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Constraints due to partial conservation of axial-vector current and charmed-baryon couplings
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The PCAC (partial conservation of axial-vector current) consistency conditions are derived for inelastic
processes involving charmed baryons. Numerical estimates of the conditions for the processes 7TCp~7TCp,
mC, —+m C„m'Co~a'C„and m Co~a C„determined with the help of observed charmed-baryon contributions,
are used in determining the pion-charmed-baryon coupling strengths. We find that the value ofg clpl /471

agrees well with the previously determined values obtained with the potential-model calculations. The decay
widths of C, and C', into Cow channel also compare well with the results of Lee, Quigg, and Rosner. We
also note that the remaining couplings g ~ ~,

* and g ~,*~,* have very small values and thus C, completely
decouples from C&m and C&vr channels.

I. INTRODUCTION

Recent experimental discoveries of charmed
mesons and baryons have sparked an unusual in-
terest in the study of particle physics and now al-
most no one doubts about the existence of charm.
As in the case of charmed mesons, the discovery
of charmed baryons permits us to use the proper-
ties of the observed states to get at the dynamics
of strong as well as electromagnetic and weak
interactions. At Fermilab, the lowest-ma, ss
charmed baryon C; (or A„ i.e., the charmed
analog of A by replacing s quark by c quark) was
experimentally identified' with the state at 2.26
GeV observed in the nonleptonic decay mode
An'w m via photoproduction. This state was al-
ready reported in the experiment involving neu-
trino interactions and now also found in the elec-
tron-positron annihilation experiment. ' C+0 com-
bined with an additional w' gives enhancements
at 3.43 GeV for C, (or Z, ) and at 2.48 GeV for
C,* (or Z,*), which are the charmed analogs of Z
and 7,*, respectively. However, the experimental
data for these states are still incomplete. It,
therefore, appears very significant to search ex-
perimentally for the production of these states in
hadronic interactions and also warrants theoretical
investigations to determine the hadronic proper-
ties of these states. In this paper, we want to cal-
culate the coupling strengths g&coc1~ g&coc+1

g c c, andg c*c*in order to fin& out the had-
1 1 1 1

ronic nature of these states.
Recently, the methods of current algebra and

the partially conserved axial-vector current
(PCAC) hypothesis have proved to be highly use-
ful in the study of various weak, electromagnetic-,
and strong-interaction processes. These meth-
ods are based on the fact that the Born approxi-

mation with a certain derivative coupling of the
pion field gives results equivalent to PCAC. One
of the main consequences of the PCAC hypothesis
is the Adler consistency condition' on the covari-
ant amplitudes, which relates the amplitudes in-
volving the emission of a "soft pion" to the am-
plitude in the absence of "soft-pion" emission.
The divergence of th6 axial-vector current, when
used as an interpolating field for the pseudoscalar
n meson, yields the smoothest possible off-shell
continuation for matrix elements involving such
mesons. The purpose of this paper is to exploit
the Adler consistency conditions on the covariant
amplitudes associated with the matrix elements
of the elastic as well as inelastic processes,

a+Co m+Co,

n+C1 n +C1,
w+Co 7r+C1,

m'+ Co-w + C1*,

(l)

(~)
(3)

(4)

for obtaining valuable information about the coup-
ling strengths of the charmed baryons with pions.

The consistency conditions have been used ex-
tensively in the past for the determination of
strong-interaction parameters. The consistency
condition for mN scattering' has been tested by
Adler and is found to be satisfied experimentally.
Similarly, Martin has derived' and tested the
condition for mA scattering and later on Chan and
Smalley4 used the recent experimental data to
determine the couplings involved by testing the
consistency condition for mA and nZ scattering.
Similar calculations" have also been made for
strangeness-changing currents. Singh et al. ' have
extended the utility of the PCAC hypothesis in
deriving and testing the consistency conditions for
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the inelastic process nÃ- mN*. Here we try to
determine the charmed-baryon-pion couplings
by deriving similar conditions for the processes
(1)-(4) and testing them with the help of known
charmed-ba. ryon states.

II. METHOD OF CALCULATION

The derivation of the Adler consistency con-
ditions for the processes (1) and (2) can be done
on the pattern of nA and mZ scattering, respec-
tively. If we decompose the matrix elements for
the meson-baryon scattering M(K)+B(p, )-M(q)
+B(pz) into the usual invariant amplitudes,

A(v=0, vs =O, K = 0) =0. (6)

For the reaction (2), consider' the following cros-
sing-even combination:

M =2M (I=1)-M, (I=p).
1

Therefore, the consistency condition for the pro-
cess (2) can be written in a fashion analogous to
that derived for wg scattering, ~

u(p )Mu(p, ) =u(pz)[-A(s, t, K') +KB(s, t, K )]u(p;),
(5)

where

v=-K (p, +p~)/2mc,

v, =K q/2m. ..
s = -(K+p, )',
t=-(K-q)'.

