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Path-integral quantization of a Dirac string Lagrangian in the A = 0 gauge
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It is shown that the path-integral quantization of a magnetic-monopole string Lagrangian can be car'ried

out in the A = 0 gauge without imposing constraints or fixing the gauge completely. Longitudinal modes

and the string variables associated with the gauge freedom are not eliminated, but the quantum fluctuations
of these variables are integrated out in the Feynman path integral, and the electric Coulomb interaction
potential and the charge-monopole interaction potential are obtained as eAective potentials. The constraints
are imposed on the state vectors. It is shown how to construct such state vectors obeying constraints at all

times by using the path integral.

I. INTRODUCTION

Path-integral quantization. for theories with first-
class constraints is usually done following the
method of Faddeev and Popov. In this method one
imposes the first-class constraints on the phase-
space path integral and also fixes a corresponding
gauge. However, it was shown by Gribov that in
non-Abelian theories there are ambiguities in
gauge fixing. Several authors have tried to over-
come this problem. s Qne such method was suc-
cessfully used by Chang for the case of ordinary
electrodynamics with point electric charges. In
this method the A. o

——0 gauge was used but the Cou-
lomb gauge V'A =0 was not imposed on the path
integral. Longitudinal modes associated with the
latter gauge conditions were integrated out and the
Coulomb interaction between electric charges was
obtained as an effective potential.

In the present paper we will use the above method
for another Lagrangian. The Lagrangian contains
massive strings in addition to point electric charges
and vector fields. In the limit when the strings be-
come massless, we have effectively the Dirac La-
grangian~ which describes a system of electric
charges and magnetic monopoles. As in Ref. 4 we
use the A, O=O gauge but we do not impose the gauge
V'A=O. We obtain the Coulomb interaction be-
tween the electric charges as before. We then in-

vestigate the limit in which the strings become
massless. In this limit the string variables be-
come gauge variables. However, in the path inte-
gral, we do not eliminate these gauge variables.
The interaction between monopoles and electric
charges is obtained as an effective potential after
integrating out the string variables.

The content of this article is organized as fol-
lows: In Sec. II, we discuss the classical dynamics
and find the Schrodinger state vectors satisfying
the constraint equation. In Sec. III, we discuss the
path-integral quantization. We carry out the mo-
menta integrations and the integrations with respect
to the longitudinal mode variables associated with
the gauge freedom. We also discuss the time evo-
lution of the Schrodinger state vectors that satisfy
the constraint equations innitially. In Sec. IV, we
consider the limit in'which the mass of the string
becomes zero. We integrate the string variables
associated with the gauge freedom in this limit and
find the time evolution of the state vectors satisfy-
ing all the constraints including the ones that ap-
pear in this limit. This gives us the effective ac-
tion. Section V is devoted to some concluding re-
marks. In Appendix A we introduce new variables
and write the action in a form convenient for eval-
uating the path integral. Schrodinger state vectors
satisfying all the constraints are derived in Appen-
dix B.

II. LAGRANGIAN AND STATE VECTORS SATISFYING IMPLIED CONSTRAINTS

We consider the following Lagrangian:

E d x'+2 m r +g pyg yi, o' 7' dg — e A. J'
a

&„.=&,A. —aA, + e Egf(y -',y„.-„['y,"),[a(v)'/2", ]i!'(x-y)dvdv, (2.1b}

20 1979 The American Physical Society



2556 K. S. NARAIN 20

and y»(v, 7') are the coordinates of the sheet spanned
by the string, jb and y, are the derivatives with re-
spect to the timelike parameter 7 and spacelike pa-
rameter v, respectively. r,(t) are the coordinates
of the electric charges. m, and e, denote the mass-
es and the magnitudes of the electric charges. gb
are the monopole charges and p,(v) is the mass
density of the string y,(v} such that m, (x) =-Eo„(x), (2.3a)

For the development of the Hamiltonian formal-
ism, it is convenient to identify v' with real time t
and we will also set y'(v, t) = r'(t) =t. To obtain the
Hamiltonian we calculate the canonical momenta
7)'„(x), q„(v, t), and P„(t) corresponding to the var-
iables A'(x), y„'(v, t), and r,'(t). From L we obtain

p, (v) & 0 for all v and b . (2.2)
e(v) -,

1»(v) =-gb y» xx(yb) + pb(v)y»(v) (2.3b)

Notice that apart from the fact that in the La-
grangian (2.la), electric charges and strings are
nonrelativistic, L differs from the usual Dirac
Lagrangian ' in that we have introduced kinetic
energy to string variables. In Sec. IV we will con-
sider the interesting limit in which p,(v) =m»6(v).
In this limit L goes over to the usual nonrelativistic
Dirac string Lagrangian. However, in this and the
next sections we will assume (2.2). The reason for
this is twofold: First, the path integral over the
string variables becomes well-defined, and second-
ly, we will avoid the constraints corresponding to
the string variables and thereby we will avoid the
problem of imposing these constraints on the path
integral, as we shall see in Sec. III.

p, =m, r, +e,A(r, ) .
The only primary constraint is

r()(x) =0.

