to compute the energy-gap exponent may also be
used here. Combining Eqs. (2.28) and (2.41) we
find the scaling form for the magnetization

M(/(. )=m(/(, ) /(. -/(. , ',

2. Correlation functions

Let us discuss the important case of the equal-time correlation function C(R),

C(R)=(O o,(0)o,(R) O).

We will use the procedure just described for the magnetization. Define the operator 8(R) to be

(2.47)

N, /3-1
8(R) =p g (r, (i) o(i +R) .

$=- N/2

(2. 4S)

Then C(R) is just „(0~ 8(R) ~0)„. The renormalized operator 8"'(R) is again the old operator acting on the
restricted Hilbert space (2. 7) [Eq. (2.36)]. Let us now explicitly compute 8"'(R).

After one iteration we find, . for 8 even,

e- (~)= ("')'(")) +-' —' g ~ (~,). (a +a)
5=-N/4

Z(y)B(/„) 2 2 ///4 1
+ — — P [o,(2i)[o,(2i+ 2+ R)+ (r, (2i —2+ R)]]

l=-N /4
(2.49a)

a.nd, for 8 odd,

8""(R)= p g fo'3(2i)[o', (2i+ 1+R) + a, (2i —1+R)]).
Z(/ )B(g) 2 ///4-1

$=-N /4

Hence we obtain the following renormalization-group equations for C„(R) (R even):

(
( wax) ()() (Z(X)B(X))'1 c (R~ ) & (R )

(2.49b)

(2. 5oa)

(2. 5Ob)

In a compact matrix form (2. 50a), (2. 50b) read

V„(R)= Q„V~,(~ R), (2. 51)

where V~(R) is the two-component vector

c,(R)
V (R)=

-', [C,(R+1)+C„(R —1)]

and Q„ is the 2 x 2 matrix

(2. 52)
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Z(~)B(~)

1 Z(X)B(X)l Z(A)B(X)~

Z(X)B(X)

(2. 5s)

value e„ is rea.dily found to be
C

z, a, ''&
2 j

Let us consider the recursion relations (2. 51) in
the disordered phase (A. &A.,). For A. «A, „Q„is
given by

0I
(2. 54)

A.

to order X'. If R=2", then by iterating (2. 50) n

times we obtain
C„(R)= M'(A. ) + „exp[-Ra/g(A. )] . (2. 6s)

(2. 62)

The numerical value of rl, as given by (2.61) and
(2.62), is ri =0.100. The exact result is q= 025.' 0

In the ordered phase (A. a A.,) the correlation func-
tion behaves asymptotically like

c„(R)= —„c„(1).

But from perturbation theory we know that

c, (1)=~„+o(~„').
Thus, in this limit, C„(R) is equal to

C„(R)= —„A.„= „=exp( —R
i
ln A.

i )/R,
g2

(2. 55)

(2. 56)

(2. 57)

Using Eq. (2. 51) we find an exponent P equal to
lns ~

2 ln(1+P,') (2. 64)

instead of (2.45). Note that expressions (2.45)
and (2. 64) are not analytically equivalent, how-
ever, both results yield the same numerical value
to within three decimal places. " Finally, using
(2. 61) and (2. 64) we arrive at the scaling relation

(2. 60)
26) =1

C

From (2. 60) we see that the anomalous dimension
g is equal to

ln6)
'g —~ C

ln2
(2. 61)

where we have used the result A.„=A.„,' for A. small
(see Fig. 2). Thus our recursion relations yield
an exponential falloff for the correlation function
in the disordered phase, in contra, st with other
calculations of the same type. '*'

We may now use (2. 51) to obtain the behavior of
C(R) near the critical point X,. In the regime
Xs X„c~(R) is expected to behave like

( )
e -R /((Z)]

gq

where f(A. ) is the correlation length at a coupling
A. and rl is the anomalous dimension. Near X„f
diverges like a X -X,

Using the recursion relations (2. 51) we obtain
(for R»1 and XsX,)

exp[-Ra/Q(A. )] (a a exp[-Ra'/2&(A, ')]
Eb „"b, , (R/2)"

(2. 59)
If we choose the vector (;)„ to be the eigenvector
of Q„ that belongs to the largest eigenvalue e„, we

obtain the following scaling relations:

2P= vg 71 q

which is also satisfied by the exact result.

