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Explicit perturbative solution of multichannel wave equations
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It is shown that a general perturbative method can be developed for solving the coupled equations of the
multichannel formalism. Assuming channel potentials for which Taylor expansions exist and weak channel
coupling, we show that two pairs of eigensolutions can be constructed which belong to one and the same set
of eigenvalues. The solutions can be matched and normalized, and the eigenvalues are calculated explicitly
in the form of asymptotic expansions. Finally, generalizations and applications are discussed.

I. INTRODUCTION

Recently Dashen et al. ' have given a detailed
investigation of multichannel potential scattering
with at least one permanently confined channel.
In particular they established rigorously various
fundamental properties of the wave operators,
the S matrix, the spectrum of the Hamiltonian,
and expansions in terms of eigenfunctions, and
they formulated the problem in such a way that
its extension of single-channel scattering theory
is particul. arly transparent.

The success of nonrelativistic models in re-
producing the observed mass spectrum of heavy
quark-antiquark states has led to a revival of
interest' ' in the multichannel formalism. "
Thus the present investigation was motivated by
the desire to explore the possibility of the ex-
istence of hadronic molecular states. in the e'e
mass spectrum above the second radial char-
monium state. The search for such states has
been activated by the recent observation of a
large number of narrow states in the baryon-
antibaryon spectrum and their interpretation as
baryonium excitations, and by the idea of exotic
and cryptoexotic Q'q' states. '

In e'e scattering the region just above 3.7
GeV (center-of-mass energy) is of particular
interest because this is where a DD* molecular
statee is most likely to show up (at around 3.85

GeV), and if the charmonium model is reasonably
correct, this state could not be mistaken for the
next radial excitation which is predicted to be at
around 4.0 GeV. Single-channel potential. theory
normally leads to broad widths, but narrow

.widths can be generated by the weak coupling to a
second channel. ' lt is therefore plausible to in-
vestigate the two-channel problem defined by the
transitions cc-DD*-DD*.

In the present investigation we shall not be
concerned with a specific application. Instead
we present a perturbative method for calculating
the discrete eigenvalues and eigenfunctions for a

large class of potentials, since this is a useful
prerequisite for the determination of various
composite states and their Regge trajectories as
well as other applications. Our method is a direct
generalization of the method applied previously
to a large number of single-channel equations
and its extension to the mu1tidimensional case.'
However, in spite of its simplicity it will be
seen that this genera, lization is by no means
trivial, since the procedure depends crucially on
the construction of an unperturbed "Hamiltonian"
which is a multiple of the unit matrix and so
commutes with each of the matrix coefficients
of the perturbation. The latter has its counter-
part in multidimensional perturbation theory,
where a specific curvature constraint is re-
quired in order to permit a separation of the
rotated variables in the leading order of the
iteration scheme. '3

We begin by considering the two-channel case
for both channel masses equal to 1 and channel
potentials contairiing a leading harmonic part and
anharmonic perturbations. In Sec. II we derive
one pair of solutions together with the associated
eigenvalues. In Sec. III we derive a second pair
of solutions (this is WKB-like and valid in a
complementary domain), and we demonstrate
explicitly that the eigenvalue expansion obtained
is identical with the expansion obtained pre-
viously in conjunction with the first pair, thus
verifying our calculations. . In Sec. IV we con-
sider the matching" of the solutions and show
how the method can be generalized to the case of
different channel masses. Finally, in Sec. V
we summarize our conclusions and discuss the
generalization to include scattering as well as
poss ible applications.

II. A FIRST PAIR OF ASYMPTOTIC
EIGEN SOLUTIONS

We consider the two-channel problem defined
by a system of coupled Schrodinger equations
which we write in the form
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d2—,+ E-ZV - 1'„(y)

-y'. ,(x)

-1'„(y)

CP

d ~
+&-Z'S'- l'..(S) 4.(X)dg

=0

Here E is the total energy of the system, which,
of course, has to be the same" inbothchannels
in order to permit the system of channel 1 to
convert into the system of channel 2, and vice
versa. Ne write the channel potentials as a
harmonic term supplemented by anharmonic
contributions, i.e., in channel i (i =1, 2) we as-
sume a potential

d' E x2
+dx' 2g 4

d' E x'
+

dx 2g 4

v,

v» v»
(6)

(2)