(2.3c)

(2.4a)

also become primary constraints. We will take
care of constraints (2.4b) in Sec. IV when we take
this limit.

The Hamiltonian then becomes

Because of (2.2) we do not get any constraints
from (2.3b). However, as was pointed out earlier,
in the limit when p, (v) =m»6(v),

e(v) -, --
X,(a) -=qb(v) +g» y»xv(yb) =0 for v &0 (2.4b)

2

H=pp, r, + jb(v) y, (v)dv+ )) Ad x-L
a

dx &I";, x +&mx + V'm+ e6 z —r, Aox

2

+P [p, —e,A(r, )]ev&J
)

e(e(v)vy y'xv(y) dv+fv(x)v(x)e(x,
2m, ' '

b
2pbv

where v(x) is the Lagrange multiplier correspond-
ing to the constraint (2.4a). When we require that
mo

——0 be preserved in time, i.e., its Poisson
brackets with H vanishes weakly, we get the follow-
ing secondary constraint:

V'7) +pe, 6 (x —r,) =0, (2 6)

Both the constraints (2.4a) and (2.6) are first
class. Moreover, one can. eliminate A and m from
the theory without changing the dynamics in any
way. This can be seen by the fact that A (x)
= [II,A»(x)]p)» —v(x) is completely arbitrary. There-
fore, in the following we will use the Ao ——0 gauge.

We will impose the first-class constraints on the
state vectors but not on the path integral. In other
words, in evaluating the path integral we wi1.1 not
use the first-class constraint equation but once the
path integral is evaluated, we will use it to find

I

V'm+ge, 6 (x —r, ) /=0.
a

(2.7)

To find this subspace % we find a differential
operator corresponding to [V'.t) +Z,e,63(x —r, }]as
in the usual canonical procedure. For this it is
convenient to go over to the normal-mode coordin-
ates defined by expanding the fields A(x) in a large
cubic box of volume Q =(2L)3

A(xyt)—:Q qb)((t)(t)„-b(x) (2.8)

the time evolution of an initial state vector which
satisfies the constraints. For consistency, the
final state vector must also satisfy these con-
straints. In view of this, we will find the subspace
K of the Hilbert space X of state vectors such that
any state vector )I) e Ii satisfies the constraint (2.6),
l,e ~ y
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where

4kb(x) = I

&2&
[(1+X)cosk'x+(1 —X) sink'x]

for kc 0, y =*1

1
for k=0, y=0,

w(x) =~ Pbz(x) k z + T + 400(x) . (2 9}
gyp Bg gq„(jq

Using (2.9) in (2.7}, one obtains the solutionb

&((q„'-„] &) =f(ie'-„,],(r.])4(5), (2.10a)

where g symbolically denotes all the variables
T

g-„, g00, yb(c), and r„and

,n~ mm lm
k c ~—) ~, .l, m, n, =0, 1)2, 3, ...L' L 'L

For k0 one can decompose q„~ into the longitudin-
al- and transverse-mode coordinates q,.„and q„-„,
respectively, as follows:

q) ) kg~x+ q~x& k q
In the Schrodinger picture the canonical momentum
v(x) in terms of normal-mode coordinates then be-
comes

dII' ~

fHq'„&, & 3)=exp —g —e,q„.,p; „(r ) (210b)
)t0 a

and g is an arbitrary function of the indicated var-
iables. Equations (2.10a), (2.10b) define the sub-
space %. In the next section we will evaluate the
path integral partially in order to investigate the
time evolution of a state vector g eSR. For this it
will be sufficient to carry out the integration with
respect to all the canonical momenta and the q~«.