(2. 65)

III. Z GAUGE THEORY IN 2+ 1 DIMENSIONS

A. The model

Following Ref. 13 we define the Hamiltonian for
the Z, ga,uge theory, in the temporal gauge, as

v,"(r)—r( r)o3 ( r) r( r + e„),
a,"(r)—c,"(r), (3.2)

where r(r) = +1. The local transformation (3.2)
has a generator G(r) (at site r) given by

(3.3)G(r)=' Ci(r),
~(r)

where p, (r) is the set of links that emerges from
the site r. Therefore the invariance of H reads

H=-6 0," r.
(r, y)

0'," r e," r+e„a'," r+e„o'," r,
(r, ov)

(s. 1)

where (r, p) and (r, gv) label links and plaquettes
of a two-dimensional square lattice (g, v= 1,2).
o, and 0, are standa, rd Pauli matrices.

The Hamiltonian (3. 1) is invariant under the
local gauge transformation

and v, is given by (1.1a), as it should. The eigen- H=G(r)HG'(r) for all r. (3.4)
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In the temporal gauge the states of H are subject
to the constraint" (valid in the absence of sources)

("2")links below the plaquette x [see Fig. 4(b)],
can be obtained from p,,(x) by the operation

G( r)
~ (,„„)= ~ P,„„)for all r, (3.5) u,'(~) = q, (r)U, (3.6)

which serves to define the space of gauge-invariant
states. Notice that G can be diagonalized simul-
taneously with the Hamiltonian since they commute
[Eq. (3.4)l

An important consequence of Eq. (3.5) is that the
ground state

~
0) is a gauge-invariant state. " Ac-

cordingly, the local symmetry is never broken"
and only gauge-invariant operators m3y have a
nonvanishing expectation value. Thus this theory
does not have a local oxdexPaxameder. ,

p, (r) = a3 (x)a,"(r+e„)o,'(v+ e„)o3(r) . (3.9)

The dual transformation (3.V)-(3.9) implies that
dual and original couplings are related by

where U= vG(r) is the product of the gauge gen-
erators G(x) over all the sites inside the shaded
area of Fig. 4(c). Note that in the gauge-invariant
sector (3.5), U=-1. For IJ.,(r) we have

B. Dual transformation

In 2+1 dimensions, however, the Z, gauge
theory has a disoxdexPaxameter. ""This is
most clearly seen in the dual theory, the (2+ 1)-
dimensional Ising model in a transverse field.
The dual transformation""' may be constructed
by methods analogous to those of Ref. 13 for the
(3+ 1)-dimensional model. The due, l model has a
Hamiltonian .

II = -e g IJ.,(r) —& g P ,(r)P ,,(r + e,„), (3.6)
r (F, lj )

where e and & are the dual couplings and x labels
the sites of the dual lattice (Fig. 3). The dual
Pauli operators p,, and p,, are related to the origi-
nal o's by the expression

(a)

(3.Va)

where the product runs over the set of vertical
("1")links to the left of the plaquette centered at
the dual site x [see Fig. 4(a)]. Notice that this
definition is not unique. In fact there exist an in-
finite set of operators, which in the subspace of
gauge-invariant states, are equivalent to [3.V(a)]
and realize the dual symmetry. For example,

(b)

(3.Vb)

where the product now runs over all the horizontal

r~
I

I

FIG. 3. The square lattice and its dual. The sites of
the square lattice are indicated by x and the sites of the
dual by R

(c)
FIG. 4. The monopole creation operators 0~ of Eqs.

(3.7a) and (3.7b) reside on the heavy lines. (a) and (b)
represent two equivalent definitions of the monopole cre-
ation operator. The shaded area in (c) represents the
set of sites where the operator U fEq. (3.8)] is defined.
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(s. 10)

It should be noticed that it is the gauge-invariant
sector of the gauge theory that -dualizes onto the
(2 + 1)-dimensional Ising model in 'a transverse
field.

The ground-state expectation value. of g, (r) is
the order parameter of the (2+ 1)-dimensional
transverse Ising model. The dual of it

M(r)= 0 ' '
~,"'(r') 0)

is the disorder parameter of the gauge theory.
The (2+ 1)-dimensional Ising model in a trans-

verse field belongs to the same universality class
as the three-dimensional classical Ising mod-
el. '""'" Pfeuty and Elliott" have studied the
former model by means of a Raleigh-Schrodinger
perturbation theory improved with Pade approxi-
mants. Their results, as well as those of the
high-temperature expansion in the three-dimen-
sional classical (SD) Ising model, are shown in
Table II.

