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General formulas are given for the mean net baryon number produced in the decay of superheavy scalar or
vector bosons. These results are used to make rough numerical estimates of the cosmological baryon
abundance that would result from such decay processes in the very early universe.

I. INTRODUCTION

The universe appears to have a baryon-number
density that is nonzero but small. Quantitatively,
assuming that all galaxies are composed of matter
rather than antimatter, ' the ratio of the baryon-
number density n~ to the dimensionless entropy
density s/0 of the 3 'K microwave background is
of order' 10 ' to 10 ' . If baryon number is con-
served and the expansion of the universe is essen-
tially adiabatic, then the quantity nsk/s is a con-
stant„w'hich governs the whole course of cosmic
evolution. Thus it is an important matter to learn
why this ratio is not zero. and why, though not
zero, it is so small.

Recently a number of authors" ' have consider-
ed the possibility that the cosmic baryon-number
excess was produced by physical baryon-number-
nonconserving processes, which are cosmological-
ly insignificant at present, but may have occurred
at significant rates in the very early universe. It
has become clear that in order to produce an ap-
preciable baryon excess, it is necessary not only
that some reactions violate baryon-number and
CP conservation, but also that these reactions
occurred at a time when the expansion of the uni-
verse had already pulled the cosmic particle dis-
tributions out of the equilibrium form.

The simplest way that this can happen" is for an
equilibrium distribution to be established" for
some heavy "Xboson" at kT»mx, with equal num-
bers of X and its antiparticle X, and for equili-
brium then to be lost when kT drops below re~, be-
cause the decay rates of X and X are less than the
rate of expansion of the universe at that time.
When the.X and X finally decay, at temperatures
kT «m~ which are low enough to prevent inverse
decay, the baryon-entropy ratio produced will be'

an, /s=45&(3)(W /Z)aa/2~4,

where h B is the mean bary'on number produced in
the decay of a single X or X boson, and Nx and N
are the (suitably weighted) numbers of species of
X bosons and of all particles with masses m =~n~,
re spectively.

ln order to calculate the crucial quantity b;B, we
need a specific theory of baryon nonconservation.
A class of such theories has been provided over
the last few years by the grand unified gauge mod-
els, which unite the strong with the weak and elec-
tromagnetic interactions. " There is as yet no one
grand unified model that clearly is realized in na-
ture, so we choose here to w'ork in a more gener-
al theoretical framework. Our main assumption is
that there is some simple grand unified gauge
group„w'hose spontaneous breakdown at the grand
unification scale leaves unbroken only the gauge
groups SU(3) and SU(2)x U(1) of the observed
strong and weak and electromagnetic interactions.

As recognized some time ago, ' this general
framework provides a natural explanation for the
fact that baryon-nonconserving processes are so
slow at ordinary energies. The masses of those
gauge bosons of the grand unified group which are
not associated with SU(3) or SU(2} x U(1}, and in
particular of the bosons which mediate baryon non-
conservation, are roughly of the order of the cri-
tical energy M where the strong and weak and elec-
tromagnetic couplings merge into the single cou-
pling of the grand gauge group. But the decrease
of the strong-interaction coupling is so slow that
M must be enormous, and the proton lifetime,
which is proportional to M4, must be correspond-
ingly long. Specifically, if we fix the ratios of the
SU(3} and SU(2)x U(1) couplings at M by the as-
sumption that there is a representation of some
grand unified gauge group consisting solely (or
chiefly) of quark-lepton families like those already
observed, and take the observed values of e and
the quantum-chromodynamic scale parameter ~
as an input, thenMis found' " to be of order 10"
GeV. (The same analysis" "yields a Z'-y mixing
parameter sin (9 between 0.19 and 0.21, only a
little lower than the present experimental value
sin'g=0. 23 +0.02.}