HI. PATH-INTEGRAL QUANTIZATION

~e write down the usual phase-space path integral. The functional integration variables are A(x), m(x),

yb(c, t), r,(t), T)b(c, t), and p,(t). The path integral is
A(x t2) ~ ra(t ) ~'

~ yb(e t2)
IC(t„t&} = dA(x) dii(x) f dr fdP .. .. dy, (a)f d'd, (a)

A(x0ti) a ra(ti) - ~ b, v yb(a0 ti)
t ~ ~ ~ %I

xexp — dt p, 'r, + pb ybdv+ mbAd x-H, 3.1
ti a b

where H is given by (2.5}with A0 ——v0 =0. Notice that we have not included the Lagrange multiplier term
corresponding to the constraint [V'z+Z~, 50(x —r,)] in the Hamiltonian H. In this respect our approach is
different from that of Faddeev and Popov. ' In their approach one would introduce the I agrange multiplier
with the above constraint in the path integral and would fix the corresponding gauge (&'A=0}. For the
Abelian problem under discussion, the two procedures will yield the same results. However, in view of
the well-known Gribov ambiguities in the non-Abelian theories, we would like to pursue our procedure of
not fixing the gauge completely.

A. Integration over the momentum variables

All the momenta integrations are just Gaussian integrals and the result after carrying out these integra-
tions is

t- A(x, t2) i
K(t„t,) = Jl &A(x)

~
Sr, &yb(c, t) exp @&0&I, (8.2a)

x A(x0 ti) a' ra(ti) 3.0 "yb(e, ti) )

where $2i is the action t,Ldt,
b

—'p. . + —' A gb y„xybp z —yb dp + e,A r, 'r, +& m, r, + 2 pbyb da. 3.2b

B. Longitudinal-mode path integration

d

To carry out the integration with respect to the
longitudinal part of A(x), it is convenient to go over
to the normal-mode coordinates defined in Eq.
(2.8). To write the integral in a convenient form,
we define the following variables:

t2
8 —=— dT gb yb(c T) xyb(c T).k

b

0(g)
x40b(yb(~ T)) «, (8 8b)

~(o)
Qbb=&hz+ gb yb k4 -b(yb) 2

dc (8 8c)
k

(8.8a)
- &(c)

Q00=-a00+0 +0@00 yb yb
b

(8.8d)
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C;, =- — So&o»42-i(&o), &o=yo(0 ~)
k b

JL =pe, r, kp'tt„(r, ),

(3.3e)

(3.3f}

t2

S21 — dt's[ (Q„-„) +Q„- C"„

-ok (Qoi) +J2i Q2~1 ~ (3.6c)

J2)(=-ge r.421(r.) ~ (3.3g)

Using these variables the path integral (3.2a) can
be written as (for detailed proof see Appendix A)

o (t2) t(t2) (2
1~(f2 ff }= "

&a tf1 ~«xpl @S211
MO OL (ti)

"
i(ti) )

'

s„—s„+s„+~„+s„+s'„+s„,0 ~ nL e (3.5)

where S2& contains all qpp terms and is given by

o
21

= df 2Q00 + 2Qoowg&~oooo ~o
t) b

+ e.r, Qoofoo
a

~ssl

S21 contains all q» terms and is given by

t2

Sff = d~Z~ 2(@23'+~28221
t

t2 e,— „"„r,t2
kf. O

S&& contains all q„-, terms and is given by

(3.6a)

(3.6b}

Here by jS)we mean integration over all the var-
iables tl„-„, tloo, yo((2), r, . S» in (3.4) can be written
in the form of a sum of terms,

~o.=yb(&-) —r. . (3.6e)

Finally S'2& and S2& contain the remaining r, and z,
terms, respectively:

t

S21 = df2 Qm 1' (3.6f)
t~

t2 I

S21 = dt Q
) g g + 2+Co) ~ (3 6g)

t~ - b)b' 4~ b b'~

In the last expression we have dropped the time-
independent infinite Coulomb self-energy terms of
monopole s.

Now we carry out the integration with respect to
the longitudinal-mode variables qg, . Since only S2&

contains q„-„we can take out all the other terms of
the S21 outside this integration. S,f is the action
corresponding to a zero-frequency-mode particle
subject to an external force term JL;, and the path
integral for this case has been worked out, for
example, in Ref. 4. Making use of the result from
Ref. 4 one can write

S21 contains all the y„(o), o e0 terms that are not
included in S21, S21, and 821..

t

S2( = dt g~ Pbyb do'
b

e,g,f).'„«v,'.')(„«(&r)
b, , 4r lYba~ 2

(3.6d)

with

L (t t2 2

ak t(
t2-t)

t2
«f&()), (4)),(«.(4)))f*((ot.(4)) («.(4)))««p ~) d)Z 4 )

'

()

XeXp --
&Z)t t2 ~a k-1 raI„„0 "", 'k

Making use of (3.3a) and (3.7) in (3.4), we get for the path integral

4(t2)
+(f2 ff) +~ xpl (S2t + S21 +S21 +S2f +821}

f(tg)

(3.7)

2, fioexp g & (f2)+~2(~2) -&2(f ) -ge.— dfe ,(r.)-
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where

t2

S2&
——S2( — dt Qa)a' 4tt I ra ra' ~

(3.8b)

The second term in (3.8b) is the electric Coulomb interaction term where we have dropped the time-in-
dependent infinite self-energy terms.

