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Feynman propagator in curveti spacetime: A momentum-space representation
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We obtain a momentum-space representation of the Feynman propagator G(x,x') for scalar and spin-

1/2 fields propagating in arbitrary curved spacetimes. The construction uses Riemann normal coordinates

with origin at the point x' and is therefore only valid for points x lying in a normal neighborhood of x'.
We show that the resulting momentum-space representation is equivalent to the DeWitt-Schwinger proper-

time representation. Our momentum-space representation permits one to apply momentum-space techniques

used in Minkowski space to arbitrary curved spacetimes. The usefulness of this representation in discussing

the renormalizability of interacting field theories in curved spacetime is illustrated by an explicit

renormalization, to second order in the coupling constant, of a quartically self-interacting scalar field theory

in an arbitrary spacetime.

I. INTRODUCTION

In Minkowski space there are mell™developed
momentum-space methods for dealing with ultra-
violet divergences mhich arise in the theory of
interaction quantized fields. In a general curved
spacetime, the homogeneity required for the exis-
tence of a global momentum™space representation
is lacking. Consequently, it would appea, r that
one must forego the convenience of momentum-
space techniques and work directly in configura-
tion space, except perhaps for spacetimes which
are sufficiently homogeneous, or which can be
treated as weak perturbations of homogeneous
geometries. Nevertheless, one feels intuitively
that because ultraviolet divergences involve only
the short-wavelength behavior of the theory, and

because, according to the principle of equivalence,
curved spacetime can be viewed as approximately
flat in a sufficiently small region, one ought to be
able to apply Minkowski-space techniques to ul-
traviolet divergences of interacting fields in
curved spacetime. On the other hand, one cannot
expect the problem of renormalizing such diver-
gences to be reducible to the corresponding prob-
lem in Minkowski space, as additional divergent
terms involving the Riemann tensor are present.

In this paper, we introduce a local momentum-
space representation near any given point in a
general curved spacetime, and show how this
enables one to apply standard techniques to the
renormalization of ultraviolet divergences of in-
teracting quantized fields. The transition to local
momentum space is carried out by using Riemann
normal coordinates" with origin at the point un-
der consideration. An event is specified by the
normal coordinates y" = rg", where $" is the unit

tangent vector (at the origin) to the geodesic which

joins the origin to that event and 7. is the are length

along that geodesic. Riemann normal coordinates
are val. id in normal neighborhoods of the origin
in which the geodesics from the origin do not in-
tersect. Becausethe divergences under considera-
tion involve arbitrarily short wavelengths, they
should be adequately described in terms of local
normal coordinates. At the origin of those coor-
dinates, the metric is Minkowskian and the first
derivatives of the metric vanish, so that the de-
scription of the local dynamics is as nearly like
that of special relativity as is possible in a gen-
eral curved spacetime.

In Sec. II, we consider a scalar field in an ar-
bitrary curved spacetime and give the local mo-
mentum-space representation of the Feynman
propagator. In Sec. III, we derive the mell-known

proper-time representation of the propagator from
the above momentum-space representation. In

Sec. IV, we use the momentum-space representa-
tion of the propagator to shorn that the theory of
a quartically self-interacting scalar field in an
arbitrary curved spacetime is renormalizable to
second order in the coupling constant. This gen-
eralizes earlier results obtained using momentum-

space representations in conformally flat space-
times. ' ' In Sec. V, we give the local momentum-

spa, ce representation of the Feynman propagator
for a spin —

~ field in curved spacetime. A momen-
tum-space representation based on the normal
modes used in adiabatic regularization is discussed
in the Appendix.

II. MOMENTUM-SPACE REPRESENTATION OF THE
FEYNMAN PROPAGATOR OF A SCALAR FIELD

Consider a scalar field P satisfying the field
equation

-V"Vp &f& + (m + gR) Q
= 0,

where V„denotes the covariant derivative, 8 is
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the scalar curvature of the spacetime, ( is an ar-
bitrary real number, and m is the mass. [We use
units with k=c =1, metric signature (-+++), and
the conventions of Hef. 6.] The Feynman Green's
function is a solution of

(-V"V„+m'+ (R)G(x, x') =g "'(x)6(x -x'),

where g(x) = )detg»(x) ~ I.ntroducing Hiemann
normal coordinates y" with origin at the point x',
one has"

gglj OP@ 3 ~PCXV By y 6 "PaVBy y y P

+( 20R2n 6;y6+ 99R 261R y96}y By~

(2.3)
I

g= 1 -+~8 ~y y —68 S.yy. y y&

( 19 EKP '/6 90 1&8 1)'6K 20 +Bi j'0)

xyyyy+ (2.4)

where the coeff icients are evaluated at y = 0 and

g&, denotes the Minkowski metric. All indices
on the right-hand side of (2.3) and (2.4) are raised
and lowered with the Minkowski metric g„„. Work-
ing in normal coordinates about x' and defining
G(x, x') by