%e include a term a,"; y2 in V&; in order to a,liow
for the possibility of different harmonic con-
tributions in the two channels. It will be seen
later that it is necessary to include this differ-
ence in the perturbative contributions. The
coupling potentials will be assumed to possess
the expansions (e.g., as entire functions)

where i 4j.
As emphasized in the Introduction, the poten-

tials we consider here are chosen so as to
facilitate a simple and transparent presentation
of our method. For this reason we ignore also
the centrifugal terms (which would have to be
incorporated in numerous specific applications),
and for simplicity the reduced masses of our
channels have been set: equal to —,'. %e will
comment later on the possibility of generalizing
our considerations. At this point it should be
noted, that we do not assume the channel potentials
or the coupling potentials to be the same. How-
ever, time-reversal invariance of the Hamiltonian
implies t/'» = V»."

Our first objective is to derive the approxima, te
behavior of our energy eigenvalues E. For small
perturbative contributions and weak channel
coupling this behavior is determined by the dom-
inant harmonic terms. For a convenient formula-
tion of our method we proceed as follows. ln (1)
we make the substitutions

==2P+-
2g 2g (6)

The quantity & remains to be determined.
Next we substitute (8) into (6) and multiply the

equation by -2. The resulting equation can be
written

1
&&pe = -f/4

where
~ 0

+PP
P&

Q7'
cop 2 . P + 2 X

dx

and

&-V -V

For small perturbative contributions and weak
channel coupling the right-hand side of this equa-
tion may be neglected to a first approximation,
i.e., the solution Q =(~,') is given to zeroth order
by

p(o)
' P' =p

Pg

where p =E/g, and Q~ =D,/, &~ »(x) is a parabolic
cylinder function. The requirement of square
integrability of the wave functions over the entire
interval 0&y- implies thatP =2n+1,
n = 0, 1, 2, . . . (if, instead, . the wave functions are
required to vanish at some large but finite dis-
tance yo away from the origin, P is only approx-
imately an odd integer, i.e., P =2n+ 1+0((1/yo)).
%e now set

(2g)x/ay

e» =2Zk

Equation (1) can then be written

(4)

(6)

21 22

Thus the zeroth-order solution (7) is given by

&n/&n/ =o (12)
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Since

P+», P+» 4+»,pt »

and

+p+f, p+f -+pp

where 8~~ is the unit matrix multiplied by i, we
have

&pp»r)p», p =8 »P». ,"».» ~ (14)

This equation will be used in the development of
our iteration procedure.

We now consider the right-hand side of Eq. (9).
First we reexpress U»P» as a sum over various
»p»„» ~», i.e., we write

U»P» ——Q C(P, P +z)P»,„»;,

R» —— U»P»» -Z C(P, P+i)»P»»»».(0)
g

(16)

where each coefficient C is a matrix. The ex-
plicit calculation of these coefficients will be
considered at the end of this section. First we
deal with the perturbation procedure. Thus the
zeroth-order solution»P(0) =»P» leaves uncompen-
sated on the right-hand side of (9) the contribution

Using (14) we see that a term C(P, P+i}»P~, »;
of this sum can be taken care of by adding to»P(0)

the contribution 8« 'C(p, p+i}»P»„»»,.» except, of
course, when i =0. This means that the first-
order contribution of »P is

( j.) C(p, p+i)8»» '»p»„»„
g &ao

(17)

At this point we make an important observation.
The contribution»P ') is obtained only by virtue
of the fact that S» and 8~~ are multiples of the
unit matrix which commutes with C(p, p+i). If
instead we had formulated our procedure in terms
of diagonal operators X)~, ~,, 8;&, we would now

be faced with the difficult problem of handling
noncommuting operators for the purpose of de-
riving the first-order contribution. It is this
difficulty which makes it practically unavoidable
to proceed as we do, although superficially our
considerations so far seem trivial.

We observe that the first-order contribution
(17) leaves uncompensated in (16) the term in

This will. be used to determine & and hence
E. Now, since»P(o) =»P& leaves uncompensated
R»»o, the contribution»P ') leaves uncompensated

(~) C(p, p+i)8;» (0)

& ~~p

= —,Q C(P, P+i)8;; ' Q C(P+i,P+i +j )P»„»»»,,» .

