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Gravitational collapse of a charged fluid sphere
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A class of solutions of Einstein's gravitational field equations is discussed which describes the collapse or
expansion of a charged, perfect-fluid spherical distribution of matter. These solutions reduce in the
appropriate limits to certain charged Newtonian polytropes. A physical interpretation of the collapsing
configurations is given, and it is shown that these solutions can describe the gravitational collapse of a
bounded, charged fluid around a charged black hole. In all these configurations the singular region is either
a spacelike or a null hypersurface. Therefore, the final state of collapse cannot be described by the complete
analytic extension of the Reissner-Nordstrom spacetime. The special case of uniform density models is
investigated in detail and it is shown that they describe the accretion of neutral matter by a charged black
hole. On the basis of this analysis, it is suggested that for the realistic collapse of charged matter the
singular region formed within the matter is either spacelike or null.

I. INTRODUCTION

Spacetime singularities generally arise in the
relativistic theory of gravitation as "events" at
which the physical laws break down. Spacetime
regions of this nature occur in many solutions of
the gravitational field equations. It is expected,
nevertheless, that in the neighborhood of a singu-
larity reasonable physical conditions hold since a
"complete" gravitational collapse of matter is sup-
posed to give rise to a physical singularity.
Thus, following the argument of Laplace, the
strong attractive field of such a singularity is as-
sumed to prevent material particles and electro-
magnetic rays from leaving its vicinity. The ex-
istence of trapped surfaces of this nature in the
relativistic theory of gravitation was first shown

by Penrose. ' There is as yet no general proof that
all physical singularities allowed within Einstein's
theory of gravitation are surrounded by an e'vent

horizon.
The physical nature of the singularity requires

that all physical observers following (timelike)
geodesics that cross (a horizon) into a trapped re-
gion should eventually end up at the singularity.
This implies that the singularity should be a space-
like or a null hypersurface. For the case of mat-
ter-free black-hole solutions, this requirement is
satisfied f'or the Schwarzschild solution since the
singular hypersurface is spacelike. However, for
the Reissner-Nordstrom and (charged or un-
charged) Kerr solutions the singular surface is
timelike. The stability of this timelike singularity
has been discussed by Simpson and Penrose, ' and

by McNamara. 4 Simpson and Penrose presented

arguments for the instability of the inner horizon
of the Heissner-Nordstrom black hole and con-
jectured that. electromagnetic perturbations of a
Heissner-Nordstrom black hole will become singu-
lar on the inner horizon. McNamara has consid-
ered linear perturbations of the Heissner-
Nordstrom field by a massless scalar field and of
the Kerr field by gravitational, electromagnetic,
and massless scalar fields with the conclusion that
these perturbing fields can indeed become singular
on the inner horizon. Perturbations of the Heis-
sner-Nordstrom black hole have also been the sub-
ject of more recent investigations by several au-
thors, ' some of whom have speculated on the pos-
sibility that the interior geometry of the Beissner-
Nordstrom and Kerr black holes could be signifi-
cantly altered by quantum processes in vacuum.
These results generally indicate that the structure
of the interior Reissner-Nordstrom and (charged
or uncharged) Kerr spacetimes is not representa-
tive of the final state of realistic collapsing config-
urations, since these are expected to result in
significantly different spacetime structures inter-
ior to the event horizon. However, the nature of
the spacetime structure and the structure of the
singularity in a realistic collapse are not examined
in this approach.

It is the purpose of the present paper to present
a general class of solutions of Einstein's gravita-
tional field equations for the collapse of a sphere
of charged perfect fluid. It is possible to study ex-
plicitly the nature of the singularity in these solu-
tions and to determine that the singular region is
either spacelike or null. The inherent simplicity
of these solutions precludes any claim that they
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may correspond to realistic situations. Rather,
they are considered to be simple, physically rea-
sonable models representing some of the complex
phenomena associated with the gravitational col-
lapse of matter. The case of the gravitational col-
lapse of rotating matter will not be considered in
the present work since, among other things, no
satisfactory interior Kerr solution is known. '