G(x, x') =g '~4(x)G(x, x')g '~'(x')

=g '~'(x)G(x, x') (2.6)

one finds after some calculation that G(x, x') satis-
fies the equation

q""8„8„G-[m +($ —-', )R]G —+R "y 8„G++R" ' y"y68„8,G
—(~ -&)R.„y G+ (-&R„'., +&R„,:")y"y'8„G+&R"„",.,y"y'y&8„8„G

($ } l By y G ( 0 XS 60 9 1. 60 (2 X2 8 120 ) 8 60~ 8)y

( 20 0(;6'/ 10 0(8 g 60 & 8 K7 15 &XB K "/

+(20R 6 )6++R 16R ) 6}y y y y 8((8 G=-&(y)

G(x, x') = f 2
„e""G(k), (2.7)

where ky-=k y'=-1l"6k y6. Note that G(k) is a
function of x'. G(k) = G(k;x'). Strictly, G(k) is
defined by the inverse of Eq. (2.T), which requires
discussion of the behavior of G(x, x') -=G(y;x') for
all y. As we are only interested here in the sin-
gularity structure of G(x, x') as x approaches x',
we may take G(k) to be defined as the Fourier
transform of a function which coincides with a sol-
ution of Eq. (2.6) in an open set containing x' and
which also has compact support in a normal neigh-
borhood of x'. This procedure does not affect the
singularity structure as x approaches x', so that
the Fourier transform G(k) so defined will be suf-
ficient for finding that singularity structure, al-
though not for finding the global. behavior of
G(x, x').

where y are the coordinates of the point x and
8„=8/8y". We have retained only terms with coef-
ficients involving four derivatives of the metric
or fewer. This will prove sufficient for dealing
with all ultraviolet divergences that arise in the
course of renormalization. The above equation
is valid in n dimensions.

In normal coordinates with origin at x', G(x, x')
is a function of y (and x'). We introduce the mo-
mentum space associated with the point x' (y = 0).by making the n-dimensional Fourier transforma-
tion

Before writing down the equation satisfied by
G(k) [the Fourier transform of Eq. (2.6)] it will
be convenient to indicate how the solution G(k} is
to be obtained. An iterative procedure mill be used
which is obtained by writing

G(k) =G,(k)+G, (k)+G,(k)+ ~ ~ ~ (2.6)

G,(k) =(k2+m2) '

and that

G,(k) =o.
Then G,(x, x') satisfies

q""8„8„G, ~~a2 —(~ —)RG0 —2R "y"8„G0

(2.10)

(2.11)

+~R"„",y"y'8 „8„G,= O. (2.12)

But now G,(x, x') is Lorentz invariant so that it is
a function only of g &y"ye=—y"y~. For such a
function,

d"A,'

G, (x, x') =
(

)„e'"'G,(k) (2=0, 1, 2, . . .),

(2.9)

where G, (k) has a geometrical coefficient involving
i derivatives of the metric. On dimensional
grounds, it follows that G, (k} is of order k ("') so
that (2.6) is an asymptotic expansion of G(k) in
large k. It is not difficult to see that the lowest-
order solution is the Minkowski-space solution
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Q 8 gg g Bp8 G =0

so that (2.12) becomes

q""B„B„G,-m'G, —(( -~5)RGo= 0.

(2.13)

(2.14)

Hence

G,(k) = (& —g)R/(k'+m')'. (2.16)

In momentum space this is

(k'+m')G, (k)+ (g -~5)RG0(k) = 0. (2.15)

The Lorentz invariance of Go(x, x') leads to
further simplifications of (2.6) when G, and G,
are calculated, namely

(2.1V)

50 a;By 10 a8 )e 80 a 5 + 15 a){8 K)e )y yy ){ 0 (50 a 8;yo 15 a)e8 g 5)y y X y )) )e 0

(2.18)

In addition, (2.13) continues to hold with Go replaced by G, since G,(x,x') is also Lorentz invariant and
hence a function only of y~". Thus (2.6) simplifies to the following equation for G to fourth order in deri-
vatives of the metric:

q""B„B„G—[m'+(& ~)R]G —(& {])R,,y -G --,'(& -+)R,„By"yBG

+(- 50Ra'R), B+ 50R
"a"BR/), + 50R'""~y) gB —,50R., a B+ 40~at))y"y'G = -&(y) (2.19)

Converting to momentum space using (2.V),

[k'+m'+ (g -&)R]G(k)+ f(g -&)R.„B G(k)

+[—'($ — )R.„B--,0R.„B+ ClR B , R„R-qo+ „R" BR„1+ R ""+q~„s]B B G(k) =1, (2, 20)

where

B G(k) = BG/Bk„.

