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A kernel is proposed for the Bethe-Salpeter equation for bosons that leads to an ordinary second-order
linear differential equation in momentum space. The weak-coupling limit of this equation explicitly reduces
to the Schrodinger equation for the simple harmonic oscillator. The relative energy dependence of the Bethe-
Salpeter amplitude does not admit timelike excitations, nor are there anomalous solutions of any kind. %'e

conclude that this model can be interpreted as a relativistic harmonic oscillator without spin.

I. INTRODUCTION

The harmonic oscillator is the simplest and
most pervasive system in physics. However,
what happens to this ubiquitous system when the
spring becomes very strong, or when the mass
travels at relativistic speeds is still largely un-
studied on a quantum scale. This is understand-
able because a spring of such a strength that its
ground state shows relativistic effects would be

' very strong indeed, and none that we knew of ex-
isted in nature. Nevertheless, recent develop-
ments in non-Abeiian gauge theories' ~ ' (i.e., quan-
tum chromodynamics) have given rise to the no-
tion that quarks are confined in a steeply rising
"potential" where relativistic effects may be
measurable. The phenomenology of the g/J par
ticles has tended to support this, and efforts
have been made to postulate such a potential for
use in the Schrodinger equation3 and, in more
sophisticated approaches, an interaction kernel
for use in the Bethe-Salpeter equation. 4 Thus, the
concept of relativistic oscillators no longer seems
so farfetched.

For relativistic problems, the Bethe-Salpeter
formalism is appealing because it is explicitly
covariant and has at least formal connection with
quantum field theory and perturbation theory. It
is, however, quite difficult to use for two reasons.
First, if one is given a Lagrangian, it is by -no

means a simple matter to establish the proper
kernel to use in the Bethe-Salpeter equation.
Even in the case of positronium, it is only re-
cently that this formalism has yielded to analy-
sis. ' '

Qf course, the inverse problem also exists. If
one solves a Bethe-Salpeter equation with a "real-
istic" kernel for the interaction, he cannot be too
certain what-kind of Lagrangian has led to his re-
sults. These problems confine such work to the
realm of phenomenology, which in itself is some
deterrent to this approach. But the main obsta-
cle, even if one accepts the limitation of not

knowing the exact Lagrangian, is that the equation
usually will not separate into independent equa, -
tions in the four variables. That is, the timelike
and spacelike parts of the equation are hopelessly
mixed up so that one must solve an at least two-
dimensional equation.

Nevertheless, it should be of some interest to
find a solution to the Bethe-Salpeter equation
which it can be said describes a relativistic har-
monic oscillator. In the present work, we have
discovered a kernel having this virtue, as well as
being reducible to a one-dimensional problem.
There have, of course, been others who have
studied soluble kernels which one might also in-
terpret as oscillators. '

%Ye present this work,
therefore, as one possibility among others. Our
approach has an advantage in that there is no
question of timelike excitations, the interpretation
of which has presented some difficulty in other
models. However, we must concede that we can
actually solve the equation analytically only in
the nonrelativistic limit, though numerical inte-
gration of the fully relativistic equation is quite
trivial.

In Sec. II, we discuss the fundamental Yukawa
interaction, its angular decomposition, and the
reason that it is difficult to solve analytically ex-
cept when the exchanged mass is zero. Section
III is devoted to constructing the singular kernel
with which we shall concern ourselves. In Sec.
IV, we show that the solution must have a 5-func-
tion-like dependence on the relative energy var-
iable, which allows reduction of the equation to an
ordinary differential equation. This reduction
involves a caveat which we discuss in Sec. V.
Section VI is devoted to a discussion of the dif-
ferential equation, the nonrelativistic limit, and
num. erical results.

II. THE "YUKAWA" PROBLEM

To begin, let us examine the familiar problem
of two scalar particles of mass rn interacting via
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p =—(((),k),
P= (M, O)—.