Following the pioneering work of Oppenheimer
and Snyder the gravitational collapse of matter has
been considered by many authors. Despite the pro-
gress achieved, many physical questions of inter-
est remain; for instance, the nature of the final
state of an electrically neutral, isolated, massive
body endowed with a magnetic field. ' A frequently
encountered problem is the nature of the state of
matter in various collapsing configurations. If the
configuration is static or changing slowly, then the
assumption of local thermodynamic equilibrium is
valid and one may employ the usual description in
terms of local thermodynamic variables. Near a
physical singularity, however, the validity of such
an assumption is far from obvious. In the present
work it is assumed that the matter may be de-
scribed by a perfect fluid at essentially the absol-
ute zero of temperature, so that no heat is ex-
changed and such that the mass-energy density p, ,
the pressure p, and the charge density g are the
only quantities that characterize the state of mat-
ter. The pressure and density depend on position
and time, and there is no equation of state. For
the physical interpretation of the solutions, how-
ever, certain physical requirements are imposed
on p, and p ~e.g. , p ~ 0, p~ 0 everywhere, and p
—3p ~ 0 outside the trapped region).

'The plan of the paper is as follows: In Sec. II
general properties of spherically symmetric space-
times (in the presence of a charged perfect fluid)
in the comoving frame are described. An explicit
class of solutions is presented in Sec. III. It is
demonstrated in Sec. IV that in the static limit
some of these solutions have simple Newtonian
analogs. The physical interpretation of the gener-
al solutions is given in Sec. V and uniform density
models for gravitational collapse are treated in
Sec. VI. Some details of the calculations and cer-
tain developments outside the main line of the pa-
per are relegated to the Appendixes.

II. A SPHERICALLY SYMMETRIC SPACETIME

WITH MATTER

The metric form for a spherically symmetric
spacetime region depends in general on two arbi-
trary functions .(of time and the radial coordinate).
In such a coordinate system the motion of matter
is arbitrary except for the constraint imposed by

T„„=(p+P) u„u, +Pg„„

(g ~By „~ —,'+ p p~~), (2)

where u„ is the four-velocity of matter and I'&, is
the electromagnetic field tensor. Let g& be the
vector potential, E„„=P„&—p„„. Then spherical
symmetry ensures that only a radial electric field
can in general exist. A suitable choice of gauge
then renders g,. =0 and

(3)

without any loss in generality. A similar simplifi-
cation imposed by the comoving coordinate condi-
tion implies that u' =0 and

uO -1

The Riemann and Einstein tensors for the metric
form (1) are given in Appendix A. Let $ be defined
as

so that the energy-momentum tensor (2) is diagon-
al and completely deterniined by T,' =-p —$, T„'
.=p —$, and tr(T„„)=3p —g. The gravitational
field equations are then given by

G p 81TTp

an/ the electromagnetic field equations by

I'( +)1/21 pv
) 4+( g)&/2JP

X

where J" =&u" is the electric current vector.
7o express the field equations in a simple form,

it is useful to introduce the functions m(t, r) and

q(r) which have the interpretations of mass-energy
.and total charge within a sphere of "radius" r, re-
spectively. The mass-energy function m(t, r) is
defined'0 by

l —2m/8 = —44,

spherical symmetry. If one chooses to use coor-
dinates in which the matter is stationary, then the
general metric form depends on three arbitrary
functions. Let the metric form in such a comoving
coordinate system be written as'

2dt2 + g2dr 2 + g2dg2

where a, 5, and R are arbitrary, non-negative
functions of t and r, dQ' =d8'+sin'gdq', and

(r, 0, y) denote "spherical" coordinates. The
spacetime is assumed to be occupied by a perfect
fluid which may be charged. Thus the energy-mo-
mentum of the matter and the electromagnetic field
'ls



20 GRA VITATIONAL COLLAPSE OF A CHARGED F LUID SPHERE 2457

where%' and 4 are given by

1 BR 14= ——+-
a Bt b Br

1 BR 1 BR4=—
a Bt b Br

The quantity q(r) is defined by

1 ay, q(r}
ab Br R

(9)

(10)

tions a, 5, R, p, p, g, and q. However, if the
charge distribution and an equation of state are
a prom specified, then the problem will be fully
determined. Several authors" have performed
such calculations (numerically}. for uncharged mat-
ter.