These considerations lead us to assume that the
superheavy vector and scalar bosons that mediate
baryon-nonconserving reactions have masses
in the range of 10" to 10"GeV." For vector
bosons, this is probably too low to allow the pro-
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duction of an appreciable baryon excess. As re-
marked in Refs. 6 and 8, a gauge boson with mass
m~&kT will have a decay rate of order &m~N, so
that these bosons decay when &m~N becomes equal
to the cosmic expansion rate H = 1.66 (kT)'N'~'/m~,
where m~ =1.22 & 10"GeV. This occurs at a
temperature kT =(N'~' om rm~)'~', which is
smaller than m~ only if m~ is above a value
N 1/2~m 1017N 1/2 GeV On the other hand for
Higgs bosons we must replace o.'with G~m'/4m,
where m is an rms quark or lepton mass; for
m =2 GeV, the Higgs bosons will decay at
temperatures kT which are below their mass m~
provided that ~~ is greater than N'~'G~m'm~/
4p =3 x 10' N' GeV. %e will consider the de-
cays of both superheavy gauge and Higgs bosons
here, but it is the Higgs-boson decays that seem
most relevant for cosmological baryon production.

At energies of the order of the superheavy gauge
and Higgs bosons, it is a very good approximation
to neglect the spontaneous breakdown of SU(2)
x U(1) to U(1), , so that particle states and inter-
actions can be analyzed using SU(8}xSU(2)xU(1)
as iI.. it were unbroken. In this way, it has been
possible to classify the vector and scalar bosons
that can mediate baryon nonconservation in gen-
eral theories. " This classification is reviewed
in Sec. II, and SU(8)xSU(2) xU(1) is used to give
explicit forms for the most general baryon-vio-
lating boson-fermion interactions that can arise in
renormalizable theories.

In Sec. III, we use the results of Sec. II to give
general results for the mean baryon excess 4B
produced per X or X boson decay. This calcula-
tion is aided by a general theorem. proved in an
appendix, which indicates that graphs of first or-
der in baryon-violating interactions but of arbi-
trary order in baryon-conserving interactions
make no contribution to 4B. W'e find that in gen-
eral 4B will receive its leading contributions from
the interference of tree graphs with one-loop
graphs in which a boson with baryon-violating in-
teractions is exchanged between the fermions in
the final state. "

Finally, in Sec. IV we apply this analysis in sim-
ple cases, and obtain rough numerical estimates
for AB and An~/s. Our conclusions are stated in
Sec. V.

II. PARTICLE SPECIES AND INTERACTIONS

The processes of interest to us in this paper
occur at enormous temperatures, very much high-
er than the masses of the 8"' and Z'. At such tem-
peratures, it is an excellent approximation to neg-
lect the spontaneous breakdown of SU(2) XU(1) to
electromagnetic gauge invariance and treat SU(2)

xU(1) as well as SU(8) color as an unbroken sym-
metry. In this section we will describe the SU(8)
xSU('2}xU(1) classification" of the particle species
that will be of relevance to us, and we will give
general expressions for their mutual interactions.

First, there are the "ordinary" leptons and
quarks. These apparently form sequences, with
left-handed fermion fields

~ ~ ~

Q g Q) Q2 C) Q3 —t) ~ ~ ~

d, =d, d2=s, d =b, . ..

In the usual notation, subscripts I. and R indicate
multiplication with —', (1+y,} and 2 (1 -y5), and the
numbers in parentheses give the SU(8) multiplic-
ity, the SU(2) multiplicity, and the value of the
U(1) quantum number Y'-=T, @. -

The only renormalizable interactions of a vector
field V with a pair of fermion fields (here includ-
ing antifermion fields) are of the form V"t (r»y„g».
Therefore, we can make a complete list of all vec-
tor bosons that can couple to a pair of ordinary
fermions by multiplying together all left-handed
fields of leptons, quarks, antileptons, and anti-
quarks with all right-handed fields and adding up
their SU(8)xSU(2)xU(1) quantum numbers. In a
similar way, the only renormalizable interactions
of a scalar fieldS with a pair of fermion fields are
of the form St gr~ g» or St g~„g», so we can cata-
log all scalar bosons that couple to ordinary fer-
mions by multiplying all left-handed fields of lep-
tons, quarks, antileptons, and antiquarks with
each other, and the same for the right-handed
fermion fields.