C. Phases and states

We find it useful to discuss the qualitative prop-
erties of the theory before considering its re-
normalization properties. It has two phases:

(a) & confining phase (&«e), which is dual to '

the order ed phase of the Ising model, and
(b) A free Phase (&» e), which is dual to the

disordered phase of the Ising model.

In the confining regime the ground state, to zeroth
order in perturbatj. on theory, is the state that has
c,"(r)= 1 for all links. In this state there is no
electric flux. The first excited state should have
at least one excited link, that is, there should be
electric flux "running" through it. However, the
constraint Eq. (3.5) implies that if a link entering-
into a given lattice site is excited, then there must
be another excited link leaving that site. Thus the
constraint Eq. (3.5) is effectively a law of con-
servation of electric Qux, Gauss's law. " We con-
clude therefore that the first excited state is the
smallest possible closed loop of Qux, a box excita-
tion (Fig. 5). For a state with open ends (Fig. 6)
to exist it is necessary to have two sources at its
end points. This means

G(o)lg) =G(R)lg)=-lg)
at these points. This state is created by the opera-
tor

(3.13)

FIG. 5. The smallest possible strong-coupling gauge-
invariant excitation: a box excitation.

which represents a string of electric flux. It is
clear that the energy of such a state, with respect
to the vacuum without sources, grows linearly
with their separation

E(R) = 2eR

to zeroth order in perturbation theory. Thus
static sources are confined in this regime yielding
a string tension v'=2& to this order. It can also
be checked, either by duality or explicitly by a
perturbation-theory calculation, that the disorder
parameter (S.11) is nonvanishing in this phase.

In the free phase, on the other hand, the ground
state has no magnetic energy. The field strength,
or "frustration, """at the plaquette (r, gv) is
measured by the operator C „„(r)defined by

C,„(r)= o,"(r)cs"(r+ e„)a,"(r+e„)af (r) . (3.15)

Thus the ground state has C,„(r)= 1, for all
plaquettes. This state can be obtained by consider-
ing the linear superposition of the state o,"(r)= 1
(for all links) with all its gauge transformations.
Consider now the excited states. The state that
has 4 „„(r)= -1 at only one plaquette has finite en-
ergy and is created by the operator (3.Va). It
represents a magnetic charge or monopole. A

state with two magnetic charges is created by the
operator

(3.16)

whose expectation value is the correlation function
of the dual mode/. It is also easy to see that the
state created by (3.13) costs no energy at all in

FIG. 6. A strong-coupling state with sources.
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this regime, i.e., static sources are free.
To summarize, we see that the dual relation

between the gauge theory and the Ising model in a
transverse field is nothing more that the electric-
magnetic duality discussed previously by 't Hooft"
and Mandelstam. " In the confining phase, static
electric sources are confined and magnetic mono-
poles form a condensate, whereas in the free
phase a monopole excitation costs a finite amount
of energy and static sources are free.

D. Renormalixation

The first problem one encounters when applying
block-spin techniques to gauge theories stems
from the gauge constraint (3.5). As a result of
that constraint the variables a,'(r) and a,"(i ), for
all links, are not independent in the subspace

~ g,b„,). There are essentially two paths one may
then follow. Either one solves for the independent
degrees of freedom in the subspace

~ g», ) or one
keeps the constraint. For the Z, gauge theory in
2+ 1 dimensions, solving the constraint equation
is equivalent to performing the dual transformation
(3.7)—(3.9).' Certainly in this model this would
be the simplest procedure to follow since the re-
sulting spin system is much easier to handle than
the original model. However, for more relevant
theories, such as non-Abelian gauge theories in
3+ 1 dimensions, it is certain that the system one
would obtain by solving the constraint equation
would be far more complex than the original one
(see, for example, Jackiw and Goldstone, Ref.
31). Moreover, this procedure, which is in fact
a complete gauge fixing, obscures the role of the
local' symmetry. Thus if the renormalization
group generates additional couplings, there is no
way in principle to recover a gauge-invariant
Hamiltonian. Thus we have chosen the latter al-
ternative.