It proves useful to derive certain consequences
of Eqs. (13)-(17}.By demanding integrability for
the pair (16) and (17), or rather (19) and (20), one
can derive the Euler equation

so that t' can be expressed as af 1 aa f

ar " ~ a ar (21)

(12)

The fact that q is independent of time follows di-
rectly from the Maxwell equations. 'These equa-
tions also imply the natural connection between q
and the charge density g:

2

m = —', mpR'+-,' q +R'y, . (22)

Furthermore, from the decomposition of the Bie-
mann tensor into its Ricci and Acyl parts, " it fol-
lows that m may be written as

dg
Nfl

=4wbR'g.

he flux of matter energy vanishes in a comoving
frame, therefore Einstein's equations imply

Let I' be defined by

2
I' =R'g, +

hen m can be expressed as

(23)

8 R 1 Ba BR 1 Bb BR
BtBr a Br Bt b Bt Br (14) m = —mgR +I'. (24)

The conservation of energy, u& T"'., =0, implies
that

Bg 1 Bb 2 BR(0+0) = — +-
Bt b Bt R Bt

(15)

Bm BR
Bt

=-4w(p —$)R' (16)

Equations (14) and (15) together with the following
two equations yield the full content of the gravita-
tional field equations (cf. Appendix A)

It follows from (15), (19), and (24) that

BI' 4 3 1 . Bb 1 BR
a~

'(~ ~} Tat (25)

The motion of matter is characterized by the
four-velocity u". However, to study its qualitative
behavior, it is of interest to construct the projec-
tion operator h&„=g&„+u„u and consider the be-
havior of the expansion and vorticity tensors. The
spherical symmetry immediately rules out any
vorticity and thus

=4w(y, + g)R (17)
v g=h "u)„.,)P"~ =0.

'The expansion tensor is

(26)

2
m=m+

2R
(18)

It proves convenient to introduce a "total" energy
function m(f, r), which represents the sum of the
mass-energy function m and the "electric energy".

1
go 8 f/~ u(P ~ ~),k 8 Of)(8 + 3 6~8 L9 (27)

where 0 8 is the shear tensor and 8 is the relative
rate of (volume) expansion. An explicit calculation
shows that

BR=-4~pR'
Bt

In terms of this total energy function, Eqs. (16) and

(17) may be written as

(19)

1 1 Bb 1 BR
0 (S '- -'6 '),

a b Bt R Bg

(28)

(29)

Bm 4, BR q dq
Br Br R dr ' (20)

which are intuitively appealing.
It should be noted that there are only five equa-

tions [(13)-(17)]among the seven unknown func-

where (8,~) is a matrix whose only nonzero ele-
ment is 9„"=1. It is simple to see that if the shear
tensor vanishes, then by Eq. (14) the rate of
(volume) expansion g is independent of position and
depends only on time; the converse of this state-
ment is not true in general.
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III. A GENERAL CLASS OF SOLUTIONS

If no a priori restrictions are placed on the func-
tional form of the matter variables, it is neces-
sary to restrict the motion of matter in order to
obtain solutions of the field equations systematic-
ally. Thus, let the matter be comoving in an iso-
tropic coordinate system, which implies that the
motion is ihear-free. Let the metric form be

in f(t) results with coefficients that are functions
of p only. This equation, which may be written as

~OU "~op (40)

must hold for all time, implying that 8„(p)=0 for
g=0, 1, . . . , 6. In order to express C„explicitly,
it is convenient to introduce the functions p, 3g,
g, and 6' as follows:

= -A'(t, p)dt'+B'(t, p)(dp'+ p'd0'), (30)

where A. and B are arbitrary non-negative func-
tions of time and the (new) radial coordinate p.
Maxwell's equations imply that

J3 8 ' = g(p),
A Bp

(31)

(D $) =4&D B 0,
dp

(32)

B=ABH(t), (33)

(34)

where g is a smooth but otherwise arbitrary func-
tion of p and p'P is simply the total electric charge
within a sphere of radius p. Einstein's equations
then reduce to the following two equations for A
and B (cf. Appendix B)

UI Vf
8 —2 ———

U V '

%=V ' V"-—V'
p

X=xo U (q U' —g p2)

1
(P P I p2

p

'The coefficients C„may now be expressed as
—@3'

Ci=2V l$

g, = v[v3)I +2K+(2v+l)t],

g, = 2 v(3)I + 4'),

e, = (2v+1)3}I—2Z+ v(P,

6 =2' =28

where v is a parameter given by

(41)

(42)

(43)

(44}

(45)

(48)

(47)

(48)

(49)

(50)

f=H .
Define the functions p and X as

(35)

together with the analogs of (19) and (20) from
which p, and p can be determined. Here H(t) is an

arbitrary function of time. To proceed further,
the functions 3, and & wi11 be assumed to have a
special form, which is suggested by the form of
the Beissner-Nordstrom solution in isotropic co-
ordinates. Let U and V be smooth functions of p,
U&0, and let f (t) &0 be defined by

and

v=-,' (1 —D'),

D =g, /X, . (52)