These lists of possible vector or scalar fields
have an interesting feature" that greatly simpli-
fies discussions of baryon nonconservation. Al-
most all of the scalar and vector fields that can
couple to a pair of ordinary fermions couple only
to channels with a single value of the baryon num-
ber and a single value of the lepton number. Such
bosons can be assigned a baryon number and a
lepton number in such a way that these quan-
tities are conserved in the boson-fermion interac-
tions. The only bosons which couple to two-fermi-
on channels with varied baryon and/or lepton num-
bers are
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(3, 2, ~6) vectors X»: charges --'„-~3,
j. v 1 (13)

gx. &(lq,~y~dz~ )V„' &+H.c.,

Xab ',0 aB7( RaC9 u ~Lb' f) X»k

c %

2x, b~&1 O'I ~»j~xc&+H c

g~ b(4 &y~%s )V,~&+H c.
I / c +kz ab&&&E~&&CfR z7 ~@Lb'~]V„yz

I,nb( IIa&j4hk} 4+jk

0 a b(Q Ra&xdR b8) Sj +3&

G 4.a b( Ra+R b@a

,G,",'s(—qua,ql~„)S,.p»e~8y+ H.c

(2)

(3)

(4)

(5)

(6)

(I)

(8)

(9)

(10)

(3, 2, ——,') vectors X»: charges ~„-—'„
(3, 1, -', ) scalars X~:charge --', ,

plus the corresponding antibosons. Using SU(3)
' xSU(2)xU(l), we easily see that the coupling of

these bosons to ordinary fermions must take the
form

Xv. The Xv bosons couple to fermion pairs form-
ing the SU(5} representations 5 x10, so they must
belong to the SU(5) representations 10 or 40. If
they all belong to the 10 representation, then their
couplings are constrained by

y I
g~ ab f6~ ab (14)

Further, if the grand unified gauge group contains
SO(10) (Ref. 13) as a subgroup, and if there is
only one species of Xv bosons, which forms part
of the multiplet of SO(10) gauge bosons, then

1 1

gab ab go~ah (15)

Of course, in an SU(5} theory, there is no X„'.
Xs ~ The Xs bosons couple to fermion pairs form-

ing the SU(5) representations Q x10 in Eqs. (7) and

(8), and 10x10 in Eqs. (9) and (10). Hence these
bosons must belong to the SU(5) representations 5,
45, 50. If they belong solely to the 5 representa-
tion, then their couplings are related by

( &) — (2)
f,ab +4,ab FC,abp .

~X,ab ~X,ab' (12)

Further, if there is only one species of Xv bosons,
which forms part of the multiplet of SU(5) gauge
bosons [as is the case in grand unified theories"
based on SU(5) and SO(10)], then the couplings are
further constrained by

In the notation used here, y, 7i, and $ label various
species of X„, X», and X, bosons of each SU(3)
x SU(2) x U(l) type, g and b label fermions in the
sequences (1), n, p, and y are SU(3) indices, j
and k are SU(2) indices, & S„and q, , are the totally
antisymmetric SU(3} and SU(2) tensors, with &»,
=- &» -=+ 1, and c denotes the Lorentz-invariant
complex conjugation of fermion fields. The anti-
commutativity of fermion fields yields

(2) (2)~4,ab ~4', ba '

So far, we have made no use of grand unified
gauge theories. Such theories impose relations
among the various vector and scalar -couplings in
Eqs. (2)-(10). As an example, let us explore the
consequences of the assumption that the grand uni-
fied gauge group contains SU(5)" as a subgroup
(not necessarily less strongly broken than the rest
of the group) and that the left-handed fermions in
(1}fall into the representations 5 and 10 of SU(5}.

Xv. The Xv bosons couple to fermion pairs form-
ing the SU(5} representations 5x5 in Eqs. (2) and
10x10 in Eqs. (3) and (4). Thus these bosons must
belong to the SU(5) representations 24 or V5. If
they all belong to the 24 representations, then the
10x10 couplings are related by

~&,ab ~4,ab G4' ab '(2) =

III. BARYON PRODUCTION IN BOSON DECAY

We want to calculate the mean baryon number
produced in the decays of one of the Xv, Xv, or
Xs bosons and the corresponding antibosons.
Each of the bosons Xv Xv and Xs has decay
modes of the type X-QI, and X-QQ, where Q
denotes an arbitrary quark and 1. denotes an ar-
bitrary lepton; the antibosons have decay modes
X-QL and X-QQ. The branching ratios for X
-QI., X-QQ, X-QX, and X-QQ will be denoted

1-r, r, and l-r, respectively. The mean
net baryon number produced in X and X decay is
then

b B=2[', r ——,(1 -y)- ', y+ —, (-I -—i)]—=—,
'

(» ») -(1.8)

Hence our task is to calculate the difference in the
branching ratios for boson and antiboson decay.