In the real-space renormalization group (RSRG)
we shall now define, gauge invariance will be
maintained Bt each stage of the calculation. The
procedure is the following. We divide the space
into elementary blocks of four links distributed
uniformly through the lattice (see Fig. 7). The
Hamiltonian then takes the form

FIG. 7. Definition of the blocks for the (2+1)-dimen-
sional Ising gauge theory. Each block includes four
links, indicated with crosses, meeting at a site, and the
four plaquettes which share those links.

4g( )
~
al )boundaries s

B
(3.19)

where the states at the boundaries are chosen to
be eigenstates of the electric flux, i.e., of a,"(i').
Note that as before (,(8) and g,(B) are really func-
tions of the o'," operators at the boundaries. Thus
the block wave functions and energies are ef-.
fectively operators when acting upon the boundary
states. As in Sec. II, we define the renormalized
Hamiltonian to be

e"-=-(y(a)
~
JI~ j(a')),

where
~
P(a)) are arbitrary states in the subspace

(3.19).
Consider now the block Hamiltonian (3.18). We

first observe that, once again, the boundary de-
I

(3.20)

a, (5) =- a, (1),
a, (5) -=a, (1),

and A«„ is the product of the o'," operators for the
two links at the corner of the boundary of the block
(see Fig. 8). Thus we have now a setup similar to
that of Sec. II. We shall thus solve for the ground-
state energy and wave function of HB for an ar-
bitrary configuration of the degrees of freedom at
the boundary. Then, as discussed in Sec. II, we
truncate the Hilbert space to the subspace

(3.17)H=-E Vl + + HBu
( ~, v)gB B

where & denotes the set of blocks and HB is the
block Hamiltonian. In general HB has the form

4 4

He= -e Q a, (i) —& Q a, (i)o,(i+1)A, ,„,

)&4

'
A& ~

~ crz(a) cr~(b)

iib

where

(3.18)

FIG. 8. An elementary block.
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grees of freedom may be regarded as classical
variables since their electric fields are not in-
cluded in the block Hamiltonian. Thus (3.18) can
be diagonalized for an arbitrary configuration of
the "bond variables" A«„.

On each block there are four links and 16 states.
Only eight of these states are gauge invariant at
the common vertex. In order to enforce gauge
invariance we shall restrict ourselves to this
gauge-invariant subspace. H~ is, in this sub-
space, an 8 x 8 matrix of the form

o, (i) — c,-(i),

Ak $+1 -Ak, i+1 ~

Aj-l, f
—A]

(3.28)

which is the product of all the boundary operators
a," around the complete boundary (see Fig. 8).
The ground-state wave function also acquires sim-
ple properties due to gauge invariance. The block
Hamiltonian (3.16) is invariant under the trans-
formation at a given site i:

'A a
.B 0

where A. and B are the 4 ~ 4 matrices

4 0 0 0

0000
0000

~0 0 0 -4~

A12 A23 A41 A34'

23 12 34 41

A41 A34 A~2 A,3

A34 A41 A23 A12

(3.21)

(3.22)

IJ"'= E C~ -e o o," r o'
blocks bo undari es

(s. so)

Note the flipping of the bond variables A«„and
A. .. can be obtained by flipping the two boundary
o," operators that have the same vertex in common
with the ith link. Thus as a result of this symme-
try, the ground-state wave function obeys the iden-
tity

~1(i)48( Al l, l~-A-I
~
k+1)= 4( l-|,l ~ I,&. )~i(3~

as can be checked by explicit calculation. The
relation (3.29) will be used later when discussing
gauge invariance at the boundaries of the block.

Using the block ground-state energy and wave
function we obtain the renormalized Hamiltonian

We look for an eigenstate of the form

'=( ) (3.23)

(s.24)

where & and P are four-component state vectors.
The eigenvalue equation

Since 4b„,k =+1 we can write

E,(e,)= E, n.'e„
where we find explicitly

(3.31)

E,= --,'[E,(+1)+E,(-1)]
=e(1+(1+%.)'i + [2+23.'+ 2(1+A. )' ']'i'].