If v w0, it follows from Eqs. (45)-(50) that % =X
=(P =0. The three unknown functions U, p, and g
are thus determined. However if v = 0, then only
gg = g = 0 can be concluded, with U remaining com-
pletely arbitrary. In either case, it follows from
',g( =0 that

U(p)
( + ) f()

U(p)
X=2 (x. —n.) f(t),

(38)

(37)

V= yp +5, (53)

(54)

where y and 5 are constants. Similarly, &=0 im-
plies that

where X, &0 and q, are constants. Then A and B
are assumed to be of the form

1 —4x
(1+0)(l+ X)

B= (1 + (f&)(1 + X)
(t)

v(p)
'

(38)

(39)

It is simple to verify that Eq. (33) is satisfied.
When expressions (38) and (39}for A and B are
substituted into Eq. (34), a sixth-order polynomial

where the sign of go has been left undetermined.
If v ~0, then (P =0 may be solved to give

2&p
2 +p

(55)

where n and P are constants. It follows from Eqs.
(41) and (53) that (for v x0)

~ (r~ +&)"'. '
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Some cases of the solutions obtained above are
of special interest. For f= 1, a=6=1, and P =y
=0, one obtains the Heissner-Nordstrom solution"
in isotropic coordinates with A and q, as the mass
and the charge, respectively. When n&0, P =0,
and 5 &0, the charged version of the McVittie solu-
tion'~ is obtained. Finally, in the absence of
charge, 0 = 0, the general solution reduces to the
class of solutions considered by Glass and Mash-
hoon" and interpreted (for n &0, P & 0, y & 0, 6

&0, and f& 0) as describing the last stages in the
gravitational collapse of a spherical star system
with a central collapsed core. 'These solutions
may serve as highly simplified models for the
(possible) collapse of the core of a. globular star
cluster. .

IV. A NEYfTONIAN ANALOG

Consider the general static solution for v gQ,
and let f=1, o. &0, P &0, y=0, and 6=1. In the
absence of charge, g =0, this solution describes a
regular distribution of matter for 0 ~ p & ~ and it
is the relativistic generalization of the classical
Emden polytrope" of index &= 5. In this section
this correspondence is generalized in the presence
of electric charge.

Using the results of Appendix B one may show
that the physical parameters of the system, p. , p,
and &, are given by

gnPI1 'U'(I+2K vU),
4w

(57}

p = vA, ~PA 'B 'U,
2Ã

(58)

q0o.'PB 'U'. (59)

3 apl
4a g4

P 2 g 4

(60)

(61)

(62)

(63)y«= 4«(I+p'/o, ') ' '.
Here P0« =AD/P't~ is the potential at the center and

p, = (p/o. )'t' is a characteristic radius of the sys-
tem. Thus a regular distribution of matter is ob-
tained for 0» p & ~ which in the Newtonian limit
has a constant charge to mass ratio ani'. a poly-

The pressure should be positive (or zero), there-
fore v & 0 (and hence g' &1). It follows that p, —3p
&0 everywhere if p«=—A U &1 holds. p» has the in-
terpretation of the Newtonian gravitational poten-
tial. In the Newtonian limit, where p««1, one

may write p. , p, and g as

tropic equation of state (po- p'" "), with n = 5.
is of interest to investigate the behavior of the
quantities q and m in this solution. One finds that

g=g0+P U (64)

Fn =q —8, (65)

where 8 is a function of p» given by

tl = (1+/»+vQ»') '

' (I+ l y«+ '(y -«} 'y«'(I+2ve«)1 ~ (66)

It follows that as p-~, p«-0, the total charge is
given by Q = q0/n'~', and the total mass by M = A /
n'~' = p0P'«, implying that Q=gM in this solution.
Moreover, the system under consideration obeys
a scaling law. To see this, let = o. ' ' be the
scaling parameter and consider a solution with a

(

given A0, P, and &@=1. Then for any other s, g0, a
solution is obtained with t, p, m, q, and p0 scaled
by +, and p, p, , and g scaled by & ~.