The complete solution up to fourth order in der-
ivatives of the metric is

G(k) = (k'+m') '+(~ -g)R(k'+m') '

+i(~5-])R. (k'+m') 'B (k'+m') '

+ (& —~)'R'(k'+ m')-'

+g o(k'+m') 'B Bs(k'+m') ',
where

s 5=~a($-~5)R, {)+1toR; 5-40~ 8

(2.21)

+ 5oRa R1S ooR a BR~1. oo R a z))~B ~
XPK

(2.22)

The Feynman propagator is obtained by replacing
m' by m'-i&, with c an arbitrary small positive
real quantity to be taken to zero at the end of any
calculation, and carrying out the momentum inte-
grations along the real axis. Alternatively, the
propagator can be evaluated in a Euclidean space-
time for which q„a = 5 &. The derivation given
here is equally valid for this ease.

Equations (2.V) and (2.21) give the momentum-
space expression for G(x, x') which is reiated to
G(x, x') by (2.5). The Fourier transform of
G(x, x') itself can readily be obtained by performing
integrations by parts to absorb the factor g '~'(x)
expressed as a polynomial in y [see Eq. (4.20)

I

below]. The Fourier transform of G(x, x'), Eq.
(2.21), is sufficient for treating divergences.

III. RELATION TO PROPER-TIME FORMALISM

The mell-known proper-time representation of
the Feynman propagator in curved spacetime"
can be derived from the momentum-space repre-
sentation obtained in Sec. III. This approach by-
passes the introduction of the formal mathematj. -
cal objects used in the conventional derivation.
Using

(k'+m') 'Ba(k'+m') '= 'Ba(k'+m'—) -'

(k'+m') 'BaBB(k'+m') '-=~BaBB(k'+m') '
-~q"'(k'+ m')-',

(2.21) may be rewritten

G(k) = (k'+m') '+(~ —()R(k'+m') '
+-,'f(& —g)R..B (k'+m')-'

+ —5{1 BB BB(k'+m') '
+ [(& g)'R' 55''—„](k'+m—'—)-5

(3.1)

(3.2)

(3.3)

Substituting (3.3) in (2.V) and integrating by parts
leads to

d"k
a{e,e')= „e'" {ef{ , )(-e,e)

8 j.
+f,(x, x')

~e{

(3.4)
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where, to fourth order in derivatives of the metric, IV. APPLICATION TO SELF-INTERACTING SCALAR
FIELD THEORY

Now put

(k'+ m') ' = j[ ids exp[-is (k'+ m ')],
()

(3.5)

(3.6)

(3.7)

where the usual Feynman boundary conditions are
obtained on making the replacement m' m'- jq,
and define

E(x, x'; is) = 1+f, (x, x')is +f,(x,x') (i s)'.
Making use of

(PQ
„exp[ is(k-'+m') +iky]

(3.8)

Z

G(x, x')=
( )

~,

AjS, 2 0x . ,„&, exp -im's — . E(x,x';is),
2S) 2zs

(3.10)

where (3.4) has been used. The propagator
G(x, x') is related to G(x, x') by (2.5). The usual
expression for the proper-time r'epresentation of
G(x, x') in n dimensions'0 is now obtained by no-
ticing that the van Vleck determinant

b(x, x') =-g ' '(x) det[-s&s„~(x, x')]g '~'(x')

(3.11)

reduces in normal coordinates about x' to g '~'(x)'.
Thus we obtain

„„(is)"~'exp im's -- . , (3.9)as
where 0(x,x') =-,'~'=-, y~" is half the square of the
geodesic distance between x and x', we obtain

2 = ~v g [g""8~.$8„$—(Sam +ZB)R)p ]
--,'vgXp, ' "Z,y', (4.1)

where p, is the unit of mass required to keep the
dimensions of 2 consistent for all n, m is the re-
normalized mass, g and A, are dimensionless re-
normalized coupling constants, and p is the bare
field related to the renormalized field P„by

g xl2p (4.2)

The renormalization constants Z,. are power series
in A, (and hence dimensionless):

(4.3)

This section will demonstrate the usefulness of
the momentum-space representation in studying
the renormalizability of A, P4 field theory in curved
spacetime. It was shown in Refs. 3 and 4 that aU
physical processes which are first or second order
in A. (including vacuum-to-vacuum processes, which
are nontrivial in curved spacetime) can be made
finite by renormalization of the physical param-
eters of the theory appearing in the scalar field
action and the Einstein grativational action. A
different treatment has also recently been given
by Birrell. ' The derivation of these results ma, de
use of momentum-space re.presentations valid
only in conformally flat spacetimes. However, the
results are valid for spacetimes having arbitrary
metric since no new divergences a,ppear if the
spacetime ceases to be conformally flat. This will
be demonstrated explicitly in this section using
the general momentum-space representation of
Sec. QI.