This will result in the equation

[(-(d2+ k'+ m ——,'M' —i7)) —M~&o~]X(p)

x2+. x(p')d'p'

(2)

Finally, defining the partial-wave decomposition
to be

X(p) =g—
X&(k ~) 1'4 (k)

r u
(4)

we find

[(-~'+ k2+ m' ——,'M —i7))' —M'&u']X, (k, ur)

2g' (t (k' —k)2 —((o' —(d)2+ X' —iq

x X,(k', (0') d&u 'dk ' .

The solution of this problem has been resistant
to attack except for the case X= 0 because it can-
not be separated in the k and ~ variables. Even
though one can determine certain of the analytic
properties of X well enough to close the contour
of integration and do the so-called "Wick rota-
tion, ' "one is still left with an integration around
the cuts in the ~' plane which is too complicated
to do analytically. '~

However, if one were to add to this interaction
one that differed from it only by having the op-
posite sign in the coupling g and a slightly larger
mass X', then the net contribution to the integral
will come only from the ends of the cuts where
the singularity will be nearly like a pole. As in
the Yukawa problem, when X and X' are taken to

the exchange of a scalar particle of mass X. In
the usual ladder approximation, the Bethe-Salpe-
ter equation is~

[(~P+p) —m2+ i(7][(—'P —p) —m + ig]X(p)
2

(p, p)2 X2 y . X(P')d'P'. (1)
I,m) p —p —A. +zq

I' is defined to be the center-of-mass four-momen-
tum and p is the relative four-momentum of the
two particles of mass rn.

In the center-of-mass coordinate system, we
shall define

zero, one can reduce the equation to a much
simpler form. This indeed shall be the basis of
our approach. We recognize that if we are to
apply this idea to the interaction of a particle-'
antiparticle pair, then changing the sign of g' is a
bit cavalier. However, such sign changes could
arise from the inclusion of additive quantum num-
bers or spin which are not considered here.

III. CONSTRUCTION OF A CONFINING INTERACTION

KERNEL

(3) . 212K —(p' —p)' —A.
' —iq'g " [-(p' p)'+x' in-]'- (»

Henceforth, it is to be assumed that we are
considering this case and in the limit that X is
very small. Explicitly, the Bethe-Salpeter equa-
tion of interest here shall be

[(-&o'+ k~ + m' ——,'M ~ —iq) ~ —M'(d 2]X(P)

12' 2g —(p' —p) —i~ —x,„,d4[-(p'- p)'+ x'- i~]4 "

The first task, as usual, is to perform a partial-
wave decomposition of this equation. This can be
done by brute force, of course, but it is easiest
to make the observation that

12K (x —%') ' —X2 (3)lim —
2 [(««,)2,]4

——M' '(x' —x) )

where x and x' are three-vectors. From our ex-
perience with this object, we know already that

In order to produce an interaction that looks
like a simple harmonic oscillator, we follow the
above suggestion, but it is necessary to add eight
terms together with appropriate magnitudes and
signs so that the results are derivatives with
respect to the exchanged mass. This procedure
yields a family of interactions

2 Ss)

The static limit of these behaves as g2r" 'e ", and
the V' ""potentials have a 5-function-like struc-
ture that we can exploit to "separate" the equation
(V'2"' yield inseparable e(luations). V'3' is there-
fore the lowest-order interaction of interest to us
here. Specifically,

+~(3)(«c «) p 2 + 1
4@xx'

S"(„„),S(„-s) -(-1)' S"(s'+sl —,S(s'+s) Ip, (coso).'l(l + 1) , 4 „ , l(l + 1)
x' x

(10)

Either way, the partial-wave equation in the limit of small X is found to be
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[(-(()2+k + m —gM —2'g) —M (() 1X2(kr(d)

Xg2, , 6(k —k) —6((() —(()) —6i2) 2X l(l + 1)
)lr+ ~ [()r'-)r)r —(rd'-ro)r+)r —ir)]' ir [(k'-i)r-(rd'-rd)'+2 —(r)]I