Consider now a spherical distribution of charged
fluid in equilibrium within the Newtonian theory.
Let the fluid have a polytropic equation of state"
(with index n) and a constant charge to mass ratio
u = g/p, = q(p)/m(p). T hus

Gfm

dp
=4''p, ,

v= —. 4 —p, m
p2

p = 4v +1+1/

(6V)

(68)

(69)

8 2 8 =-8 (70)

Here p 0 & 0 is given by

= 3
p,

' =
4 «(n+ I) p, "'t". (71)

It is simple to see by inspection of Eqs. (67)-(69}
that if 0 is finite at the origin, then de/dt =0
there. With these boundary conditions Eq. (70) has
a unique solution which ha, s been given in closed
form only for & =0, 1, 5. For z =5 the solution is
O=(1+p'/p, '} 't'. The exact correspondence with
Eqs. (60)-(63) is established if we let

It follows from Eq. (68) that v&0 in order for the
pressure to decrease outward. For v = 0 the pres-
sure is constant according to (68), and since it
should decrease to zero at the boundary of the sys-
tem, one concludes that p =0 everywhere. This
fact is incorporated inEq. (69}inwhich « is a con-
stant. Let p, = p, ,e", where 8 = 1 at the origin p = 0
and p, , is the central density, and z =3't'p/p0.
Then 0 satisfies the (Lane-Emden) equation
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4w

3
n~p -3/2

(72)

(73)

time. It turns out that for the particular solution
under consideration,

These results indicate that the general solutions
under co'nsideration in this paper for certain values
of the parameters may be regarded as the time-
dependent, relativistic generalizations of a charged
fluid sphere with a polytropic equation of state with
index yg =5. Note that for v =0 the Newtonian sys-
tem is in neutral equilibrium and that the potential
function y~(p) can be completely arbitrary. The
choice (63) is thus a particular solution in this
case. This situation is completely analogous to the
discussion of the v = 0 solutions in the time-depen-
dent relativistic case (cf. Appendix D).

V. PHYSICAL INTERPRETATION

For the physical interpretation of the general
solution obtained in Sec. III, it is convenient to in-
troduce a new radial coordinate

(74)

which leaves the comoving character of the coor-
dinate system unchanged but casts Eq. (30) into the
form of Eq. (1) with

he mass-energy density can be calculated from
Eqs. (8), (18), and (20),

(1+x/r+vX/r } '2 2 -3

y A,o

& (npr ' y5)- (83)

'The pressure can similarly be obtained from Eq.
(15),

P = ——a p, —g. (84)

It will now be assumed that the matter is con-
fined to the region r ~r~. The metric of the space-
time region r &rs is then given by the (exterior)
Beissner-Nordstrom solution. The two solutions
can be joined smoothly at the boundary surface ~
=ra provided that

3 g =-.'(i/X}'+(X/g)'(1+x/r+vX'/r') '

&& [y5(2+1/r)+npa/r'+2vnpa'/r'] . (82)

The charge density is simply calculated from Eq.
(13) with the result

a = (1 —vx' /r ') (1 +X/r + vx'/r ') ',
b=~ r(1+X/r+vX'/r')W ' ',

(75)

(76)

P(f, r, ) =0. (85

The exterior solution is completely characterized
by the total mass and charge of the matter M and

Q, given by

8 = ~ b, '(1+x/r + vA'/r') W' ',
A.

where A, (t)=g/f, A=n5 —py&0, and

(77) m=m(t, r, ),
q = q(r, ) = q, ~ 'r, 'W,'" .

(86)

(87)

R b

R b
' (79)

as may be simply checked from Eqs. (76) and (77).
The expansion rate is then given by Eq. (28}

R A,
L9=3a ' —=-3 —,

R A.
(80)

so that X &0 corresponds to'a collapsing configura-
tion.

The amount of charge within a radius y is given
by

q(r)= q,a 'r 'W'~', (81)

and the total energy function m at time t within a
radius r is given by Eq. (24) with I' independent of

w = (n-yr')(&r' p) . -
Since the metric can be put in the isotropic form,
the shear tensor vanishes and thus

A differential equation for g(f) can then be obtained
from Eqs. (24), (82), (83), and (86), which de-
scribes the dynamical evolution of the system. A
detailed account of the join between the interior
(r ~ra) and the exterior (r ~ rs) solutions can be
found in Appendix C. A physical parameter of in-
terest for describing and classifying the collapsed
configuration is the red-shift z~ associated with
radial null rays emitted from the boundary surface
of the system (r =rs) and received by stationary
observers at infinity. It follows from the discus-
sion in Appendix C that

1+z, =@ '(t, r, ). (88)

The red-shift z~ is a combination of gravitational
and Doppler shifts.