It foilows that the next-order contribution»p ' becomes

(18)

(p
' = —,Q C(p, p+i)8»» ' Q C(p+i, p+i+j)8»„»„

~to

It is now obvious how our method proceeds. Thus finally we have the iterated sum

p( 0) ~ p(») + y(2) +...

(19)

(20)

(21)

This is the equation from which ~ and hence our
eigenvalues E are determined.

We have thus found one solution of our set of
coupled equations together with its associated
eigenvalues. A second, linearly independent so-
lution is obtained by changing the signs of P and g
throughout (this change leaves the eigenvalues
unaltered). A further pair of solutions is ob-
tained by the interchanges

X~+ZX
y P~ ~P p g ~+Zg

(22)~4, (~) = (P, p + 2)4 .+ (P,P - 2)4,-. ,

where

(P,P+ 2) =1, (p, p -2) = -,'(p -1}.
. The region of validity of these solutions is around
the minimum of the potential at x=0, i.e., For higher powers we have

This is a solution of our coupled equations, provided the sum of the coefficients of the terms containing

»P» in R»»0, R», »», , R»,»', , . . . , left uncompensated so far, is set equal to zero, i.e.,

0= -C(p, p)+ —,Q C(P, P+i)8»»"'C(p+i, p)+ ~ ~ ~
]~ Q» ~

fP Q
l

where x s 0(l/g ) for n & 0.
We now return to (15) and calculate &. For the

evaluation of the matrix coefficients C(p, p+i)
we need the recurrence relation of the parabolic
cylinder functions»»»»~. We write this relation in

the form



2544 H. J. W. MULLER-KIRSTEN AND R. MULLER

(23)
2z

&*op(&)=Q S (P i)Awe.
l-2z

The coefficients S;(P,j) satisfy the recurrence
relation

under the conditions

So(P, O) =1, S;(P,j)=0 for j ~ l2il ~

S;(P,i) =S;-,(P,i +2)(P+i+2,P+i)
+S(-,(P,i —2)(P +i —2,P +i ) (24)

Using the relations (22) and (23) we obtain (for
(,j=1,2)

-2l

Q C (P, p+"&)(Pp.«(&() =&0'p(&) —Q a'("
2 )(2 Q S((P, I(N'p «(&)

l=2 k=2&

(25a)

and for i t j

Q C;((p, p+k)(pp, «(x) = —Q a;y „,QS((p, k)(pp, «(x).
k

(25b)

C,.((p, p) = 4,. — a!,." „,S,(p, 0)
1

The coefficients C can easily be read off from these relations, e.g.,
I

Inserting these coefficients into Eq. (21) we obtain

1 (2)

, a',.',.'S,(p, 0)zz 4

a(0)+ P
( (2)+ (2))

2g zz

[3(p2 1)( (4) (4)) 2 ((& (()
]

1
8g zj zg gi

a . o ~ e(2)
i 2g ii

[since, e.g. , S,(p, 0) =0] and for (W j
C,,(p, p}= —Q a',.",. ,2 „„S,(p, 0}

i.e.,

E —pg~ a(o)+ P (a(2& + (2)
i 2g zz i$

+ [3(p'+1)(a"'+a'") —2a'"a"']1

(O) P (2)=-a - ——a. . —~ ~ ~ .4 2g 4

"()
wherei, j=1,2 and i&j. We have thus found the
two eigenvalues of our 2x 2 eigenvalue equation.

III. A SECOND PAIR OF ASYMPTOTIC EIGENSOLUTIONS

We now derive a second pair of large-g asymptotic expansions for the wave functions of our coupled
equations. This pair is valid in regions of large y where the expansions obtained above are no longer
applicable. Of course, the corresponding eigenvalue expansions are identical with (26) and (2V) above.

Our starting point is Eq. (1) in which we insert the expression (8) in terms of the quantity 6, which is
again to be determined by iteration. We then have the equation

~d
d .+Pg+&-~„(y)
dg

-v.,(y)

-v,.(y)
4,(y)

cF

dg
~ (y) .P,(y).

22

=0, (28)

where we have set

~;;(y) =g V+v;((~). (29)

In the following we will. again require a.matrix
differential operator which commutes with an
arbitrary matrix. For this reason we introduce
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~(~(y) = ~(y)+ [(d~~(y) —~(y)]

Normally g'y2 will not be an approximation of
&o, ,(y} for large y, so that in general &o(y) con-
tains the dominant part of V, ,(y).