(3.32a)
reduces to

(AE+8 ) &=E B

P=&a/e for ee0.
Solving explicitly the eigenvalue equation

det [Ay+8' P I]= 0,

(S.26a)

(S.26b)

(s.26)

n'= --:[E,(+1) -E,(-1)]
= e ([2 + 2 A. + 2 (1 + A, )' ~ ]' ~ —1 —(1 + A.')'~'),

(s. 32b)

and Z-=&/e.
Special care is needed for the links at the boun-

daries. At each link on the boundary of the blocks
we find

C~= 0,"
'boundary

(3.27)

which is a fourth-order polynomial, we obtain the
ground-state energy of the block E and the ground-
state wave function P~. Note that there is a unique
ground state for all boundary conditions. As a
first consequence of restricting ourselves to the
gauge-invariant sector, we find that E depends on
the operators 0'34 on the boundary links only through
the gauge-invariant product

(p, (&) I
c"(~) I y, (c')) ='z(~)&'(&),

where

z(z) = (q, (c,"(~),c,) I q, (-o,"(r),c,))'

(3.33)

(3.34)

as in Sec. II.
At this point we have succeeded in eliminating

the degrees of freedom inside the blocks. %e
still have, however, two degrees of freedom for
each link of the new lattice (Fig. 9). These
degrees of freedom are, however, not independent
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old 0,"'s residing on the old links. Finally, the
renormalized Ha.miltonian is

0'3 r 03" r + e„o," r + e„a," r

FIG. 9. Two nearby blocks that share the links a and NEo
(3.4s)

G, = o, (1)o,(3')o,(a)o, (b),

which restricted to the subspace (3.19) reads

G'"=(0 0 IG l4 p ). (s. s6)

Using the fact that o', and o, anticommute and Eq.
(3.29), we get

(s. s5)

(3.37)C;- = o, (a)o,(b) .
Note that Eqs. (3.30), (3.31), and (3.33) imply
[H"', Q;"]=0. Thus if we are to preserve ga~ge
invariance [Eqs. (3.4), (3.5)1 we must demand

G;- = o, (a)cr, (b) =-1

when acting on the reduced Hilbert space (3.19).
Clearly the link variables o, (a), o, (b) are not in-
dependent. More than that, (3.38) implies that
only two of the four states of the operator o, (a)
+ o, (b) are possible. In particular, states for
which electric flux is either created or destroyed
at the point I' are to be eliminated. We a,re now
able to define link operators on the new lattice.
Let us define o,' and o," on a new link (r, p, ) to be

(s. s8)

and

o."(~)-=o."(o)o."(b) (s. 39)

o,"(r)-=2[o,'(a) + o,"(b)1 (s.4o)

(see Fig. 9). Clearly as a result of (3.39) and
(3.40), o," and o,' satisfy

[&(~)]'=1,
(o,"(r), o,"(~))= 0.

(s.41)

Moreover, the constraint Eq. (3.38) implies

as a result of gauge invariance. To see this let us
calculate the renormalized generator of gauge
transformations at a site I' on the boundary of a
block. Let A. and B be the two blocks that share
that boundary site. Then the gauge generator G~

at I' is

(s.44)

Z is given in the Appendix. Once again, we may
regard e as an energy scale and A. = &/e as an ef-
fective coupling constant which renormalizes ac-
cording to the P function

p(z) =z'-x= B(Z)
2Z

E. Results

1. Fixed point

(s.45)

~e will now use the recursion relations (3.43)—
(3.45) to discuss the physics of this model. The
p function (3.45) has a zero at A,,=3.28. This un-
stable fixed point is the critical point (Fig. 10).
in addition, we find that the slope of the p function
at Z„

is given by

P,'= 0. 78,

X,=3.28.
(3.46)

The critical point A., given above is in good agree-
ment with the calculations of Pfeuty and Elliott"
for the (2+ 1)-dimensional transverse Ising model.

2. Energy gap

As we have already discussed in Sec. III C,
there are two types of excitations: monopoles

for a lattice spacing a'=2a, where the couplings
e and ~ satisfy the renormalization-group equations

[of(~)]'= 1. (s.42)

Hence o,", v," reproduce the Pauli algebra on the
new links. Note that, as a result of (3.38), it is
also true that the new o," is equal to either of the

-),4-

FIG. 10. The P function for the (2+1)-dimensional Is-
ing gauge theory.
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(free phase) and box excitations (confinement
phase). In addition, in the confinement regime we
can also calculate the string tension 7'. Let us
first consider the energy of a box excitation (X
= A.,). If X «i(., we can apply perturbation theory
and we find E~,= 8~ to zeroth order in a perturba-
tion expansion in A. . Thus if we begin with a value
of A. =—&p& ~, and we iterate enough times the re-
normalized coupling, X„will eventually become
small enough to apply perturbation theory. At
that point

ln[ B(X,)/Z, ]
ln(1+ P,')