In carrying out this calculation, we are guided
by the theorem proved in the Appendix, which
shows that r -r can receive no contribution from
graphs which are of first order in baryon-violat-
ing interactions, even if the graphs involve an
arbitrary number of baryon-conserving interac-
tions. " We therefore calculate the decay ampli-
tudes for X„-QL, X»-QL, andX~-QL, includ-
ing both tree graphs and the one-loop graphs in
which a Xv, Xv, or Xs boson is exchanged between
the final fermions. The relevant Feynman dia-
grams are shown in Figs. 1 and 2. A straightfor-
ward calculation gives the X-QL, decay amplitudes
(in the notation of Sec. II)
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W(V„„,.—I,+d„,„)=(g„)., —g(g„'hP„').,I,„(~/m„}-g(F &'~'h„F('~)„I„(m,/m„),

A(V„„,. -q „,:+e„,)= (i„),,+ Plh„hj „. ) ,I„.,.(m„lm (.+g (((' '4„"G,"( ,I~.(m&/m )
X'

W(V„'„,- I„,+ u„,„)= (g„')., -g (g„h„'h„').,I„(m„/~)+g (F&'~+h„'F &'&)„I„,(m /m),

(20)

(21)

A($&„q~„~+l~„)=fy(, F&,(,
- Q(hxF( gx), (I+mx/m&)+Q(h„F& ' g„),&I~(m„/m&)

X

(22)

+e&I) G&. (+2K {hxG& ~x) (1~( x/m&) E( &' F& G&' )o(I»™&'/ (22)

Here I«, 1~~, I~, andI» are the Feynman integrals for vector exchange in vector decay, scalar exchange
in vector decay, vector exchange in scalar decay, and scalar exchange in scalar decay, respectively. For
the corresponding antiparticle processes, rve may simply replace all coupling constants vrith their complex
conjugates. By taking the difference of the absolute-value squares of the amplitudes (19}-(23)for particles
and antiparticles, summing over fermion labels a and b [and, for (22), j and h as well], and dividing by the
corresponding sums that appear in the tree approximation for the total rate, one obtains the difference in
branching ratios

r(V„-qL)-~(V„- qL)=4[»(g„'g„)+2»{h'„h„)+»(j'„j„)1'

x Q I&n Tr(g~g„hxh„~} imf „(m„/m )+g Im Tr(g„*F&&"~h„F&('&)I&nl (m, /m„)

-g Im Tr(jxh~&h„jx. ) ImI«(m„, /m„)- g I&n Tr(j~xG&("~hx~G„"&) ImI~(m&/mx),
4

(24)

x(V„'- Q J.) r(V„'- Q-I,)=4[Tr{g„'tg„')+2Tr(h„'th'„)] '

I

x g Im Tr(g„'~g„h„'h~) imI«(m„/m)- g Im Tr(g„'~F(("*h„'F,"&)ImI~(m, /m),

(25)

y($ qL) /($ ~qI)-4[2 Tr(F(&)&F(&))+2»(F(2)&F(2))+Tr(G(&)&G(&))+2 Tr(G(2)&G&2))]-&

P

x 2 Qlm»{E("th~F"'g ) ImI, (m„/ )m(2+1m -Tr(F("~h'F"' g )IrnI~(m„/m&)
vl

+2/Im Tr(F "&~G&"~G&"F"&)III1I (m./m )

—2 QI&n Tr(G&"~h&G&("j „)ImIz (m„/m&)
X

+ Im Tr g"~tE~'~*E('~ g'" ImI m, I
4'

(26)

ImI„( p) = — [1—p'lu(1+1/p')],1
(27)

'The imaginary parts of the integrals I«, I~, etc. ,
are easily calculated; we give here only the re-
sults for scalar and vector exchange in scalar bo-
son decay:

ImI „,( p) = —
8

ln(1+ 1/p'),
1

(28)

where p is the ratio of the masses of the exchanged
boson and the decaying boson.