I et us now consider the nature of the singular
region. It is necessary to assume that v~0 at this
point in order to establish a connection with the
physically reasonable static solution discussed in
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N"Nq =-van. /a +1/b', (90}

As vp v Q 0, and thus the normal vector is
timelike as the singular surface is approached.
Hence if v &0 and the system is time-dependent,
then the singularity is spacelike. On the other
hand, if v=0, then at the singularity N"N„=0,
hence the singular surface is lightlike. It is inter-
esting to note that for v &0, if the system is col-
lapsing then the singular region expands if the
charge density in the immediate vicinity of the
singularity has the same sign as the total charge
enclosed within the singular surface, and contracts
if it has the opposite sign. To see this, note that
the sign of the charge within the singular surface
(and more generally, within any given radius) is
characterized by q, according to Eq. (81). The
charge density at the singularity has the same (op-
posite) sign as go if np —p'16'' is positive (nega-
tive). On the other hand, the physical radius of the
singularity R z =R(t, rz) expands or contracts de-
pending on whether aP —v'y5~ is positive or neg-
ative since

(91)

The solutions under consideration are physically
reasonable if the singularity is enclosed within a
horizon. The apparent horizon is the tj.me devel-
opment of a two-dimensional surface, which at
each instant of time is the outer boundary of all
trapped surfaces at that time. Penrose' has given
the condition for the existence of a trapped surface.
A two-dimensional, closed, spacelike surface is
trapped if the null geodesic rays that emanate nor-
mally from this surface converge in both the out-
ward and inward directions. Let l" = (a ', 5 ', o, o)

the previous section. It follows that for r &0 the
charge and matter densities are regular but the
pressure diverges at (v &0}

r, =~~", (89)

where a(t, r~) =0. The physical region then con-
sists of r ~ r~ where a is non-negative. For v = 0,
the general solution is discussed in Appendix D and

the following remarks in reference to the v =0 case
apply to the v =0 limit of the particular solution un-
der consideration in this section. Hence in that
limit, the singularity occurs at the origin (x~ =0),
and in order to have the chagge and mass-energy
finite as r-0, Eqs. (81) and (82) imply that nP =0.
'Thus, as before, the pressure diverges at the
singularity since a =0 there, but the charge and

matter densities remain finite.
Let N" be the vector normal to the hypersurface

r =~vo' ', where v, is a positive constant. Then it
follows that

and n" =(a ', —5 ', 0, 0) be the two null rays in the
(t, r, 8, y) coordinates that are tangent to null geo-
desics and are orthogonal to the constant (f, r) sur-
faces. Then% = j"R and 4 =n"R „are equal, up
to positive-definite proportionality factors, to the
expansion parameters for the radially outgoing and

ingoing null geodesic congruences, respectively.
A spacelike surface of constant g and y is trapped
if both 4 and 4 are negative. 'The marginally
trapped surface which is the outer boundary of all
trapped surfaces at a given time is then given by
@(&,r) =0. For all time f, this is the equation for
the .apparent horizon which may also be written as
2m/R =1 or, alternatively, as

1-2m/R+ q'/R' =0. (92)

This equation has the solutions R, =ma (m' —q )' ',
is the inner boundary and R+ the outer boundary

of the trapped surfaces. The equation for the time
development of the apparent horizon can be found
from Eqs. (16) and (17) together with 2m/R = 1 and

4'(t, r) =0. One finds that

dr a 1 —q'/R'+ 8nPR2

dt 5 1 —q /R -Bw~ (93}

at the apparent horizon. '
The general solutions under consideration allow

a variety of physical configurations for a collaps-
ing or an expanding matter distribution. In the
case of collapse, and for a physically reasonable
distribution of matter, it is expected that the mar-
ginally trapped surface, R, = m+ (m' —q')'~',
would expand as the boundary radius contracts un-
til the two coincide, i.e., Rs =M+ (I' —Q')' ', at
which time this surface also constitutes the event
horizon for the exterior observers. Subsequently,
the collapsing matter will not be able to commun-
icate with the external observers. The event hori-
zon is a null hypersurface which may be continued
back in time into the region occupied by matter so
that at a given time the event horizon will be a
spherical surface outside the marginally trapped
surface since orthogonally emitted null rays will
be bent into parallel beams (by the attraction of
matter) upon emerging into the matter-free region.