(s. 52)

n-1

(s.51)
f~O

It is now a simple exercise to find the gap exponent
v„. Using the fact that P(A) -X for large X, we can
again apply our approximation and obtain the result

I'-', „„=0(A.) iX —A., i" for

where P(A.) is a smooth function of A, and

E~„=8e„,

where e„ is given by

(3.47a) However, since X, is the fixed point of (3.45) we
have

~' [2Z(X&}].
fop

Using Eq. (3, 47), which is valid for all values
of X, we can now calculate the critical exponent
v„. Once again v„may be evaluated graphically
or by scaling arguments as discussed previously
in Sec. II. It can be verified that Z(A.} (see Ap-
pendix) rapidly approaches 1 a,s A. -O. Thus we
are able to use the same approximation as in
(2.29). As a result we obtain

(S.47b)

z„„=8~[2 z(~,))"-- (s. 48)

with n „given by Eq. (2. 28). Thus the "box ex-
citation gap" vanishes like

(s.48)

where the gap exponent v~ is given by

ln[2Z(z, )]
ln(1+ P,')

The function c(A) = so~A, „-X,
~

"( is a smooth func-
tion of the coupling A. . Equation (3.50) together
with the numerical result Z, =O. 349 yields a gap
exponent v„=0.622.

As we argued in the framework of the (1+1)-
dimensional Ising model in a transverse field, this
exponent should be equal to the correlation length
exponent v, given by the relation

ln2
ln(1+ P,')

In this case this is not true since Z(X,) 0-'„where-
as a symmetric space-time scaling suggests
(2Z, = -', ). Once again the gap exponent v~ is nu-
merically better than v, . In fact it agrees fairly
well with the correlation length exponent calcu-
lated in the 3D classical Ising model by means of
the high-temperature expansion (see Table II).

I et us now evaluate the monopole gap E
p

for A. —= A.pa A, After n iterations X„becomes large
and E „„„,=2 &„. Then using the recursion
relations (3.44) we obtain

a(x,)
2Z(z, )

(s. 5s)

and thus v = v„as might be expected by sealing
arguments.

3. String tension

n-1

Z.„,„,(A(=2~
'

[2Z(x, )]) 2 "R (3.55)

n- l.

~=2e 'I" Z(x, ).
f=O

(3.56)

Applying the same approximation as we have
used previously we can now obtain the behavior

I et us consider the string tension 7 for A. c A,
This is defined as the change in the ground-state
energy per unit length due to two static sources
separated by a distance R. Thus in principle one
should first construct via the block-spinning pro-
cedure a ground state satisfying the constraint
(3. 12) and then calculate the expectation value of
H in that state. This would be a very difficult
calculation to do since the shape of the string is
not preserved by the renormalization procedure. .

Instead we shall compute an approximation to the
string tension 7'. Imagine that the coupling A. is
small enough so that perturbation theory is ap-
plicable. Then a string of p lattice units in length
will have an energy over the vacuum given by

E„„„,(p) =2ep. (s. 54)

We may now boost (3.54) to the critical region by
assuming that 'we have really started with A.z~,
and after n iterations A.„becomes small enough so
that E„„„,(P) =2e„P where P is now the number of
lattice units as measured in the nth iterated lattice.
Equivalently, we have p = 2 "R, where B is the
separation between the two static sources as mea-
sured in the original lattice unit. Finally using
(3.47b) we obtain
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of v near the critical point. We find

T(y) =g(x) ~z —z, ~", (s. 57)

where v, is the exponent of the tension and is found
to be equal to

ln Z(Z, )
ln(1+ P,')

(s. 53)

The numerical value is v, = 1.82. In order to
compare this result with Ising-type quantities let
us discuss a bit more the meaning of the string
tension T. We argue that the tension is just the
surface tension of a domain wall in the dual Ising
model. In fact, as it was already pointed out in
Sec. IIIB, only the gauge-invariant sector (i.e.,
with no external sources) of the gauge theory dual-
izes onto the transverse Ising model. If now we
introduce a pair of static sources then the ground
state

I g) must satisfy

G~g)= —~() at the sources,
(s. 59)

G
~
()=

~ () otherwise .
Thus we must modify our dual transformation,
which enforces G = I everywhere, in order to
satisfy (3.59). The simplest way of doing so is to
define

(s.50)

for ail the links of the dual lattice that are pierced
by a line that goes from one source to the other
(see Fig. 11). As a result we end up with a (2 + 1)-
dimensional transverse Ising model zenith a string
of flipped bonds, that is, with a piece of a domain
&eall. Then & is just the surface tension of the
wall.