Next we set

A(V) =Xi())exVI+A[~() )]' I. (30)

The equation for X =(„"') can then be written

1
&»X = -UX

g
where

(31)

~ l
S»

1/2 d 1 QP'
p=+ (d —+ —

1p p yg dg 2g Qp

(32)

d
2 ++ + Q7 ('d11

(33)

a function &o(x) which is to be chosen such that it
approximates both (d» and u„. Then

In particular we observe that
+»X p+ i,p+ i ~i iXp+i, p+ i ~

Again our next step is to express gR» =UX» as(o)

(36)

UX]p = g C(p~p+ ~)xp. s, p r

(we use the same symbol C as in Sec. II, although
they are different in the two cases}. We defer the
explicit calculation of the coefficients C(p, p+l) to
the end of this section. Thus the zeroth-order
solution (34} leaves uncompensated on the right-
hand side of (31) the contribution (37) multiplied
by 1/g. Using (36) we see that a term
(I/g)C(P, P+i)x~.; ~; can be taken care of by
adding to X

) the contribution

8;; -'C(p, p+i)xn. , ,n.
g.

except, of course, when i =0. This means that
the first-order contribution of X is

(1)x'" =- c(p, p+&)8" 'x~~. ~- (»)
g 'o

Again this contribution is obtained only by virtue
of the fact that S» and 8;i are multiples of the
unit matrix which commutes with C(p, p+i). The
iteration method is now compl. etely analogous to
the procedure of Sec. II, so that we can skip
further details. Thus finally we have the expan-
sion

-V21

d2
2 +++(d-

Qg x =x(-"+x'"+x.("+",

(o) 'Xu
X» t (34)

where X» is the solution of

»x» =o
and so

g 1/2 pg y

(~(~)]'"I '

We observe from (30), (32), and (33) that if we
know one solution g = („"')we can find another by
changing the signs of ~" throughout or, equival-
ently, by changing the signs of P and g [also in
&u(y)]. By construction the right-hand side of (31)
is of O(1/g) compared with the left-hand side.
Hence to a first approximation we can neglect
the terms on the right-hand side of (31) for
g- ~ and write for the solution to that order

which represents a solution of (31) if again

0 = —C(p, p)+ —
~

1 1

xQ C(p, p +i )8;; 'C(p +i,p) + ~ ~ ~ X])p
iA o

(40)

with the coefficients C(P,P+i) now defined by (37).
The relation (40) is the equation from which &
and hence the eigenvalues E are determined.

We have thus found a second pair of asymptotic
eigensolutions of our coupl. ed equations. This
pair is valid whereg'y' 21, i.e., y' ~1/g' and so
excludes the region in which our first pair is valid.

Finally, we check our considerations by cal-
culating & in the context of this second pair of
solutions. For this purpose we return to Eq. (37}
and calculate the matrix coefficients C(p, p+i).
For the diagonal. elements of U we have

apart from an overall multiplicative constant which
we ignore in the following except in the. context
of normalization (the factor g" is inserted for
convenience in later expressions). It will be ob-
served that (31}is now in a form analogous to (9),
although corresponding quantities are completely
different. We can therefore proceed as before.

CP
d;; = d--2 +&+ CO- ~„

5 ~" pg ~ p2g'2 1
16 N2 2 &3~ 4

(41)
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' For convenience we choose

~(y) =Z' y'+ V( y) (42)

Then, choosing the solution with the upper sign,
we have

where V(y) is the leading part of V, ,( y) for both
i=1 and 2 for large y. As in our previous investi-
gations" "we now expand»o(y} around a point y,
for which ~(y,) and &o'(y, ) =0. Then

Substituting this expansion into E»I. (35) and re-
versing the resulting expansion we obtain ~;g=-~;gXp= —~ &~g Xp-2a.(a) (45)

(p+ 1 }(p+3)
4 2 +4 —V»» X@+@&(X}

(p+ l}(p+3} ~ (2)
4 X&+. —Z «» X&-2, +&X2 +&&(X).