( I)!Xg2, , 6(k'+k) -6((()' —(i)) —6i2) —2& l(l+1)
rri "r ' [(i'+)r)' —(~r'-rd)'+). —ir)] ).'[(i) +i)'-(rd' —rd) +X -ir)]I

We define the variables

P[ ——(k' —k) —(u)
' —(())2,

P2' ——(k'+k)'- ((o'- (u)' (12)

1
~i P) =,—p2~X»

82
6,"(p) =, , 6,(p),

and the functions so that (11) can be written

[(-&'+k'+m'-4M'-i2))'-M'~'h2(»~) =-ig'
I
6l'(») —

2 6x(P[) x2(p[) x&(k', ~')d~'dk'

+i(-1)'g' 5)"(P2) 2 |))((P2) IXr(k', v')dv'dk'.l(l + 1)
(14)

lt is easy to show that the integrands must be even
in k' and the integrals in (14) are to be taken from

to jnu'a d&'.

IV. SEPARATION OF THE EQUATION WHEN X~ 0

We shall assume X is fixed, but very small com-
pared to m. If K[I. (11) is examined, we can see
first of all that if X,(k, &u) vanishes at large Iv)

I
in

the upper or lower half plane so that the contour
can be closed and the integral evaluated, the
right-hand side will vanish with X unless X,(k, ~)
is singular. We confirm, therefore, that y, =0
is a solution in the limit X-0. Obviously, we
must look for singular solutions. Since it is
usually a property of integrals that they smooth
singularities, we expect that the result of the
right-hand side should be at least less singular
than X, (k, (d) itself, if not completely smooth. The
only way that this can come about js for the
singularity of X, to fall on the zeros of the quan-
tity multiplying it on the left-hand side of the
equation. This occurs at the values of w

vp(k) =-2M —(k +m2)'/2,

&u, (k) —= —,'M+ (k'+ m2)'/2,

so that

(16)

~0 1 COO f. +Zg

We have the choice of placing simple poles at
these points; however, if we do, it will be found
that we have not exhausted the w dependence of
the wave function. The next obvious choice is to
make X,(k, ~) a 5 function of ((). Thus, we shall
take

1
Xl( i ) [ &M+ (ki2+ 2)[/2j2+ 2 2(

This will result in the equation

Qp(k) =—2M —(k + m )' + ic, 2k +m)
(15)

A, (k) = —'M + (k + m )
'/ —i@ .

We wish to define also
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[u)' —0, '(k)][a) +(uo(k) +ig] '
+ . —+ . 5„"((Pl'—ill)' ')—,5,((P, '-i2))' ')

COO+ Zf

x 5, (&o' —&0(k'))W(k') dk'

(-1)'g „2 . &/2 l(l+ 1) 2 . 1/2
Z

5„"((fl2 —il)) )—
2 5„({P2 —i2)) )

x 5, (m' —~0(k')) W, (k')d~'dk' .
(18)

At this point, we shall define the variable

q:-z —&M + (k 2 + m2)1/2

and the Jacobians

{19)

8(k', (u') [(k' —k) —(/d' —u)) ]'/

8(p&,q) [(&g' —ill)/(k'2+m2)'/2+ l]k' —k

8(k', &o') (k'+ k)' —(ld' —~)']'/'
8(P„q) [(ur' —(u)/(k'2+ m )'/'+ l]k'+ k

(2o)

If W, (k) is well behaved at infinity, these integrals can now be evaluated and the right-hand side (RHS) of
Eq. (18) becomes

RHS = -lg'
i 2 —,J,(k, u), k', (u') W, (k')
/' 82 l(l+ 1)
I,ep)

p =i()t -ia)
1

+2(-1)'g', 2 —,i'(k', ~', k, ~) W, (k')l(l+ 1) &

~Pq k )

It is easy to show that

k' 8

8P 1 8k i
(k

2 2 + 2) 1/2

'q=ie

P2 i(& if))i/2

(21)

(22)