C. Time evoluation of state vectors belonging to 9K
I

Time evolution of a state vector g((q~,(«)J, $(«)) is given by

If g((q~~„(t~)), $(«)) c8R, then from (2.10a), (2.10b).
we see that &1&((qr,(tq)j, g(«)) contains a factor
f((qg, (tq)},(r,(f&))), which cancels with the term
f*((q;,(«))&(r,(t&))) in K(t»t&)& and the qg„(t&) in-
tegration becomes a Gaussian integral whose val-
ue is one. Thus

@&&&4»=f«&4&&&4 4&&'&&&4» (3.9b)

and
4(t2)

K(t2, f&)= &)exp —(Sp)+S2f+Sp$+S2f+S2f)
g(t, )

(3.9c)

K(t2, «) is the effective Feynman path integral,
which does not contain any longitudinal-mode var-
iables. Equation (3.9a) implies that the Schro-
dinger wave function, which initially satisfied the
constraint Eq. (2.9}, will continue to do so at all
later times. The Coulomb potential [in (3.8b)] be-
tween electric charges is obtained as an effective
potential by integrating out all the longitudinal-
mode variables.

(((q'„(&,)), g(&,))=f((qf„(f,)),(r,(&,))) ~4($(f,)),
(3.9a)

where

there are additional primary constraints (2.4b). It
can be verified that these primary constraints do
not give rise to any secondary constraints, when
the condition that these constraints be preserved
in time is required. It can also be verified that the
set of constraints (2.4a), (2.4b), and (2.6) form a
set of first-class constraints, that is, the Poisson
brackets among these constraints vanish weakly,
provided the electric charges do not lie on the
strings.

'
We will assume that the latter condition

holds. As before, we will impose these additional
constraints on the initial state vectors and then,
using the effective path integral g(t2, «), we will
find out how these initial state vectors evolve in
time.

We also note that a naive substitution of (4.1) in
K(t„t&) will give rise to infinities. However, we
will follow the consistent prescription of taking
the limit (4.1}only in the effective path integral,
that will be obtained after finding the time evolution
of an initial state vector, which satisfies all the
constraints. In this way the infinities will not ap-
pear. To do this we will carry out the integration
in R(t~, «) one step further.

A. Path integration over the string variables in
K(t2, Si)

IV. 'FATH INTEGRAL AND THE EFFECTIVE
ACTION IN THE LIMIT OF MASSLESS STRINGS

In Sec. II we noted that in the limit

p&(v ) =m, 5(v), (4.1)

To carry out this path integration it will be con-
Tvenient to consider the set of variables (Q&;„,Q00,

y,(o), r, ) as the independent variables instead of
the original independent variables (q;„q»o, y, (v},r, ).
The path integral (3.9c) can be expressed in terms
of these new independent variables as follows:

X2
'

yg(ey t2)
( 2, «) = Sx, Dy»(v) exp —

(S~) +Sp, +S2( +S~)+S~)),
Xg a40 y&(c& t~)

X2
where, for brevity, we denote by X all the variables Q;„Q00, z», r, and by „~g we mean

~T
( t2) ~r ~00(t2) ~ zt f t2), &a(t2)

l7)t pp ~&, ) X)ra ~

&&0. Q@( ~) Qppft&) 8 zt,(t~) 'a' ra(t~)

(4.2)
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S21, S,1, S*,„and S» do not depend on y, (v), ex-
cept for 0 =0. Therefore, these terms can be
taken out of the Ii„pJ Syb(v) integrations. Only

S21 depends on y, (v) (v bb 0}as can be seen from
(3.6d). We first consider the last term in (3.6d).
%e note that

Qb, (t'ai f1) =+ dt dv -' Ip' 'Yb, (4.3)
o ba

are the solid angles subtended at the origin, by the
sheet spanned by the semistrings Y„(o) (o =+ lo' I),
when they go from Yb,(v, t1) to Yb,(v, t2). These
solid angles will depend on the boundary of these
sheets [that is, on Y„(v,f, ), Y„(o',t, ) and the path
of Yb,(0., t)], as well as on the number of loops the
sheet makes around the origin. For example, if
for v )0, Y„(v) while going from Y„(v,f1) to
Yb,(v, i, ) loops around the origin once, then com-
pared to the case when no loops are made,
Qi, (t2, f1}will get an additional factor of 4~. How-
ever, since in the integrand in (4.2), Qb', (fp, t1)
appears in the form