K=y Z

Here we have shown E' explicitly in A. and 8, since
we want to explore the consequences when the in-
cident pion is taken off its mass shell. The Adler
consistency condition for.the process (1) can then
be obtained if we take s=mc ', t=n, ', and E'=0:

fg(W+ mc„)
[(E,+mc,)(E, +mc,)]'~'

f,(W-m. g

where W=fs is the total center-of-mass energy
and

I

~"+ mcus'

2$,

-S'+ —m
2 2'

We can now express f, and f, in terms of par-
tial-wave amplitudes as follows:

f, = g [f„~',„(x) f, J ,'-, (x)],
L=O

f, = Z [(f, -f„)p', (~)],

(10)

where

m 2 1/S
cos8 1+

Z,' -mc

(12)

The resonance contributions to partial-wave am-
plitudes f„are determined in the narrow-width
approximation. To take the off-mass-shell nature
of pions into consideration, we multiply by a fac-
tor (q,«/q, „)' the corresponding expressions for
f, and f, . Here q,«and q,„are the magnitudes
of the c.m. three-momenta of initial and final
particles, respectively.

The PCAC consistency condition for the strong-
interaction inelastic process nCO- mC, can be de-
rived (see Appendix A) and is found to be

K
( P P K2 0) g~cool s'Qgk( )

c & c

16@
A(v=0, vs =O, K~=0) =Kc,ci„(0)

mC1

(8)

Here the definitions of p and p~ are modified as

K (p +p.)
mg +mc

Here Kc,c„is the pion form factor &or the ~C,C,
vertex evaluated at IP = 0. This form factor is
normalized as Kc,c,„(K'=m„'). Expanding
K«at K =m„and assuming the deviation at1C1g
K =0 to be small, we can take K« „(0)=l.
The result of Adler in the nN ease supports this
conclusion.

For the numerical evaluation of these conditions
we assume unsubtracted dispersion relations for
the above amplitudes. In order to find the reson-
ance contributions to the condition (6), we make
use of the relation of A with f, and f~:

K'q
Vg mc +mc0 1

Finally, for the process @CO- mC,* we get four
invariant amplitudes because C1 has spin —,'. The
matrix element for the process has the following
genera, l structure:

C.(p, )M.~~(p, )

(pz)(a, K +a2q +Kb, K„+Kbaq )y,u(p, ) .

We. get the consistency condition involving the in-
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variant amplitude a, alone, and it can be written
as (see Appendix B)

a, (v = 0, ps = 0, K' = 0) = 0 .

Here

I~ (u, +f,)
~C + INC

K q
Vg=

c +mc
0

III. RESULTS AND DISCUSSION

(14)

Saturating the consistency condition (6) with the
help of known' isospin-1 charmed-baryon reson-
ances C, and C,* only in the narrow-width approxi-
mation, we get

gc,~c
' (&-mcglpl

Cz ~1 (16)
gc*,c..' (Z+mc„) lpl'

3~c
where E (E') and (p) ((p'() are the energy and mag-
nitude of the three-momentum of Cp in the rest
frame of the resonance P, (C,*). Finally, we get

2-= 58.3
4m

(17)

by Lee, Quigg, and Rosner. ' Using' Z'c*= 20 MeV,
we get I'c, = 4.3 MeV. Using these values of the
decay widths, the corresponding coupling con-
stants cari be obtained with the help of the following
relations"':

~c* 4 681'c =0
1 1 (15)

2gcqcpif 0 y5
4m

where l"c+ and lc, are the widths of C,* and C, for
the decay into C07t, respectively. We find that the
above result agrees well with the result obtained

Similarly estimating the consistency conditions
(6), (12), and (14) with the known charmed baryon
states, we get the following relations:

I

Ac&c,*', m, ' 2mc, mc, t 2gwcxco' 4g«~cj. '+j. - ' +
1 2 3~ 4 3 Blc + PPlc PlcC1 0 1 1

(16)

j r 9 g ].
~rn +rn —m ~

— +'2 2 2w K~cp+ ~el/ ~cp cs 8&cpcpAffc] c1 g
8 if CPC1

p c1 if ~ 3~ 2 3~ + ~ 2 ~ + ~ &cpc1 &c1cl
C1' t CP 'C1 'CP C1

2
g7t C1CIA pcpc1 ggc1C1g7(cp 1 ' 2 Wcp ~cp

m, (
(2o)