We see that in general the branching- ratio differ-
ence y —i can receive nonzero contributions from
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e„
Xs xs+

dR

Xs+ ——m—
V

Xs
+

(o)

xs
uR

'R

Xs
+

uR

'R

t-'R Xs
+

oR

(b)

'R

(b) FIG. 2. Feynman diagrams for the decay of X& bosons
into quark plus lepton. Notation same as in Fig. 1.

oR uR

oR (c)

FIG. 1. Feynman diagrams for the decay of Xz and
Xz bosons into quark plus lepton. In the notation used
here, l i., ez, ql. , dz, uz stand for generic quarks and
leptons distinguished by their SU(3) &SU(2) &U(1) trans-
formation properties, as described in Sec. II.

exchange of an X~, X~, or X~ boson inthedecayof
any of the X~, X~, or X~ bosons. However, there
are a number of special cases in which the
branching-ratio difference cancels for an indivi-
dual boson or for some set of bosons. First, note
that the value of x -i for any given species of bo-
son receives no contribution from the exchange of
the same species of boson. [The traces
Tr(q~p'„,a„q„,), TrF &'&'G&'&'G&"F,',"), and
Tr(G&&»F&'&*F&" G"&) are real if &&=&&' or P. =$',
respectively. ] Hence there is no baryon produc-
tion unless there are at least two species of X bo-
sons. More generally, if some set of bosons had
equal masses, spins, and lifetimes, then in cal-
culating the cosmological baryon production we
would have to add up the branching-ratio differ-
ences y -i for each of these species; inspection
of E&ls. (24)-(26) shows that this sum would vanish
because the exchange of an X, boson in X,-boson

decay would be canceled by the exchange of an X,
boson in X,-boson decay. Hence there is no bary-
on production unless some of the species of X bo-
sons have different masses, spine, and/or life-
times. (Of course, there is in any case no reason
to expect equal masses and lifetimes for different
X-boson species. ) Finally, if we suppose that
there is a grand unified gauge group which con-
tains SU(5) at least as a subgroup, that the (3, 2, ~6)

X» bosons belong to the gauge multiplet of SU(5),
and that the (3, 2, ——,') X» bosons are either absent
or part of the gauge multiplet of SO(10), then the
couplings will be constrained by E&ls. (12)-(11),
and almost all of the traces appearing in E&ls. (24)

(26) will be real. The only remaining complex
traces in this case are the SS terms in Eq. (26),
which give

»(S& -QI.) »(S& QI.)-

=+4[4Tr(F&tF, )+3 Tr(G&tG&)] '

x Im Tr E~G~, +~I'~, ImI~~rn~, m, . (29),

In accordance with our previous remarks, we see
that this would vanish if there were just a single
species" of X~ boson, and would vanish when sum-
med over $ if there were any number of X~ bo-
sons, all with equal masses and lifetimes. How-
ever, (29) indicates that baryon production is to
be expected in X~-boson decay in even the sim-
plest grand unified gauge theories, provided there
are at least two species" of X~ bosons with differ-
ent masses or lifetimes. This is reassuring, for
as discussed in Sec. I, it is chiefly the decay of
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the X~ bosons that is expected to yield an appreci-
able baryon excess.

kgb/s= 0.28 (Nx/N) dB, (80)

where N~ is the number of helicity states of all
such bosons and antibosons, N is the number of
helicity states of all lighter particles (including a
factor of & for fermions), and C B is the mean net
baryon production per boson or antiboson decay.
The numerical factor in (30} is a ratio of integrals
pver blackbody distributions, given analytically
by 45$(8)/4m~ The .number N „is unknown, but N
is at least 100, so it seems reasonable to take the
ratio in the range

N „/N= 10 2 to 10 '.
The quantity hB is given by Eq. (18}as

~B= ', (r r-),„,--

(81)

where y and y are the branching ratios for the
quark-lepton and antiquark-antilepton modes of
the bosons and antibosons, respectively.

In estimating this branching ratio difference, let
us first consider the contribution of X~-boson ex-
change in X~-boson decay. From inspection of
either Eq. (26) or (29) and Eq. (82), we may infer
that the net baryon production per X~ - or X~-bo-
son decay in this case is

(aB)„=r'e (Iml „)„, (33)

where I' is a typical value of the Yukawa couplings.