The Lagrangian density in the interaction picture
ls

ia'~ '(x, x')
(4 )n/2

f ids . o. ,„z, exp -im's — . E( , xixs)
ZS) AS

(3.12)

with F(x,x'; is) given by Eqs. (3.4)-(3.6). This
expression is in generally covariant form if, in
Eq. (3.5), y is written as e ". It agrees with the
work of Ref. 9. The equivalence of the momentum-
space and proper-time representations means that
they both give the same renormalization of the
free-field stress tensor and both lead to the same
conformal trace anomaly.

Z g. +Z gR

(b)
FIG. 1. First-order eorreetions to the two-point

function.
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Z(i) 2 Z(i)

(a)

(a)

(b)

(b)

FIG. 2. Second-order corrections to the four-point
function.

To second order in A. , the interaction Hamiltonian
density in the interaction picture is

(c)

1)(~+[g(1)1n 2+ @(1)
graf ]y2+ L)(~++4 ny4-

+-,')(.'Mg[Z(2) m '+S(,"(a]y'

+ 1) 2~@~4-ng(1) y4 (4.4)

(d)

In Befs. 3 and 4, the interaction Hamiltonian was
normal ordered and hence had a slightly different
form from (4.4). Whether the Hamiltonian is nor-
mal ordered or not does not affect the final re-
normalized theory. In Refs. 3 and 11, it was shown
that the renormalizability of a field theory in
curved spacetime can be investigated by looking
at 8-matrix elements between interaction picture
states which are conveniently chosen to be physi-
cal particle states at early times (before the self-
interaction is switched on). Once these S-matrix
elements are renormalized, finite particle crea-
tion amplitudes are obtained by performing Bogo-
lubov transformations to late-time physical par-
ticle states. Power-counting arguments show that
the divergent Feynman diagrams are those which
involve zero, two, or four external lines. To
second order in X, the diagrams having two or
four external lines which need to be considered
are shown in Figures 1-3. It does not make much
difference to the discussion of reriormalization
whether the external lines are wave functions (as
in S-matrix elements) or free-field Feynman prop-
agator s

G(», y)
-=1&OI T(y(») y(y))10&,

(2) 2 (2)

Ce)

FIG. 3. Second-order corrections to the two-point
function.

where la) denotes the interaction-picture vacuum
state (as in corrections to two- or four-point func-
tions). Taking the external lines to be propaga-
tors gives the following expressions for the mathe-
matical equivalent of Figs. 1(a)-3(e), respective-
ly:

3ikp, " t y, x' G x', x' G x', z g x' ~ d"x',

(4.5)

Z(,'~m'+Z", ) a x' G Y, x' G x', z

x[g(»')]'~'d"»', (4.6)

54i~2~8-~ G y, x C y', x G'x, x' G x', ~ Cx', ~'

x[8(»)g(»')]' 'd"»~"»', (4.7)
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6A. p. .
"Z~~~ G y, x' G y', x' G x', z G x', z'

x tp (x') ]'~ 'd"x', (4.8)

-3iA. p.
" Z m +Z Ax' G y xG x x.'Gx z

x [g(x)g(x') ]'i 'd"xd"x', (4.9)

Using an approach similar to the treatments
given in Refs. 4 and 5, we will show that the con-
tributions of Eqs. (4.5)-(4.13) to physical ampli-
tudes can be made finite by suitable choices of the
renormalization constants. Consider first (4.5)
and (4.6). The divergence in (4.5) arises from the
factor G(x', x'). Define the finite part of the prop-
agator, Ga(x, x'), by

3zz q "Z& ~ G y, x' G x', x' G x', z g x' ~2d"x',

(4.10)
+GR(x, x') .

(2.)
'"

k+m "(k'+m)

(4.14)
-9~ p,

' ~ G y, x G' x, x' G x', x' G x, z

x [g(x)g(x')]'~'d"xd"x', (4.11)

-6X'p, ' ~ G y, x G'x, x' G x', z

x [g(x)g(x')]'~ 'd"xd"x', (4.12)

Z~»m'+Z&»~~ x' G y, x' G x', z

x[g(x')]'~'d"x'. (4.13)

This definition of Ga(x, x') is not quite the same as
the definition used in Ref. 4. In Eq. (4.14),

G„(x,x') g '~ '(x)G„(x,x'),

where G„(x,x') has a Fourier transform Ga(k)
which is of order k '. The leading terms in an
asymptotic expansion of Ga(k) in large k were cal-
culated in Sec. II. Setting x=x' (or y = 0) in (4.14)
and evaluating the integral using Eq. (Al) of Ref.
12 gives

m " ' ' '[ ' (~-„)R] ' '(
(4.15)

where terms of order (n —4) have been omitted. Define Ga(x') by

G„(x') =Gn(x', x')+, ' ln ', +y
ip" 4[m'+(( -~)R] ' m' im'p" '

16m' 4w p,
' 16@' (4.16)

Then (4.15) may be written more simply as

G(x', x') = 8, 4
' ' +G„(x')+o(n —4) . (4.17)