However, the exponent of the surface tension
v, and the correlation-length (or gap) exponent v~

are known to satisfy the scaling relation

(s.51)

due to Widom. 32 This scaling relation is not satis-
fied by (3.58) and (3.50) except when Z, = —,'. Thus
we can also understand this discrepancy as due to
an asymmetric space-time scaling. This type of
disagreement, we hope, will be solved by com-
puting corrections using the method of Hirsch and
Mazenko.

q=~ P ~,(~),

where x runs over all the & sites of the dual lat-
tice and M(r) =(0~ Q ~0). We evaluate M recur-
sively. We define the renormalized Q as

Q, =-(y(~) lqlq(~')&,

(s.62)

(s. 53)

i.e., the old Q restricted to the subspace (3. IS).
By direct calculation we obtain

q, =z'"(y)q' (3.64)

where Q' is the old operator Q acting on the deci-
mated lattice with N/4 sites.

Then after n iterations we get

q
'~' gl/2(y ) qI

L 'f"0
(s. 55)

and M is given by
n- I

M =+»m ' Z"2(~ )
b l

f=0

with the overall sign being determined by the
boundary conditions. In the critical region we
can use our approximation to get

(s. 55)

(s. 57)

with an exponent P, i.e., the magnetization expo-
nent of the dual Ising model given by

FIG. 11. The dual of the gauge theory with taboo sources
at sites r and r+n is a two-dimensional Ising model in a
transverse field with a set of antiferromagnetic bonds
(heavy links) .

4. Disorder operator
lns '~2

ln(1+ P.') (s. ss)
I

Finally, let us compute explicity the ground-
state expectation value of the disorder operator,
the monopole creation operator (3.11). As we .

pointed out in Sec. IIIC M(r) is nonzero in the con-
finement phase A. -A,

In order to compute M(r) we define a translation-
invariant version of u, ,(x),

Thus we find an exponent P= 0.91 which is in fact
off by a large amount (see Table II).

IV. DISCUSSION

We have presented a real-space renormalization-
group scheme for a Hamiltonian formalism and



20 REAL-SPACE RENORMALIZATION-GROUP SCHEME FOR SPIN. . . 2581

applied it to two models. We find three essential
and worthy features of the scheme:

(1) It is applicable to gauge theories and pre-
serves local gauge invariance at every stage of the
calculation.

(2) We obtain the correct asymptotic behavior for
correlation functions in both ordered and dis-
ordered phases.

(3) It yields reasonable results for the critical
coupling and for critical indices for energy gaps.

An undesirable feature of the scheme is the asym-
metric scaling of space and time. We believe,
however, this property of the approximation can
be remedied by using a formalism similar to that
of Hirsh and Mazenko (Ref. 9).

Finally, we feel this scheme canbe generalized
to other interesting models:

(a) Certainly the most direct generalization of
the scheme would be to Z(&) spin systems in 1+ 1
dimensions and to Z(&) gauge systems in 2+ 1

dimensions. "
(b) In general the scheme can, in principle, be

applied to any model whose Hamiltonian can be
written in the form

where (P) and (q) are two sets of commuting opera-

tors which do not commute with each other. It is
clear, however, that any generalization either to
larger groups, whether discrete or continuous,
or to higher dimensions, will necessarily involve
the generation, via the renormalization-group
transformation, of new operators in H; This
problem may not be serious but it can only be ad-
dressed in individual case studies.
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APPENDIX

If we define

[3(1y ~2) + (1 y g4}1/2]1/2

~ = -2[1+(I+a')'"],

2, (4+ e,) e,'+ 4e,2 —12 A.'e, —32 A.+ —, 8z' '+'
, (4 + e,)' e,'+ 4e,2 —12 A.'e, —32 A.

'
E'

and N ' = (2 X' —e. )j(Z' —e ), then

Z(z)=(N. N ) (I+ '
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