Because of the symmetry of W, and the similarity between J, and J„we can multiply the first term by two
and drop the second. Thus we have

22g J1 Wl + 3J1 f I2 2 2/2
2 8Jl k' 8J2 &

(23)

which can be put into the form

k' 8 & 8J, k' 8 i' l(l+1)
8k' (k' + m ) 8cu' 8k' (k' + m ) 8~' ) ' k

P =i(X~-ill) ~~2
1

2'
RHS +' J W + '

1 ™~ q)J W1 l (kI2+ m2)3/2 1 l

3m'(-,'M —~+q) p, k' m'(-,'M - ld + q) 2 t~ l(l+ 1)+
~g Z+~a)at za |R~y a+~2} | ~y mq~m)SIZ |j &

e X ya rI
(g2 i )1/2

(24)
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where

(25)

(k2 + m2)1/2 or ~ «M + (k2 + ~2)1/2

(27)

We will, of course, eventually wish to take the limit
q and A. go to zero in this expression, as well as on
the other side of the equation. As will be seen,
the left side of Eq. (18) is always finite, and we
must therefore require all the terms on the right
to be so also. In particular, we must have

3)0, 1
m (0M —10+q)

2 (k«2+ ~2)3/2 1

p -0

=finite number for all k, 01 . (26)

But from (12) and (25), it is clear that x and p,
are zero at the same point, i.e., at k''=k, e'=co.
Thus the limit at p-0 involves a function of the
form 0/0 in two variables. Since there are two
variables, a variety of answers is possible de-
pending on the relationship between P and q. In
this case, a finite result for the limit in (26) is
possible at the special points

P1
[(—'M —01)/(k' +I )' ]k' —k

(29)

Clearly, this vanishes with p&, unless the denom-
inator vanishes for the value of 0' that corres-
ponds to P, =0. This can occur only near the
points 0& = —,'M —(k + m ) / 2 or 01 = -—,M + (k 2 + 212 2) ' / 2.

A.t these points,

lim lim J(k', &u', k, 0/0) = (k'+ m')' /m .
p p q~p

We also obtain in this limit

(30)

(note the variables are unprimed), only if q is
very much smaller than P. That is, «& X.

If q is negligible, we have

((k «k) 2 [«M ~ (k «2 + ~2)1/2]211/2

[(-,'M- )/(k" + ')'"]k'- k

(28)

8 k' 8 t, , k 1
limlim „,—,„,2,, 1/2, [J,(k', &u', k, 0/0) =—,,+~)» )

8 0' 8 , , 8 k' 8 , , 3
«k «2 + 2) 1/2 « ~1(k «+ «k«&0)

k ««k«2 + 2 1/2 « ~1(k «~ «k»0) 4 24m

(31)

Thus, at the point co = cop we find

'2/k2+ ~2 1/2 k2+ 2

RHS(k» ) = ' . W" +3 W'
0 im t

m2 l m2 l

3 l l+1

(32)

Meanwhile, if we evaluate the left-hand side (LHS)
at the point (k, &u0), we obtain

LHS(k, &u0) = 4iM(k2+ I') '/'[-,'M —(k'+ m') '/'] W (k) .

(33)

The left and right sides both vanish at points away
from (k, &d0).

V. EQUALITY OF THE LEFT AND RIGHT SIDES

OF THE SEPARATED EQUATION

In the limit that all the infinitesimal parameters
vanish, we are left with both sides of the equation

vanishing except at the special values of 01 = &d0(k).

This is a set of measure zero and while we were
correct in our surmise that the result of integra-
tion would be a function less singular than the 5
function with which we started, it is still singular
and definitely not smooth. It is therefore neces-
sary to decide exactly what is meant by equality
of the two sides of the equation.

As functions of e, both sides of the equation con-
verge to a function of the form

~

~

Q) 4) = COp

f(01) =
0, otherwise .