E,'"' and G,'"' and e is a phase angle characterizing
the average strength of CP violation in the inter-
action of X~ bosons with fermions, or in the X~-
boson propagator.

To estimate I', we will assume that the X~ bo-
sons interact about as strongly with any fermion as
do the (1, 2, ——', ) doublets (P', P'), whose vacuum
expectation values give masses to the quarks, lep-
tons, S', and Z . That is,

(84)

where m is the rms value of quark and lepton
masses and G~ is the Fermi coupling constant.
[For instance, if the scalar bosons formed just a
single SU(5) quintet, consisting of one (8, 1, —,') Xs

IV. NUMERICAL ESTIMATES

'Ne will now use the general results of the pre-
vious section to make a rough numerical estimate
of the baryon abundance that is likely to be pro-
duced cosmologically in specific models.

As shown in Ref. 8, the delayed decay of super-
heavy bosons and antibosons, at temperatures suf-
ficiently far below their mass, will produce a cos-
mic baryon-entropy ratio

boson plus one (1, 2, ——', ) P doublet, then we would
have Yukawa couplings F&"=E"~=~~2'

E - 0'2&~4/ &~2 and g(&) — G(2) -~ 2&~4/

m~, mD, and m are the mass matrices of the lep-
tons and quarks of e type, d type, andu type, re-
spectively. Of course, in this particularly simple
case, CP could not be violated in X~-boson inter-
actions. ] In estimating m, we must keep in mind
that the values of quark masses at very high ener-
gies are likely to be less than their "observed"
values at ordinary energies by a factor of order 3
to 4." Taking the 5 and f quark masses (at ordin-
ary energies) as m~=4. '15 GeV and m, = 10 to 20
GeV, we find

m =1.1 to 2.5 QeV.

Equation (35} then gives

I"'= 10-' to 10-'.

(35)

(36}

In estimating the average value of the integral
-ImI», we must take into account the exchange of
each X~ boson in the decay of each other. Equa-
tion (26) shows that the exchange of Xs, in the de-
cay of X» makes a contribution to the branching-
ratio difference y -y which is of opposite sign to
the contribution of X~, exchange in the decay of
X». If one X~ boson is somewhat heavier than all
the others, then the dominant contribution to r -y
comes from the exchange of the lighter bosons in
the decay of the heavier one, and (Iml«)„
=Iml«(0)= -~»m. If several of the heavier Xs
bosons are of comparable mass, then some can-
cellation will occur, but there is no special reason
to expect complete cancellation. As a reasonable
lower bound on Im J~~ we will take —,

' of its value
Iml«(1)=0. 19/1$ for equal mass. This gives

)lml«) =1O-' to 1O-'.

To estimate e, we must rely on what we know of
CP violation at ordinary energies. The violation
of CP can be either intrinsic or spontaneous, and
in either case, it can operate through gauge boson
exchange, 2 Higgs bpspn exchange, pr bpth. In
the case of gauge boson exchange, the CP viola-
tion can be traced to phases in the quark mass
matrix, which appear in the quark-8' interaction
after the quark fields are redefined to make the quark
mass matrix real and diagonal. The phases in the
quark mass matrix would not contribute to observed
violations of CP if there were just four quarks, ' so
since we do notknow the strength of the mixing of the
5 and t quarks with the four lighter quarks, all that we
can deduce from the observed strength of the CP
violation in K~ decay is that the phases in the
quark mass matrix would have to be in the range
of 10 to 1. rad. These phases would have to
arise from an intrinsic CP violation in the coupling
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of scalar fields to quarks or from a CP violation
in the scalar field vacuum expectation values, due
either to an intrinsic CP violation in the scalar
self-interaction or to a spontaneous breakdown of
CP invariance. On the other hand, if the CP vio-
lation at ordinary energies is due to Higgs boson
exchange, then-these effects would be naturally
suppressed relative to ordinary weak interactions
by factors (m, „„/m„„~)', so the phases in the
Higgs boson exchange would have to be close to
1 rad." These phases can arise from an intrinsic
CP violation in the coupling of scalar fields to
quarks or from a CP violation in the scalar propa-
gator, due to either an intrinsic CP violation in
the self-coupling of scalar fields or a spontaneous
breakdown of CP invariance.