It now follows that the sum of (4.5) and (4.6) is finite provided that

z(~) 3
8v'(n —4)

and

(4.18)

(4.19)]g(&& (( &)g(&)

Consider now (4.7) and (4.8). The divergence in (4.7) arises when G'(x, x') is integrated over x in a,

neighborhood of x'. Thus we can find the divergences in G'(x, x') by using the momentum-space represen-
tation (4.14).Using (2.4) and integrating by parts, (4.14) may be rewritten

1 (—,' —()R 2R ~k k~
((2m)" k +m' (k'+m')' 3(k'+m')' (4.20)

!
It is not difficult to see (for example, by power counting) that the only divergent contribution to G'(x, x')

ls

dPk gp e'"'~"
(2w)'" (k'+m')(p'+m') ' (4.21)

Setting q=k+p leads to
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dn d"pG' x, x' e""
(2x)'" [(P —e)'+m'](P'+m')

dn 1 dn

(2x)'", [p'-2Pqn+q'o, +m']'

dn I
= fv"'I" 2 n-2)

(2v)~ [m'+(I'n(1++)]'-"" '

(4.22)

(4.23)

(4.24)

where Eq. (Al) of Ref. 12 has been used. Thus G'(x, x') has a simple pole at n= 4 which may be obtained
by expanding about n = 4. The result is

Z
n 4

G'(x, x') = —,
( }

5(x —x'), (4.25)

where we have written 5(x -x') instead of 5(y). The factor p" 4 arises when the n integral is expanded
about n= 4. Notice that this 6 function can be taken to be the covariant 5 functiong '~'(x')6(x -x') since
g(x') —= 1 in normal coordinates at x'. Thus Eq. (4.25) is a covariant statement. Substituting (4.25) in (4.7)
leads to the requirement

~(x) 9
8w'(n-4) ' (4.26)

which ensures that the sum of (4.7) and (4.8) is finite. Using Eqs. (4.17)-(4.19), (4. 25), and (4.26) we find
that the sum of Eqs (4.9)-(4.11).contains the following divergent contribution:

27k. 9iX'"((-.)+(«'))G (««')G («', «)())(«'))"'d»' —4, 4 I +( ««')+, («')+( «', «)I »( «') )" *~«'.

(4.27)

Using (4.16}this may be written in the alternative form

( , + ~ ln, +y —1 [m'+ (~- ~8)R(x')]G(y, x')G(x', z)[g(x'}]' 'd"x'

9A.~ 9iA ~ 4-n
+ —

~
"

Jt G(y, x')R(x')G(x', z)[g(x')]' 'd"x' —
~ G(y, x')G„(x', x')G(x', z)[g(x')]' 'd"x'.

(4.28)

In flat spacetimein , which R(x') = 0 and Gn(x', x') = 0, (4.28) can be readily compared with the calculations
performed by Collins. ' The main point of Collins's paper is to show that dimensional regularization pro-

. vides a mass-independent renormalization of A(P field theory, and to demonstrate this he has to show that
all terms involving In(m'/4m', ') cancel. However, in making the transition from (4.27) to (4.28) it was
clear that these terms come from G„(x') so thatcollins's work implies that all terms involving G„(x') must
cancel. It will be seen in what follows that this guarantees renormalizability of X(P~ field theory in curved
spacetime to second order in X.

To complete our investigation of second-order corrections to the propagator we must evaluate the di-
vergences in (4.12), which requires knowing the behavior of G (x, x') for x in a neighborhood of x'. It will
be more convenient to investigate G'(x, x') =g'~4(x)G'(x, x'). We will write

G(x, x') =I,(x, x') +f,(x, x') + G„(x,x'),

where

dffg ef kP

r(x x'l=1 « ~ (2&)n y2+m2

and

(4.29)

(4.30)

f,(x, x') =(g -&)R(x') ', (x, x').ar, (4.31)

Then
I'

G'(x, x') =l, '(x, x') + (( —&)R(x'), f,s(x, x') + 3t,'(x, x')G„(x,x') + ~ ~ ~ . (4.32)
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The terms omitted from (4.32) such as I,(x, x')I2'(x, x') are all finite as can be seen by power counting.
Notice that I,'(x, x') is given by (4.25) so that the divergence in the third term of (4.32) is simply

1pn 4

,( )
Gw(x', x')5(x -x') .