However, the two sides do not converge at the
same rate. The structure of the left-hand side is
determined by the parameter q in the function

40 —(d + SE
g(10) =—
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The structure of the right-hand side is determined
by the function +iJ, . If ko and (do are the values
of k' and ~' for which p = q = 0, then

m2
ko = —,'(k + &u ——,'M)—

(36)
m2

e,'=-,'(t2+ ~+ -,'M) +
2(

Defining

r =((o —(oo),
FIG. 1. Feynman diagram for the electromagnetic

form factor.

I

we find

+ZP f+iJ, =
/ /(2M - ~)/2o

(~j 2 2 '/2 )2 + (2 )0 /gI 2+ 2 2/2 (2 ) s //2t 2 + 2i1/2+ jg ~ + M co f'

which reduces, in the limit, to the simple form

ZP f

((u —(oo) + [m/()'22+ m')" 2Q,

But p&-iA. , so the right-hand side structure is like that of the function

k((o) =—
CO —(dp + SA.

We conclude that the left-hand side converges to its limit much faster than the right-hand side since we
were forced to take q «A. in order to keep the right-hand side finite. The process of integration has there-
fore not only pushed the peak of the 5 function down to a finite height, but in a sense it has squashed it out
to the side too. This will make a difference only in the case we wish to integrate our wave amplitude over
a singular function, which is exactly the case if we wish to apply this formalism to the calculation of such
practical objects as form factors and cross sections. For example in the diagram for the electromagnetic
form (cf. Fig. 1), it will be necessary to evaluate an integral of the form

y'(k, (u)[(,'P+ p)' —m-'+ i2)]y(k, (u). ~ ~ d(u d2)'2

W 0'2) ((u —(uo —ie) ((u —(o) —ie) W(k) 5,((o —(oo) 5, (u) —(uo) ~ ~ d(u d)2 . (40)
~ ~

That is, we must evaluate an integral of the form

I= 40 —coo —tf)5z co —coo 5z co —coo)dc' . (41)

1 g q 1
IT (a) —(00 +'2f (~ —(00) + s 27/i

(42}

Our choice of the parametric representation for
5, (&u —&uo) was chosen in the first place so that
(e —ufo —ie}5,(ur —+0) has a definite meaning on
the left-hand side of the Bethe-Salpeter equation.
It is therefore possible to write down the value of
this integral in a perfectly consistent way using
the same construction, i.e.,

This is one-half the result one would get by sim-
ply using the second 5 function in the conventional
way; i.e., by evaluating the rest of the integrand
at the point +0. Thi.s is because the expression
(&u —~0 —ic)5,(e —&uo} is singular with a charac-
teristic scale the same as the 5 function we use to
evaluate the integral.

The Bethe-Salpeter equation contains the factor
. of (v —~, —i&)5,(&u —&uo) on the left side. There-
fore, we can substitute the expression on the
right-hand side of the Bethe-Salpeter equation for
it where it occurs in other calculations. But, we
have shown that the right-hand side is singular on
the scale of X which is much larger than &. This
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can use the re-uch integrals we cancans that in suc in
th integral in thenction to evaluate e '

maining 5 function
—' mill not oc,cur:d the factor of —, miusual way an

A.=:Z
3

w (&o —cu, + ie)(&d —(do) + t W7'

X 2 2d(d 1.
(&u —&up'+ c'

(4»

t a ointwise interpa ' ' ' retation of
equality in the Bethe-Salpeter equa io

ld instead adopt a m
inte ral definition o

e sa distri u io
u ', e ual. This means
an . ', 18) has doub e ' e

e p tion for 5", k impthe proper equatio
(33) is

HE DIFFERENTIAL QE UATIONVI. SOLUTION OF TH

c n in the dimensionlessEquation (44) can be written in e
f

l(l + 1)
)—3g + b W( + 5')"'+

g g(5-(1+$ )

where

=a„W,($), (45)

m[-,'i)4 —(k'+ m')"']W, (k)

(k +m')
p +3k —„m'.