In finding these relations we have assumed" un-
subtracted dispersion relations and evaluated them

by the pole-term contributions in s as well as u
channels at fixed t =m„' (i.e., vs = 0). Also in

(20), we have ignored g', c*c*coupling appearing in
the full Lagrangian, "

g g=g g g O+„y C+m +g+ ceca+"yp+ 8~8„7f,

because it is purely an I -wave coupling and we
are working in the low-energy approximation.
Here C,*& is the Rarita-Schwinger spin- —,

' wave
function for Q,*. Using the values of the couplings
given in Eq (17), we g.et the following values for
the remaining coupling constants:

gc1c1g
y 434' (24)

We find thatgc, c,, /v'4n' = 5.33, which is in
agreement with the previous values of 3.98 and
3.55, as determined by Dover et a/. "with cal-
culations based on the models of Bryan and Phil-

. lips'~ and Nagels, Bijken, and de Swart, "re-
spectively. The smallness of C,* couplings in-
dicates that C,* almost decouples with the C1w and
C,*n channels. We hope that future experimental
as well as theoretical investigations on the hadron-
ic productions of charmed-baryon processes will
test these predictions, which are,based on the
simple use of current algebra and PCAC hypothe-
sis.

2gc1c17r 28 40
4m

= 0.034,
4m'
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APPENDIX A: DERIVATION OF THE CONSISTENCY
CONDITION FOR THE PROCESS gCp ~ 7l'Cg

C ~ g&cocz Kwcocz(0)
(A5)

where g,c,c,
'

the renormalized coupling con-
stant and K„c,c, is the pionic form factor of the
C yc pn vertex.

Let us now adopt the usual decomposition' of the
matrix element («CzI J"„Ico) in eight covariant am-
plitudes A, as given by

The matrix element of the axial-vector current
J'"„can be written as (see Fig. 1)

(
z/2

(c,(p') I z"„Ic,(p,.))mc mc.j

2 X/2
Pi OPf 0 'qp

Cp Cg

where

=u(p/) p O'„A, (v, .v~, K )u(p, ), (A8)
J=l

= (p')[G(K')y„y, F(K')-„K„y,
—iH(K')K„y, ju(p, . ) . (Aj)

Assuming the PCAC relation we get

evZv C (A2)

where p, is the renormalized pion field operator
which is related to the meson-source operator
j, as follows:

j, = (& —m. ')y„. (AS)

(c,(p') ),Ic.(p, ))
'P1c slc j

=gc c ~Kc c ~(K )u(P')K„u(P&) ~ (A4)

The matrix element of the meson-source operator
is expressed as

o'„= z(ypq qy, )-,

Ofl (pi pf)p
3 =Ou qu s

0„'= --,'(mc +mc )y„,
0 —-K(p, +p/)„,

Ou = -Kqu,6

Ou Eu p

Ou =-XZ

Since there is only one isospin state involved, we
shall not specify the isospin indices explicitly.
%e decompose the amplitude AJ as a sum of pole-
term contributions plus the residual amplitudes

Therefore, taking the matrix element of each side
of (A2) in the IP = 0 limit gives A =A +DRf i i (A7)

8
p +mcz x ~ p +mcz

(p/) z OI, +, (p ) = (p/) g. . .y, f~+~~ „g.. .y, (pj=l 1 1 (A8)

Thus we find contributions to the following ampli-
tudes only:

%e can also write the matrix element

&«c, ls„z"„Ic,& =K„&«C,Iz"„IC,& I„.„ (A10)

The pole-term contributions may be evaluated
from Fig. 1:-

g~coczG(K ) gwczczG(K )
(Wc, +mc, )(v+ v~) (mc, +mc, )(v~ —v+A) '

g&c pc G (K ) g&czczG (K')

. (mc, +mc, )(v+ va) (mc, +mc, )(v —v+b, )
'

(A9)

A.
mc —mcz G(K )

4 'm +m (v +v)Cp Cy, B

where
2 2~cy Slc p

PlC +MC

with
M= -&+Kg. (A12)

p"

C )

JA

FIG. 1. Born diagram for the process ~+ Co-7t+ C~.

where the covariant amplitudes for meson-baryon
scattering are related as follows:

(
z/a

(z/CzI s~ J~ ICO) I «2 o =u(p/)Mu(pz),

(A11)
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The nonpole terms are found to be

~~=( + ) (A,"+AR)+(m, +m, )v A,",
= (m c + m c )g j —2A 4 + vi4 g

—ve 4 6 ) ~ (A1 S)

Thus we get the following consistency condition
for A. , which takes the pole term contributions

I

f»mA, andA .

g (v Q Q Ip~ Q)
—g+ 0 1 + Oc1( ) (A14)

mc +mc
In deriving this relation, we have assumed that
nonpole amplitudes A~ have no kinematical sin-
gularities.