Thefirstterm in (4.32) is

(4.ss)

(2w)'" [(p+ q —k)'+m'](p'+m')(q'+m') '

The double integral in (4.34) has been evaluated by Collins. " . He obtains

2 2
~~

~

2
~

2 2 2 ~
~

~
I

I~
~

~ I ~ ~ jI!

d~*g 6m2&~-» y2b-»
, =w"r 3-n -sm""-»—

p+ q Q 2+~2 p2+~2 q2+~2 Z 4 2 J

Thus we find

6 6[in(m /4wp, )+y —1]—3 1
256w' (n - 4)' (n - 4) 512w'(~ - 4)"

and finally

m 2+ (t -~ )It 6 6[in(m2/4w][], ') + y —1]- 3

(4.34)

(4.s5)

(4.36)

3(( —~6)R sip'-"G„(x', x') q"ws „a ]]5(y}
,128w'(n —4) 8w'(n —4) 512w4(n —4)

From this we. can obtain a covariant expression for

G'(x, x') =g-"'(x)G'(x, x')

by noticing that, in normal coordinates,

q"'», &(x) =g"' &(x)+ .&&(y),

(4.37)

(4.38)

where —=g""V„V„,and we can take 5(y) tobe the covariant 5 function 5(x -x') =g '~'(x')5(x -x'). Thus we find

m'+(t -&)It 6 3 -, RF&(x-x')
256w' (n —4) ' (n —4) 3072w (n —4)

Szq'-"G„(x')5(x -x') 5(x -x')
8w'(n —4) 512w (n -4) '

where (4.16) has been used. Thus the divergences in (4.12) are

(4.39)

4 G(X,~)+ —64, 4, +
256 . 4 t [m'+((-~6)&(x')1G(x, x')G(x', ~)[Z(x')]' 'd"x'

2 2 4-n

f G(y, x')R(x')G(x', z)[g(x')]' 'd'x'+4
4 G(y, x')G„[x')G(x', a)[g(x')]' d'x'.

(4.40)

The first term in (4.40) is removed by perform-
ing a field renormalization of the form (4.2). This
gives

g(2) 3
256w4(n —4)

' (4.41)

When (4.40) is added to (4.27), the terms involving
Gz(x') cancel and the remaining terms, which in-
volve only m' and R, are removed by making a
suitable choice of Z,'] and Zs'] in (4.13). We find
that

z(')= . . +
9 15

32w4(n —4)' 256w'(n —4) '

1
Ã3 (t 6)~2 256 4( 4)

~

(4.42)

(4.43)

Expressions (4.42) and (4.43} differ slightly from
the corresponding expressions in Ref. 4. This
difference arises because the interaction Hamil-
tonian density of Ref. 4 was normal ordered.

To complete the proof that XP4 field theory is
renormalizable to second order in X requires
demonstrating that the sum of all vacuum-to-vac-
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uum diagrams is finite after renormalization of
coupling constants in the gravitational action. This
was done for conformally flat spacetimes in Ref.
4, the most important part being to show that all
state-dependent divergences cancel when all sec-
ond-order vacuum-to-vacuum diagrams are
summed. It is not difficult to see that the argu-
ments of Ref. 4 apply equally when the momentum-
space representation of Sec. II is used, so that
renormalizability holds to second order in A. in
any spacetime.

(V"V„+,'ft--m')9(x, x')=-g-"'5(x-x')1.
(5.11)

Under general coordinate transformations 8 is a
biscalar, while under Lorentz transformations
of the vierbein fields at x and x' it transforms
like ())(x)y(x'),

(5.12)

is the Pauli adjoint of g and the matrix y is defined
by

+ycxy ya ' (5.13)
V. MOMENTUM-SPACE REPRESENTATION OF THE

FEYNMAN PROPAGATOR OF A SPINOR FIELD

The Dirac equation in curved spacetime is" "
[y" (x)v„+m]q = 0,

where the y"(x) matrices satisfy

r"( )r"( )+r"( )r"( ) = 2g""( ),

(5.1)

(5.2)

m is the mass, and V„ is the covariant derivative
acting on the four-component spinor field (j):

V))(j) = (8)( - I")))(j) . (5 3)

q„s = b„"(x)b 8"(x)g„„(x),

one finds that the solution of Eq. (5.4) is

I'„(x)= ,'y„ysb8~(x)g-~'(x)v„b" (x),

(5.5)

(5.6)

where the additive term proportional to the unit
matrix has been set equal to zero and

a ~P~ a ~ Pa~ (5.7)

In Eq. (5.6) the matrices y„(without the under-
lining) refer to the special relativistic Dirac ma-
trices satisfying

yaya+ysr(x 2)I()(8 i (5.8

and related to the ~y by

~V(x) =b ))(x)r (5.9)

It can be shown' that application of the operator
(y"V„-m) to Eq. (5.1) yields

(g""V„V„+,'R -m')y -= 0, (5.1o)

where V& denotes a covariant derivative (includ-
ing the spinorial affine connection). Let 9(x,x')
denote the 4x4 matrix Green s function of Eq.
(5.10):

Here the spinorial affine connections I'„(x) are
matrices defined, to within an additive term pro-
portional to the unit matrix, by the vanishing of the
covariant derivative:

~ptu ~p Yv I pv Yg I pyv ypI p (5.4)

Introducing the vierbein field b„"(x) such that

In Minkowski spacetime with b", constant, 9(x, x')
reduces to the scalar field Green's function mul-
tiplied by the unit matrix. The matrix S(x, x') de-
fined by