This means that if Schwinger quantization condition

e,gb =2nh, n=0, +1, +2, .. . (4 4)

expl —~ '
[Qbb(t» t1) —Q„(t» t1)

can be taken out of the Il, ~p J Syb(v) integrations.
b

The only remaining term in the integrand (4.2),
which depends on the path of y„(o) (v e0), is the
kinetic energy term

expl — «2 pb dv I.
b tg

To carry out the integration we discretize the
string variables as follows:

O„=neo, n=0, +1,+2, . .. ,

is assumed for all a and 5, then this phase factor
in the integrand in (4.2) will be just unity. In the
following we will assume that the Schwinger quanti-
zation condition (4.4) holds for all a and b T.here-
fore, the term

e„+6,1I /2

Pbn = do'Pb ~.-~A&2
n

(4.5)

the additional factor in Qb, (t~, f1) will modify the
integrand in (4,.5) by a phase

Z e~gbexp
R 2 ]I.

where bv is a small real number. Using (4.5),
and noting that the resulting integrals with respect
to y, (o „) (n c0) are just Gaussian integrals, we ob-
tain the effective path integral K(t„f1),

(4.6a)

where

where

X(t2) P ~

K(f2, f1)= QX exp —
(S11 + S11+Sp'1 + Ski+ Sb1)

x(t &

(4.6b)

where X denotes the variables Qb„Qpp, r„and z, .
1j} is an arbitrary function of these variables. Qrb„

Qpp Yb and f are as defined in E1ls. (3.3c),
(3.3d), (3.6e), and (2.10b), respectively. E((Ybj)
is defined as follows:

t
g g 2

S21 ~2$ + ++ dt ~~Pbozb
ti b

and

S21 g [Qbi}(f2if1) Qba(f2}f1}]'
8m

(4.6c)

(4.6d)

E((Y„})=ex -g ' ' [Q'(z, —r, +y„Y„)
a, b

—}}(z, —r, + i, , Y„}]),

B. Time evolution of state vectors satisfying all
the constraints

&H&'-3 &) =f(]&'-g ]r.))4(5),

where

4(t) =&(Hb.])4(X)

(4.7a)

(4.7b)

Let SK be the subspace of state vectors satisfying
both the constraint E1ls. (2.6) and (2.4b). Clearly
3Rc3R. Any }I}c5Ris given by (see Appendix 8 for
proof)

where Q'(z, —r, + y, , Y„)are the solid angles sub-
tended at the origin by the sheet spanned by the
semistrings Yb,(o) (v =+ lv I) in going from zb —r,
+yb(v) to Y„(v) along paths which without any loss
of generality can be taken to be straight lines
joining z„—r, +y, (o) and Yb,(o) for each v. y,(v)
is an arbitrary fixed string such that y, (0) =0.

Now 1j}c JIL is also contained in 5R. Hence as
shown in Sec. III C, if at t = f1 }I}c5II, then }I} at t
= t2 is given by
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q({q'- (t,)], 5(t,)}

=f({q'(t,)],{r,(t,)}}0($(t}}
where

i)(((x ))=f de((, )Ti)(x(&)),

(4.9a)

S'„= d~ —.C'„;—
QEp b )b 47T ) Zb Zbr I

+~ gmbZb
b

(4.11a)

x I [ d y (o'„, t, ) Ixe (t„t, ) F({& .( t }])
neo

(4.9b)

and the effective action is given by

Sn ——S2( + S,( + Szt + S2} + Nn . (4.11b)

In obtaining (4.9b), we have used Eq. (4.7b) in
Eq. (8.9b) and have also changed the variables from
(qL, qop y() r, ) to (Q};„Qpo y(, r, ) in the right-hand
side. From (4.6a)-(4.6d) one can see that Jf(t„t})
contains a factor exp[(i/K)S2&], which together with
E({Y„(t,)/}, gives

x({Y„(i)})exp —I, ' '[xi;(i, , ti) —A ,(ie)„i)i.},
b Bm

Q(„(t&,t, ) are the solid angles subtended at the ori-
gin by the sheets defined by z„(t) —r,(t) +y,(v), with
t'c[t&, t,] and a c[0,m]. Since yb(v) are fixed
strings, 0,',(t2, t, ) depends only on the path of Z,
—r, and consequently terms involving 0(',~(t„t&}can
be taken outside the II.~O fdy, (v„t,))integrations.
From (4.6a) it can be seen that the integrations
with respect to y, (v„, t&) (nc0) in (4.9b) are just
Gaussian integrals and their values are just one.
The final result is