l(l+ 1) W, (k) .
2

44)('4

1.6 1,8 2.0I.0 I. 2 I.40 0 2 0 4 0 6 0 8

(

W —(a —b)W, .+ -'b&'+
2 28(

of the

la

e —' ' term in the expansion of

. in addition, since g is a
thateels the constant from a

h f tures are no pexpansion. These ea
e justified insec ' ' e term so we arsecond derivative

[The ultimateom ared to 1 there.
e i 48) i ite is that using g'

nt to a numerica inc
lar e, whic wa

o . ion 48) is the we

'th b taken very larg,
ll-known sim-1tfo d] Eq ato (

cillator equation an ile-harmonic-osci a
-b are given byThe eigenvalues g„-are familiar.

(48)

(48)

a —b = v'2b (n + 2), n = 0,1,2, . . . .

e o
' tate is odd in 0 herethe lowest-lying sta e is

th 't"1 "' ddefinition of t e pa
composl ion't n we used in Eq. 4 .

onrelativistic to fully rela-
tlvis lc

d d toThe wave functions are no
phasize etheir difference.

Q~=
2 2 +4

(46)

m Mb=

so that

2 4a„—3
g =

2.0 4.0 6.0 8.0 l0,0 I2.0
tel that the weak-coupl' glin limit

The low-lying states in
tctions that are si

th 1 o 1—«1. Thus, etude only where $
tivistic limit of 45 is

tic round-state wave functiong o
Th much more( =o.o

w
' in the large-& region xswave function in elng W

this highly relatives tic case.
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l2—

5.0
I

6.0
IO—

FIG. 4. The 6S-
(b = 256, Th'

e 6 -state wave function for ~ = 0.189
). This wave function is only slightly relativistic

trum implied by (48) is

(50)

This im lies thatp the classical spring constant
1S

an K

~ =g'/m', (51)

so that M
small.

a M„rises as the square root of ho o Kw enKis

As can be seen from the numerical work, when

be
~ grows to a value greater than m'/10 th
ecomes so strong that even in the lowest-lying

states, the motion is relativistic. In this case,
we see that 5 is small and that if g approaches

en „must continue to
rise as the square root of the classical sprinspring

awhile most of the qualitative features of the
wave function follow those of th e nonrelativistic
simple harmonic oscillator, the asymptotic be-

avior is changed significantl Fy. or very large
$, Eq. (45) becomes

8 3 8 b
, + ————W=O, g»1 (52)

I
'

I

8.0
I

l0.0 I2.0

FIG. 5. Highly relativistic 6S-state wave fun t

in o essel s equa-which can easily be converted ' t B
tion. Therefoefore, the asymptotic behavior of 8;

I

0, 5
I

i.o
I

1,5

from
FIG. 6. Depression of the low t t tes s a es energies

rom the nonrelativistic prediction as a function of
coupling strength.

is given by

e or inary simpleThis, of course, differs from th d'

harmonic oscillator which falls off l'k
Because of the square root in (44) and (45), the

equation for W, (f) is not that for a hypergeome-

blem num
tric function. One is forced to integ t . th'ra 6 .. 1s pro-

em numerically to find its eigenvalues and the
wave amplitudes themselves.

The figures show the results of this numerical
work. For the ground state shown in F' 21gs . and

e relativistic corrections are small up to
classical spring constants of the order of 0.25 or
so. In Fin ig. 3, the difference in the large-k de en-
dence of the w

e- epen-

t
e wave function is very apparent few 01

between w

he very large coupling K=115. Th e comparison
etween weak and strong couplings for the higher-

lying 6S state is shown in Figs. 4 and 5. Finally,
in Figs. 6 and 7 the behavior of the energy levels
as a function of the coupling constant is shown.
It is clear that the effect of relativity upon the

the ex e t
energy eigenvalues is to depress them r l t t

e expectation of the nonrelativistic approxima-
tion. Thus in a 1oose sense the potential seems
weaker than quadratic. Also, apparent in Fig. 7
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