» 0=2

(44)

Similarly we obtain for the off-diagonal elements
of U (i.e. , isj)

( y y )1/2 g d P-»2»+»)

j=o Xp

The coefficients C(p, p+l) of (37) can now be read
off (44) and (45) by comparison with

with easily calculable coefficients d„., This ex-
pansion can now be used in order to reexpress d, ,
of E»I. (41) as a linear sum over various X,.&„,»
with constant coefficients. The computation of
these coefficients is very cumbersome and will
not be repeated here; details of their calculation
can be found in the treatment of very analogous
cases considered in Refs. 11, 12, and 14. Thus,
in order to bypass awkward algebraic expressions
we content ourselves here with an approximation.
Our approximation will consist in ignoring in the
potentials all but the first terms in expansions (2)
and (3) (recall that these are assumed to be the
expansions of entire functions). The corresponding
approximation of the solution Xp will then be the
dominant term of its expansion in the domain where
it merges into the solutions derived in Sec. II.
Then (o(y) =g'y' and

-(1+p)/2
Xp

—7

We emphasize that the approximation consists in
ignoring all terms involving a", for k&2. We
designate such contributions (which in general
depend on p) by &2(y).

C»»(p P+ ~)X~, »

and

d„=+C;,(P, P &)X„, fo

Thus

(P+1)(P+3) '1
C p, p+4 =

C(P, P+2) = O(~,}
r g g(o)&

C(p p)=
-a2,(o)

+ O(f»),

C(P,P-2) =

and for k~ 2

g(1)
21

+ O(~,)

(y) (a)
C(p p 2y)- »' '2 +O(g ).

(~) (&)g -022
E

If we go as far as the second term in E»I. (40),
have apart from terms of O(c»)

(46}

(47)

C(P,P)+ —g C(p, P+i)- C(P+i, .P) =C(P,P)+ [C(P,P+4)C(P+4, P) —C(P, P —4)C(P —4, P)]
1 . 1 1

& "422

~ g(2)
2g 11

+(o) ~ +(2)
2g21 21

g(o) ~ g(2)
12 122g

g(2)p
2g 22

(48)~

Setting the sums of the elements of each row of
this matrix equal to zero, we see that the result-
ing expansions for 4 and hence E are identical with
(26} or (27), although the method of calculation is
completely different.

IV. MATCHING, NORMALIZATION, AND
GENERALIZATION

In Secs. II and III we derived two pairs of
linearly independent solutions of the matrix
e»luation (1) which are valid in complementary
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domains of the independent variable. Their
analytic continuation and normalization pr oceeds
along the lines of our previous investigations. "
%e therefore do not go into extensive details here.

The solutions of Sec."'II are

Next we insert (42}and (43) into (50). Then

42(~",P,g) =&2(P,g)e"'~
)( (y2) (2+1)/4 1 +0

~

(y
Ig (53)

4,((v';P, g) = '2 ' 0(~";P,g)
&.(P g

and the solutions of Sec. III are

(49)

Thus comparing (52) and (53) we see that g, and

g2 represent the same solution in their Common
domain of validity, provided

&(P ) (2g)(2-1) /4 1+O ~g ( p2g g
x [1+O(1/g)],

(50) x [1+O(1/g)]. (54)

(F2(~;P,g) =(C2(~" -P -g)
where we have introduced normalization con-
stants N„N„and the variables and parameters
are defined as above. The constant N, can be
related to the constant N, by going to a region
of common validity of our solutions. Thus in-
serting the l.arge-x asymptotic expansion of
$2(x) into ())„ i.e.,

By imposing the condition of square integrabil, ity
and proceeding as in Ref. 14 we can determine
N, . We do not go into further details here.

%e now consider the ease of different reduced
masses p,„p., of the two channels. In this case
the second derivatives in (1) will be multiplied
by a factor I/)1, . In order to be able to construct
a matrix operator which is a multiple of the unit
matrix, we define a mean reduced mass p. by

(~) e 22/4~(P 1) /2 1 (P
8x2

[recall. that x=(2g)12y andg is assumed to be
large], we see that g, behaves as

(51)

The deviation

(55)

((dl/2 p g) 1(P t g) g2 /2

)( (2gy2)(P 1) /4 I + 0 11
g]- (52)

l

can then be treated as a perturbative contribution.
Multiplying the equations through by p, , we have
instead of (1)

d .+~& g'(y' -)~„(y-)+
0,2

-) I'.,(y)