H&(t2)} =&(Hb.(t2)1)F(x(t2)}, (4.10a)

To compare the effective action (4.11b) obtained
above, with the usual action for theories with
monopole strings, we choose yo(o) =no, where n is
a fixed unit vector. %e also take the static mono-
pole limit, mb-~, Z, =O. In this limit C„-~-O,
and

gbgb'
4m I Zb - Zb. l

becomes a constant which can be set to zero. For
simplicity, let us consider a single monopole situ-
ated at Z& ——0 and a single electric charge at r.
Further, if we ignore the terms involving Q~, and

Q», that is, if we neglect the radiation effects,
then the effective action (4.11b) becomes

eg r (n&&r)(n r)
S2} — dt, mr +—

[ 2
(t)

where

('(x(ii)) = fx (,)K „(„i,)X(x(e, ).) (4.10b)

This is the usual action for a nonrelativistic elec-
tric charge in a static monopole field and has been
studied in detail by Balachandran et al.

X ( t2)
K.„(x„t,) JxxX exp —S=i,i'),

X(t~)

eff P T -e -z Ze
S2) —S2) + S2) + S2) + S2g + S

S2$' ——g '
[n(,0(t2, t$) —Q(„(t2, t$)]

Sm

dt
4

" Zb-r,
t a, .b

(4.10c)

(4.10d)

~((T) y( x(Zb r +y))
JX do — or2 IZ —r, +y l

(4.10e}

When we compare Eqs. (4.9a), (4.10a) with Eqs.
(4.7a), (4.7b) we see that at t„gcII. If we now
take the limit (4.1}, that is p, (cr}=m,6(v), then

sty/2
pbo= m, 6(v)d() =

&O -~~/2

In this limit, therefore, Eqs. (4.10a)-(4.10e) re-
main the same, except in Eq. (4.10d) S,

&
will have

to be replaced'by S~~, where

, V. CONCLUSION

In view of the Gribov ambiguities associated with
gauge fixing in the non-Abelian theories, we pur-
sued a different approach to quantize gauge theo-
ries. The main feature of this approach is that
the gauge is not fixed completely and the first-class
constraints are imposed only on the initial state
vectors and not on the path integral. This approach
was used by Chang4 for the case of electromagnetic
field with charged particles. In the present paper
we have used the same method for a more compli-
cated but Abelian Lagrangian involving monopole
strings. The complication consisted in the fact
that besides the Gauss's-law constraint we had
additional constraints corresponding to the string
variables. The former constraint was handled in
the same way as was done in Ref. 4. For the latter-
constraints, we first introduced a kinetic energy
term to the string variables and thereby removed
these constraints from the path integral. However,
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these constraints were imposed on the initial state
vectors, and it was shown that the path integral
preserves these constraints on the state vectors
under time evolution. After integrating out all the
string variables, we obtained the expected effective
action.

This approach seems to work for the Abelian
gauge theories. Whether it can be extended to the
non-Abelian gauge theories or not, is yet to bq
seen.
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APPENDIX A

In this appendix we will derive Eqs. (3.5), (3.6a)-(3.6g). The Lagrangian (3.2b) in terms of the normal-
mode coordinates defined in EII. (2.8) is

2~2 ~ ~ ~, ~ ~ 6g ~ ~ ~ ~ ~, ~ ~&qg
zIIjg p)p 'II»g ~gb J yb +yb'gpgQbg(yb) da + 8 r 'II»gItIpg(r ) -~gbX yb'k && Igl„f„-(y )d-a

2

2 2
p i~~ - -i p- - ~(a) g(a)+ d x 2IIZ go yb "yb& (x-yb) da -- gb y'»6 (x-y ) da I2 b 2 )

+ 2 Qm. r.' + b'g Pb(a)yb'da .
6 b

(Al)

Here fda is carried out over those values of a for which yb(a) is in the volume Q. We also fix the strings
on the boundary of the volume Q.