What does this tell us about CP violation in X~-
boson interactions'P If the CP violation at ordinary
energies is intrinsic, then we expect a similar
CP violation in the couplings of X~ bosons to
quarks and leptons and in the X~-boson propaga-
tors, so that

~e)=10 ' to 1. (38)

On the other hand, if the CP violation at ordinary
energies arises spontaneously in the breakdown of
SU(2) xU(1) to U(1), then we would expect this CP
violation to disappear at temperatures above about
300 GeV." However, whether the CP violation'at
ordinary energies is intrinsic or spontaneous, it
is possible that there is an entirely different CP
violation in X~ interactions, due to a spontaneous
breaking of CP in the breakdown of the grand uni-
fied gauge group to SU(3) x SU(2) x U(1). We know
nothing about the magnitude of such a CP violation,
and in lieu of better information we will take (38)
as our estimate of g.

If we now use Eqs. (36)-(38) in Eq. (33); we find
a mean net baryon number produced in X or X de-
cay:

pling of vector or scalar bosons to quarks and lep-
tons or in the vector-boson propagator. In any
kind of grand unified theory, we expect g'/4m to
be comparable with (though somewhat larger
than" ") the fine-structure constant a. , so

For the average value of ImI~ ~, we take a rounded
estimate

((1m '„),„)=10-' to 10 '

corresponding to a ratio of vector- to scalar-bo
son masses in the range 0.3 to 6 in Eq. (28}.

The mean baryon excess from X~ or X~ ex-
change in Xs-boson decay is now given by (41)-
(44) as

~(aB)s„)=10' to 10 '. (45)

Hence, in theories with a sufficiently complicated
group structure, we expect a baryon-entropy ratio
given by Eqs. (45) and (30}as

)kn /s(=10 ' to 10 '. (46)

The baryon production 4B associated with ex-
change of a scalar or vector boson in X~ or X~ de-
cay may be estimated as roughly comparable to
the value of 4B for exchange of the same boson in
X~ decay. We will not go into this in detail here,
as X~ decay seems more promising than X~ or X~
decay as a mechanism for cosmological baryon
production.

(42)

It is difficult to estimate q' because the possible
CP violation in the X„orX~ couplings or propa-
gator s has no direct analog at experimentally
accessible energies. However, e' can, like e,
receive contributions from CP violation in the
coupling of X~ bosons to fermions, so we shall
take for (e'~ the same estimate as for )e~

~d B~=10 '0 to 10 ~ (39)

With Eqs. (30) and (31), this gives a baryon-en-
tropy ratio

~kns/s~=10 "to 10 '. (40}

Now let us consider the contribution to 4B of X~
or X~ exchange in X~ decay. We assume now that
the grand unified gauge group is sufficiently com-
plicated so that the 1st, 2nd, and 4th traces in the
numerator of Eq. (26} are not all automatically
real. From Eqs. (26) and (32}, we have

&Bs~ g2e'(ImIs„)„, (41)

where g is a typical value of the vector-boson cou-
pling constants g» h„, j„,g„', or h'„and ~' in a
phase characterizing the CP violation in the cou-

V. CONCLUSIONS

We have seen that the delayed decay of a black-
body distribution of X~ bosons at temperatures be-
low their mass may be expected to produce a bary-
on-entropy ratio at least of order 10 "to 10 ',
provided that there are enough species of X~ bo-
sons. In sufficiently complicated theories, baryon
number can also be produced in X~ or X~ exchange
processes, yielding a larger baryon-entropy ratio,
of order 10 ' to 10 '.

These ranges of possible baryon-entropy ratios
overlap the values kns/s = 10 "to 10 ' that are al-
lowed by astronomical observations. ' However,
the rage of theoretical values is clearly far too
broad for us to be able to conclude that X-boson
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decay really is the source of the observed cosmic
abundance of baryons. In the absence of a specific
grand unified theory, all that we can conclude now
is that X-boson decay is a plausible mechanism
for cosmological baryon production.