Proceeding as before, we set

(4 2 +)1/4y

and

(I); =(4g')1) P1, V&, =(4g')1) 'v„.
Then

p.g =pg p.'~+4,
and instead of Eq. (9) we have

1
+294 1/2 U4 tgp.

d
d .+u& g') y' -)I'22(y-)+

dy

P, (y)

4.(y)

(58)

(60}
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where

V &' —
&(4 ')ik CP

cia
(61)U=

cP
V~i ~-V»+ (4Z p)

From (15) and (25) it is clear that the coefficients C„(P,P+k) of Sec. 1I now receive an additional con-
tribution coming from

Using the differential equation (12) we can rewrite this as

(g'V)" ' —(-p+ —'x )4, =(g tu)' ' [aS,(p, 4)$„4—-'pp, +IS.(p, 4)Q-q 4].
PV,.

Hence C;'(P, P) and C;;(P,P+4) become

(63)

C«(»»=. - g &'*"(2 ~ S (P, o)-(Z'u) ' '
s, (64a}

(64b)

U(8) =e'

where o, is the second Paul. i matrix, and requiring UHU to be diagonal, one finds for V» —-V»
1)d'

V = —,'tanr8 (V —V )—12& (11» " g d92

and so

1 d'

P1 Egg

————-g y -7' -2g H11 12

9

j.
p., dy ~ -S'&' —~»+ &S1.&-

a
OO a~ ala ~

and other coefficients remain unchanged.
%e have thus demonstrated that unequal channel masses can easily be handled in the formalism of

Sec. II. It is not difficult to see that the appropriate generalizations can also be incorporated in the
formalism of Sec. III, so we do not go into further details.

%e close with some comments on the separability of our equations. In general the equations are not
separable. However, we can search for a unitary transformation U(8) (for some rotation angle 8}which
diagonalizes the Hamiltonian H of Eq. (56) and so separates these equations. Thus setting

where H = —,'(H„-H»), H;~ being a diagonal ele-
ment of Q and

tan28=[(1+2g„)'-1]'~'.

Thus the difference between the original channel.
Hamiltonians, i.e., 2H, appears as a contribu-
tion which again has to be treated as a perturba-
tion. However, since the equations are now
separable, one can solve the coupled system for
channel states characterized by different quantum
numbers P, and P,. This is then another way to
attack our problem in the special case of V12 ~21

V. CONCLUSIONS

In the preceding sections we have demonstrated
that one can easily develop a perturbation theory
for solving explicitly the eigenvalue problem de-
fined by the coupled equations of the multichannel
formalism. In particular we have shown that
different types of solutions (valid in complementa-
ry domains) can be derived and matched in neigh-
boring regions of validity. The eigenvalues are
given explicitly by expansions (27) which have been
derived by two independent and completely dif-
ferent methods, and thus serves as a verification
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of our procedure.
We have not dealt with the scattering problem

here. However, this can be done in a manner
analogous to the derivation of the 8 matrix for the
Yukawa potential. " Put briefly, the procedure
is to treat the secular equation (27) as an equation
determining the auxiliary parameter P (which in
the case of the discrete spectrum is 2n+'j,
n = 0, 1, . . . ), i.e.,

P = —(&-o„)+O~ —,(0)
~g'

The solutions associated with the continuous spec-
trum can then be constructed fx'om those of the
discrete spectrum by replacing P by this ex-
pression.

Ne have shown above that our procedure de-
pends crucially on the construction of a differen-
tial operator which is a multiple of the unit ma-
trix and thus commutes with the matrix coeffi-
cients of the perturbation (this is reminiscent of
the commutation property between a Hamiltonian
and the generators of the transformation which

leaves this Hamiltonian invariant). We have also
shown that the difference between channel
masses must be treated as a perturbation. Cen-
trifugal terms can also be taken into account by
following the method of Ref. 11. However, a
difference between channel angular momenta or
quantum numbers would again have to be treated as
a perturbation.

The solutions we derived offer a simple way
for investigating a number of interesting prob-
lems, particularly questions associated with the
possible existence of Q'Q' composites. For in-
stance, the approximate widths for such states
should be calculable from our eigenvalue expan-
sions by using the semiclassical formula" for the
value of the wave function at the origin. If the cen-
trifugal terms are taken into account, Regge tra-
jectories and their distortion by channel coupling can
be investigated. Some of these problems will be
treated in a later publication.
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