S(x,x ) = i(y~-V „-m)9(x, x )y-~

is the Green s function satisfying

(5.14)

iy(y"V„+m)S(x, x')= -g '~'5(x -x')1. (5.15)

In the proper -time representation one has (Ref. 15,
pp. 154, 158)

9(x,x') =b."'(x,x') g A, (x, x')—
Bm

l sds
X

(4vis)" ~ '

xexp -i m's-
2S

(5.16)

where i), (x, x') is defined in Eq. (3.11), the A„(x,x')
are matrices transforming like (j)(x)7()(x'), and 0

1
2

Working in Riemann normal coordinates at x',
it is straightforward to go from the proper-time
representation to the momentum-space repre-
sentation. As a consequence of Eqs. (2.8), (2.9),
(3.8), (3.9), and b. (x, x') =g '~'(x), one can write
Eq. (5.16) as

(((x,x') =(, '~'(x) QA, (x, x') (-,)G,{|:,x')
g=0

a 8

+A — Go x, x
Qm i

(5.17)

where the A~(x, x') have been expanded about the
point x' [the A, „8... are proportional to derivatives
of theA& evaluated at x=x', and we have antici-
pated the result proved below that A, (x, x') = 1].
Only those coefficients involving up to four space-
time derivatives (i.e. , which may contribute to
ultraviolet divergences) have been retained in Eq.
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(5.17). Because

(5.18)

with the boundary condition

A8(x', x') =1.

9(x x')=g(x) '/' d"P

(2&)n
einu9(b) (5.19)

one can replace each y" by is/[)k„-=is applied to
exp(iby) and then integrate by parts, to obtain the
result

Here dx'/dT is the tangent at x to the geodesic
from x' to x. [A,(x, x') is the bispinor of geodesic
parallel transport. ] In the normal neighborhood of
x' we choose the vierbein field such that b, (x) is
obtained from b™,(x') by parallel transport along
the geodesic from x' to x. Then

where dx"
')/))b" (x) =0.

df' (5.23)

+A — k + (5.20)

a
A (x,x')., =0

di (5.21)

I

In the Feynman propagator it is understood that
m' is replaced by m'-i& as in the scalar case.
[If desired, the factor of g(x) '/8 in Eq. (5.19) can
also be expanded about x' with the result that the
A., 8 ... coefficients will be somewhat altered. ]

The quantity A, (x, x') satisfies the equation

It follows from Eq. (5.6) that (dx" /d7)I'„(x) = 0, and
hence the covariant derivative in Eq. (5.21) can be
replaced by the ordinary derivative. Integration
along the geodesic from x' to x then yields

(5.24)

The coefficients A, andA, are given in Ref. 15,
while A,„can be obtained from Ref. 16 if one notes
that I'„vanishes at the origin of the normal coor-
dinate system. The coefficient A»„=-2'A1 &„(x',x')
requires additional calculation. The results are

A =—B1,
+2 ( 12();)( 288 l80 pu 180 l(uoT ) 88G[)38J [y6]R 1.1 )

n8
Aip = —248.~1+ i2GLots

A»u —
+() (~R)(u. ), 2R.pu 3Ru)R u+ 8R R1ngu+ 8R 2R) 1uu)1

+—,',C[„»(RR"„„-R""„.„„-R""„.,„)+—,', G,„»G„„(R"„R~'„„+R""~~',„),

(5.25)

(5.26)

(5.27)

(5.28)

where

lIG[» =.(r.rs rsr. ) .-- (5.29)
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APPENDIX: DERIVATION OF MOMENTUM-SPACE
REPRESENTATION FROM WKS FORMALISM

In Refs. 17 and 18, a method of defining a re-
normalized quantum stress tensor for free fields

ds 2 = C (g) (-d)I2+ (ix,2+ dx, '+ dx, ')

the positive-frequency WKB solutions are

C '/'(q) exp[ iI „".[/[/, (t)-dt tii8 ~ (x -x')]
48( ) (2+)3/ 2 [gr ( )]1/ 2

(Al)

(A2)
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(o„2=k'+c(}I)m'. (A4)

8 is the Ricci scalar mhich is a function only of
time.

The Feynman propagator is

where k = ~k~, . ()I', x') is some fixed point at which
the phase of (t)2(x) is chosen so that ())), (x) is real,
and 8'k is a real function of time which satisfies

3 W'
W 2=(e) '+ (] +-)CR ——' 2 —— " (AS)

where

&(}I—}I')=1 if }i&}I'

—0 otherwise

In evaluating the propagator, we will only be in-
terested in terms which are divergent in the coin-
cidence limit x-x', and for these purposes it is
sufficient to take the lowest-order solution to
(AS), namely,

&(», «') = i&0I7(y(x) y(x')) I0)

=ee(q —q ) f e, (x)e;(x')e'e
or

w, '= &,2+ (g —&)CR

(& .)C, (k .
)k

(A6)

(A7)

+ee(q' —q) f e()y, (x')e q,",x' (A5) %'e can expand

w„(i)df =(}I- q')w, (q')+o ((q -)7')'},
7l'

(AS)

(A9)

(A10)

(All)

(A12)

where

i(q -q ')(~ -&)CR
exp -i ) W, (t)dt =exp[-i(}I -}7')&u„] 1 — ' + ~-

J 2QPk

[2W, (11)] '~2[2W, (}I')] '~2=, 1 — ', +o(k 4) +o(}}—}I').