APPENDIX B: DERIVATION OF CONSISTENCY CONDITION FOR mCO ~ wC f

In this case the PCAC hypothesis with the relation of the renormalized pion field operator P, to the
source operator j„can be used to get

(c,(p')ls„z"„Ic,(p,.)) =c,(c,(p') I y. lc,(p, )&, (a1)

and thus we find

(mco+mc, )m 'G„(0) (a2)r.c,c,&.c,c,(0)

w"ere', c,c, is the renormalized coupling constant and F,c&,(0) is the pionic form factor at qC C vertex
The matrix element of the axial-vector current J" can be written as

~ ~

~

~ ~

~

r 1/2
(C,(p') I&",ICo(p;)) =M(p')

I
G(If' )) /75 —&(A")c qy&g 5

—I&(A )&0'5l ~(p. ;)mc Omc 1

Here the matrix element (wC,*IJ~ICO) can be decomposed into 18 covariant amplitudes A,. as follows:
I

~ ~

~

1/a

(~c,*lz",IC,) = y„(p,) Q o','„A,(v, v„A )y,u(p;),mc mc j 1

where 0~ are given in Ref. 7. Splitting the amplitude as

A. =A'. +A'.

and extracting the Born term contributions A,. from Fig. 2, we get
18

j=l

(as)

(a4)

+ f,(Z')6, „+f,(Z')~,Z„+f,(SC2) ' * q SC.

—mCp+ mC 1
g'gcocl &@ Pg (a6)

where

1 0mc~ —mc~
mc*+ mc

2 3
mcus —mc0
mc*+ mc1 0

Comparing the coefficients of operators 0'~ on
both sides, we get

B ggCOCl mcl mCO

2(m, +I, )
' qj. q —g —g') '

~a 2g wc, cz (~)
(m +m *) ( „g)

grcocq mco -mc~--m. '+m. " 2Cp Cl

(v+v~ —b, —6') '

P

c,
P

C)
~ a Zwcocx f 1~6

m +m + (v +v —g —~')

FIG. 2. Born diagram for the process n+ Co x+ Cg*.

~ g cgcy (~) mcus +mcus
m +mc* (v~ —v-a') '
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B g7lcpc1 f mcus mcp
mc +mc+ (pB+ p-Q-Q')

g8clcl f 1"
. 3(mc, +mc*,) '(p +p —~-g') '

AB g8coc1 1
2(mc, +mc*,) ~ (,,+, «)

a1=(mc+mc+)(vA8+A +pA -A )

—(mc, +mc'f) (vAB1+ vBAB")+A,", ,

aB=(mc +mc*)(vA,"+v AB+vAB, )

—(mc. + c*,)(A". + p, A'„),
AR+ ~R +ARB 76 Za

(B10)

2g8clc*, G(K )
mc +mc'f (v —v —~')'

g8cocl f 1

mc, +m, *, '(v, +v —g-')
AB g8ccP' f mc1 co

c+mc* z
& +&0 7 . B

Now let us evaluate the matrix element

&"c*ls1z1lc & =K1&&c,*lz1lc & lr8

We can write

(
p. 2 Z/2

&'c,*ls,z",Ic,&l.. .=g.(f,)M r, a(p ),
mc mc+

a1 (mc +mc*)(vaA8+vA18-A. ,8)

—(mc, +mc+)8(pAB1 + v+B"),
a', =(mc, +m )c(8v~ +BvAB), (B11)

1 ( cp™cl)(vA10 v&18) ~18 A187

O' =A.'+ M'

+ (mc, +mc*,)(vAB10+ v~"„),
yR AR+~R2 V 7Q

+(mc, +mc*)(vAB+ p AB,).
Similarly we can write the pole-term contribu-
tions in terms of A.&.

where

M„=a1K„+aoq~+K(b1K„+bpq„).

prom (B8) we get nonpole terms as follows:

(B8) Evidently, with the assumption that the a,. do
not possess any kinematical singularity, the fol-
lowing consistency condition can be obtained for
the process wC0- zCz* in the "soft-pion" limit":

a8(v-0, vB-O, IP-0) =0. (B12)
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