We note that in the limit 0-~, replacing the sum by an integral over k, we obtain

E«.(x)4 p&(y) = 6'(x —y), (A2R)

1 - 1 3- - 1~4 f.(x)&.-b(y) = -
z 6 (x —y) =

a-- 4mlx -yl '

1 3 1 x-y
~ItI»~(x)4»-I, (y) =-&. p6 (x-y)=-

47t tx-yl

(A2b)

(A2c)

We first consider the first term in fd x in Eq. (Al). After integrating with respect to x and using (A2a),
one can write

J 3 &(a) 12 &(a) -'
"2

d x Qgb yb ~yb~ (x —yb) da =Z Qgb da yb ybkix(yb)
kX b

Similarly

3 p - - ~(a) 2 &(a) -,
d x gb y»6 (x yb) da = g, da yb'pbb(yb)

b k~ "b

(A3)

(A4)

(A5)

Substituting (A3) and (A4) in (Al) one gets

~(a) ~i - m M -g - ~(a)L =~2 (Ipx —~gb y» y i»(yII»)bbda —~a k XI4b+AZgb ytpb, -~(yb) da
k)t b 2 D )t b 2

I

+ e,r, 'qg„~)„r, + ~ m, r + ~ pbyb do .
a a b

Here we have dropped a term proportional to It pp' because Ppp goes as 1/LP, whereas the coefficient of
happ namely 22I»g, y,

' [e(a)/2]da)' goes at most as L'.
We define new variables for ke0 as

@bi=&bb+I

&(a) -'

~»II gb « . «yb(~) "y'(&) ~%a(yb(&))'
b t i

(A6)

(Av)
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and

T=~
Qkk -=qkk+D}2k,

r X, e(g)» ~~k -}}(yb)

(A8)

(A10)

Differentiating (A9), with respect to time and carrying out partial integration with respect to g, we obtain

e(g) '

Dkk g b
y yb ~ 4 k-k(yb) dg Zb ~4 k-k(Zb)2

&(g) -' &(g) -,
dg y, xf2yt ky}f}k,(yb) + dg y', xkyb kayak&(yb) ~

2 2

But yb at the end points of the string is zero. Therefore, if we define

A

Ck}} M gb Zb ~4 k k(~b) y

then from (A10) and (All} we obtain

e(g}
Dh+C„"-,=-)2 x gb dg (y, xy,') xkpk„(yb) .

le

Using the new variables we can rewrite the first term in the right-hand side of (A5), for k WO, as

e(g) ~ ~2
2

qkk-Kgb yb "ybg2k(yb) dg =Q~+[Qkk+Ck, ] .
b- 2

(A12)

(A13)

Using the definition (AB}, (A9) and partially integrating with respect to g, we can rewrite the second term
in the right-hand side of (A5) as

y 2

Z k q2k+~Pgb yb4 k k(yb) 2
dg —2 f2 Qkk ++~~7 Qgb 4k (yb) 2 . dg +gb~kk(zb)

f&0 b M'0 RAP b b J
)t

y2 T + g'bf gb2 (A14)
g~p

'"
b, &b, « ~ Zb, —Zb, ~

'

where in the last step we have used (A2b) and the fact that as 9-~, 1/ I Zb -y, I -0, if yb is the point of the
string on the boundary of Q. We have also ignored the time-independent self-energy terms of monopoles.

Next we consider the third term in the right-hand side of (A5}, for ko0:

~ ~~are Qk)t kX ra k k)t+ kA, ~kX 4~PE Dkk J4
PO a 040

(A15)

where

~era k) ra
a

(A16)

A
Jk},= e,r, ')24ik(r, ) = e 4i-k(ro) ~ (A17)

Now the third term in (A15), using the definition (A7) and (A17) and integrating partially with respect to
time, can be written as

I

d A - % -' -, X - &(g)
B2„J2,— — e, -„&&krak,(r,) +Z e,gb yb xyt'k~Qkk(yb)}f}k k(r, ) dg

&0 Alp a, b

dg~ y~ } gy.gay, xy,'y, .y(y} (A18)
) gb, l

where Y„(g)=y, (o) —r, and in the last step we have used Eq. (A2c). Similarly using the definitions (A9) and

(A16), and the relation (A2c), one can rewrite the last term of (A15}
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~8 g» r, xyb'Yb &(o)
Dg~ JP„—,

I~ 2j,~p „b 4& I Yba
(A19)

Combining (A15), (A18), and (A19) we get
P'

de,r, qb, /fan(r, ) =~ Q»„J';b+Qpb'Jf„-Z—e, n—„„&f&--„,(-r,)i +~ do'
&P . jf&P " a

Lr 4„

.0

E (0)Y'b XY»

l Yb, I3 (A20)

Finally, we consider the qpp and $00 terms. I et
Lpp be the Part of L containing qpp and &00 terms,
then from (A5) one obtains

Combining Eqs. (A5), (A18), (A14), (A20), and
(A22), we get Eqs. (8.5), (8.6a)-(3.6g) for the
action.