In each of Eqs. (A7)-(A10), terms omitted do not give rise to divergences in f (()),(x)p, (x')d k in the coin-
cidence limit x-x'. Using (A9) and (A10) we find

C -1/ 2 C-ll 2( x dq2k

y, (x)(t),*(x')d'k = ", '" —exp[-i(}7-}I')a),+ ik ~ (x -x')]
k

(( -~)CR i(q —q')(( --', )cR &

2k 2+k

In (All), all quantities u&„, C, and R appearing under the integral sign are functions of the fixed
time g = q'. W'e can write. the propagator as

a(», »') =c-"'(q)c-'~'(a')[I, +(~ -~)CRI,],

dk
Ii=i8(}i-}}')

( ),
dkI =ie(}I-}}')

(2m)'

ik(~-~')

2(dk

1
4dk

d k -in(x-x')
+«(}}' }})

(2 )-
I

()I - }I ) ()xi)'e} + g(
x

)
— + (. i I ) -i2(x-2'}

4(u, 2 " "
(2w) ' 4(u„2 4(u, 2

(A13)

(A14)

where

k(x —x') = -ko(q —}I')+k ~ (x -x') (A15)

k0= 40k . (A16)

ik(x-x')
Ix (2 )4 (k2p~2 ' )qq ( (A17)

where the contour of integration in the k, plane

But I, and I, can be expressed as four-dimension-
al momentum integrals:

I

is the positive real axis, M'=C(}}')m2, k'= -k, '
+k', and the limit e 0 is taken after the integra-
tion has been pex formed. The propagator is thus
given in a momentum-space representation by
(A12) and (A17).

If the derivation in this appendix were carried
out in n dimensions, the only differences in the
propaga'tor would be the replacement of C '~2(q)

by C' " 4(}})and $
-+ by $ —(n-2)/4(n-1). This

representation is thus identical to that obtained in
Ref. 4 for conformally flat spacetimes. Because
the coordinate system (Al) is not normal, the
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representation is not identical in form to that of
Sec. II. However, there is a close similarity be-
tween the two, and either representation can be
used to investigate renormalizability of A, @4 the-

ory in conformally flat spacetimes along the lines
of Sec. IV. The divergent parts of the Feynman
diagrams are found to be the same whichever
representation is used.

B. Riemann, Abh. K. Ges. Wiss. Gottingen 13, 133
(1868). Reprinted and edited by H. Weyl (Springer,
Berlin, 1920).

A. Z. Petrov, Einstein Spaces (Pergamon, Oxford,
1969).

3T. S. Bunch, P. Panangaden, and L. Parker, J. Phys.
A (to be published).

4T. S. Bunch and P. Panangaden, J. Phys. A (to be
published).

N. D. Birrell, King's College, London report, 1979
(unpublished).

C. W. Misner, K. S. Thorne, and J. A. Wheeler, Grav-
itation (Freeman, San Francisco, 1973).

L. Parker, in Proceedings of the NATO Advanced
Study Institute on Gravitation: Recent Dev elopments,
edited by M. Levy and S. Deser (Plenum, New York,
1979).

B. S. DeWitt, Phys. Rep. 19C, 295 (1975).
S. M. Christensen, Phys Rev. D 14, 2490 (1976).
L. S. Brown, Phys. Rev. D 15, 1469 (1977) .
N. D. Birrell and J. G. Taylor, King's College, Lon-
don report, 1979 (unpublished).
J. C ~ Collins, Phys. Rev. D 10, 1213 (1974).
V. Bargmann, Sitzungsber. Dtsch. Akad. Wiss. Berlin,
Math. —Naturwiss. Kl ~ 1932, 346 (1932)~

L. Infeld and B.L. van der Waerden, Sitzungsber. Dtsch.
Akad. Wiss. Berlin, Math. —Naturwiss. Kl. 1933, 380
(1933).
B. S. DeWitt, The Dynamical Theory of Groups and
Fields (Gordon and Breach, New York, 1965).

6S. M Christensen, Phys. Rev. D 17, 946 (1978).
L. Parker and S. A. Fulling, Phys. Rev. D 9, 341 (1974).
S, A. Fulling, L.Parker, and B. L. Hu, Phys. . Rev.
D 10, 3905 (1974).