Let us mention one last point: Vfe have made no
attempt here to predict the sign of the baryon ex-
cess produced cosmolagically. Of course, what-
ever kinds of particles survive the early universe
would inevitably be called "matter, " not "antimat-
ter." The only real question is whether "matter, "
as defined by CP -violating cosmological baryon
production processes, is the same as "matter, "
as defined by the observed CP violations in K~ de-
cay.

It is not impossible that this question could some
day be answered. For instance, phases in the in-
teraction of scalar fields with quarks can contri-
bute to the CP violation in both X-boson decay and
K~~ decay. (Recall that these phases produce
phases in the quark mass matrix, which produce
phases in the interaction of S' bosons with quarks
of definite mass, "which can contribute to CP vio-
lation in K~o decay. ) If such phases furnish the
dominant contributian to CP violation in both K~
and X decay, and if some grand gauge group re-
lates the phases in the couplings of (1, 2, --,'}p
doublets and (3, 1, -', ) X, bosons to quarks, then it
might be possible to relate the sign of the CP via-
lation in K~ decay and X~ -boson decay, provided
we can learn how to calculate K~-decay amplitudes
despite the complicatian of strong interactions.
But this must clearly wait until we have in hand a
specific grand unified we~re theorv.¹teaddedin Proof (1) Afte. r this paper was
completed, we received a report by S. Barr,
G. Segre, and H. A. %eldoo, which deals in a simi-
lar way with the problem of calculating the cosmo-
logical baryon production. The topics dealt with
in these papers are also discussed by P. Cox and

A. Yildiz, Harvard Report No. HUTP-79/A019
(unpublished). (2) There are two additional kinds
of boson which can have baryon-nonconserving
interactions with pairs of ordinary fermions and/or
antifermions. They are an SU(3}-triplet SU(2)-
singlet scalar X~ with charge —&, which can decay
into the channels d„es and ua uz, and an SU(3)-
triplet SU(2)-triplet scalar X~, which can decay
into the channels q~l~ and q~q~. These cannot
contribute to nucleon decay (because Fermi statis-
tics require their two-quark decay channels to
consist of quarks from different generations), and

they were omitted in Ref. 8, note (1). The ex-
istence of these bosons would provide additional
mechanisms for cosmological baryon production.
interference between the Born approximation and

X~ or X~ exchange in X~ decay, and interference

between the Born approximation and X~ exchange
in X~ or X8 decay. Our numerical estimates in
Sec. IV apply also to these contributions.
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APPENDIX

This appendix will consider baryon-violating de-
cays in the approximation that the decay amplitude
is calculated to first order in the baryon-'violating
interaction H, but to all orders in other interac-
tions. It will be shown that in this approximation,
TCP invariance requires that the rate for decay of
a particle X into all final states with a given value
B of the baryon number equals the rate for the cor-
responding decay of the antiparticle X into all
states with baryon number -B." As discussed in
the text, this theorem indicates that in calculations
of cosmological baryon production, we must con-
sider graphs which are at least of second order in
the baryon- violating interactions.

To first order in the baryon-violating interaction
II', the decay amplitude for a baryon-violating de-
cay of a particle X to some final state f may be
written

where gg"" and g» are eigenstates of the baryon-
conserving part of the Hamiltonian, with outgoing-
wave boundary conditions in gz"'. (Since g» is a
one-particle state, there is no distinction between
g»"' and P».) According to TCP invariance, the
amplitude for the corresponding antiparticle de-
cay process is

with bars denoting the 7.'CP conjugates of the vari-
ous states. Inserting a complete set of "aut"
states gives then

gS 0

where 5 is the $ matrix in the absence of the
baryon-violating interaction II'. The total rate
for X decay into all states f with a given value

Bfor the baryo-n number B(f} is then
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r(-B)= g» )A(X-7}('

=+A(X-g)*A(X-h) Q p~Sg~S g~g,

where p& is a phase-space factor. Now TCP
further tells us that all masses are equal in the
corresponding processes X-f and X-f, so the
phase-space factors are equal:

Py =Py ~

Also, S'.is unitary in the space of states with a
given baryon number, so

S O Soy pg~gh' B4)
~f sf

f:&(f)=& . 0 ~ B(+)gB

and therefore

g:B(g)=B

But this is the total rate I'(+B) for X decay with
final states with baryon number +B, so I'(-B)
equals I'(+B) in this approximation, as was to be
proved.
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