(o)
Lpp = 0 qpp -~gb yb Xy»4'00

2
APPENDIX B. STATE VECTORS SATISFYING

ALL THE CONSTRAINTS

+ ezra qpo&'op ~

a

If we define

- p(o)
Qop=qpp+p&00Zgb y»Xyb

b 2
(A21)

In this appendix we will find the subspace Sk of
state vectors satisfying both the constraints (2.6)
and (2.4b). The differential operator correspond-
ing to the constra, int (2.4b) can be obtained by the
standard canonical procedure, and the correspond-
ing equation is

then differentiating (A21) with respect, to time and
integrating partially, and noting that y„=0 on the
boundary of volume Q, we obtain

-, &(o)
Qpp= qpp

—400Egb yb y» do
b

1
00 ~g»Z» X Zb .

Therefore, one can rewrite Lpp as

1 2 1
Lpp ——~ppp'+ pQpp g»4 ppZ» x Zb + ears Qpp~pp &

(A22)
where we have dropped out the Qpp terms.

e(o) -, 8+%~9 4(yb) 2
—yox - /=0, for ow0.

~qp)t

(Bl)
tjt satisfies the constraint (2.6) also. Therefore,
from (2.10a),

4(]e'-3 &) =f((eu f. .])&((). (B2)

Substituting this in (Bl), dividing by f and noting
that

a a ~ - a a
4»b(yb) - =4'00 - +Zdkg(yb) & g+ -r-

~qk)t ~qPP QP BQ jf)t BqQ

we obtain
8 e(o), i 8 ~ - 8 &

- ~ i-e(o)1 y,'xY„
,
+

2 A»Xi &003- +2&»A( o) 3-r )
&=2&be.g( —- iS' ~

Pbbs] qpp a&Q qp)t jg a 2 47r I +ba
(BS)

In obtaining (BS) we have used Eq. (A2c). Equation (BS) suggests that |j can be written in the form

tj'(5) =F((Y».j)Tt'(h)

where
(B4)

0aB .»p
@
. aE» do

2 4 0
i

I it& y» (o)
a, Zb

- r~ + yb(fy) yb fbi& ~

In this expression y,(o) is an arbitrary fixed string such that yp(0) = 0 and the path of y„(o) may be conveni-
ently taken to be the straight'line joining Z„—r, +y,(o) and Yh, (o). The integral is carried out over only
those values such that y„(o) + r, lies inside the volume Q. In fact, one can see that

5yb.(o) x yb.(o).-
0 'ybn(o) =fi (Zb ra+ yb) Y»n) ~

0 2» -r~+v»(e& i ybs(O

where 0'(Zb —r, +y„Y„)are the solid angles subtended at the origin by the sheet spanned by the semi-
strings y„(o) for o =+la I in going from Zb —r, +y, (o) to Y„(o). Therefore, F can be written as

~4

&(]yb,f) =exp —g ' '[fl'(Z» —r, +y», Y»,) —fl (Z, —r, +yb, Y„)]
a, b J

(B5)
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I' is well defined provided the Schwinger quantiza-
tion condition is assumed to satisfy, i.e., e,gb

—2'
whenn is some integer. We will assume that this
condition is satisfied.

We notice that

i e(o) 1 Y'„xy„
(86)

~yb'P') 5 4m l b, l

Let

(89)

Then in terms of the new variables defined in (88)
one can show that Eq. (BV}becomes

Substituting (84) in (82) and making use of (86),
one gets

4=0 for oc0.
6y» o

(810)

8 E(g} ~1 6 ~ 6
+ g»y»" 4»0 = +

yb p) ~qp{} %p ~qQ;)

(87}

We change the variables from (q;», qop y»((T) r, ) to
(Qf„,Q«, y»(v), r, ), where

&(o)Q- =qg +~g — y'x&(f'R- (y ) 2
dg

(86}
- &(o)

Qoo=q«+~z g»~oo y»xy
b 2

~ =~(x) (811)

Equations (82), (84), (85), (89), and (811)de-
fine the subspace Ai of state vectors satisfying both
the constraints (2.6) and (2.4b).

(810) implies that 4 is independent of y»(o) (a»» 0).
Therefore, 4 is an arbitrary function of Q»„Q00,
Z„, and r,. For brevity, we will denote all the
latter variables by X„
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