The boundary surface continues to contract until
all the matter has reached the singular region.
This may be seen from Rs = —R~(X/X)as, so that
as long as r~~r~ and A. &0 the boundary contracts,
and reaches the singular surface with zero "speed. "
The pressure is indeterminate at r~=r~, and the
time development of the system can no longer be
determined by means of Einstein's equations. 'The

spacetime region outside the boundary surface is,
however, part of the analytically extended Reis-
sner-Nordstrom spac ctime. '
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Among the general solutions under discussion,
three categories [to be referred to as (i), (ii), and

(iii)] may be distinguished depending on the ratio
of the charge density (in the region r» r~) to the
total charge of the system. Cases (i) and (ii) cor- '

respond to configurations in which this ratio is
positive and negative, respectively. In case (iii)
this ratio is zero, so that the infalling matter is
neutral. Some properties of cases (i) and (ii) will
be described here and in Appendix E. A detailed
discussion of case (iii) is contained in the next sec-
tion.

It follows from Eq. (83) that cases (i) and (ii)
correspond to the conditions nfl '-y&&0 and
n'Pr —yd & 0 in the physical region, respectively.
An explicit calculation shows that so long as v & 0,
the sign of 8 p, /sy is opposite to that of (n13r ~

—yd). Thus in case (i) the density decreases out-
ward whereas in (ii) it increases outward Cas. e
(iii) corresponds to uniform density models.

Case (i) is realized, for example, if n&0, P» 0,
y & 0, and 5 & 0. It may be shown that the curvature
coordinate R satisfies 8R/er &0 in this case. It is
therefore natural to characterize 8 as the "physi-
cal radius" of the system.

This intuitive characterization generally fails,
however, when case (ii) is considered. The behav-
ior of 8 as a function of r is more complex; never-
theless, a consistent physical interpretation is-
possible. The remarks below and in Appendix E
are restricted to case (ii) only, which besides its
intrinsic significance may perhaps be of some
astrophysical interest as well. The charge density

& and the charge q-have opposite signs, therefore
Eq. (21) implies that the pressure monotonically
decreases 'outward. Thus the pressure is positive
everywhere in the physical region and is zero at
the boundary. On the other hand, the density has
in general a finite value on the boundary ps, 8 ps/
at ~ 0, and decreases monotonically inward at any
given time. It may be assumed that e &0, P» 0,
y &0, and P &0. The physical range of the radial
coordinate is then given by r,„=(P/5)'~ and r,„.
=(o.'/y)'~', with r „&r,„, since a&0. Further-
more, at t=0 a singular region is assumed to exist
with ~~'&g, ,& „,. The total charge of the infalling
matter is always insufficient to completely neutral-
ize the charge at the initial singularity. The curva-
ture coordinate of the singular region decreases
with time as may be seen from Eq. (91). An inter-
esting feature of these solutions is that the system
may start to collapse from rest (i.e., dA/dt=0 at
t=0) under certain circumstances. Extensive nu-
merical work is required for a complete descrip-
tion of these solutions. However, if it is assumed
that the boundary surface is sufficiently close to
the apparerit horizon initially, then certain analytic

results may be derived which are discussed in Ap-
pendix E.

VI. UNIFORM-DENSITY MODELS

a= (I -r, '/r ')(I +i/~+rz2/r') ',
b= &u(g /y)( I+a/r+r, '/~ ').

(94)

(95)

The charge density g vanishes, so that the charge
is a constant given by

q(r) =~, . (98)

Hence these models represent the accretion of
neutral matter by a charged system. The total en-
ergy function is given by

m(t, ~) = ~Z, + —', wgR', (9'I)

where g, given by p =3(8n) '(x/X)'» 0, is a func-
tion of time only, and may be alternatively expres-
sed in terms of e» 0, M =cog(1 + @), as

3 3t (ODOR~.4N'

The pressure is then expressed by

(98)

so that for r, ~r ~~~, the pressure diverges at the
singularity and decreases monotonically to zero at
the boundary. The time development of the system
is given by the differential equation

(x/z)' =2«o~, ', (100)

which may be solved by means of the Legendre el-
liptic integrals as shown in Appendix F. The sing-
ularity occurs at r =x~, where a=0. Let E=—R/
(vA ) be the "reduced physical radius" of the sys-

The discussion of the collapse of a configuration
in the previous section assumed a physically rea-
sonable distribution of matter. For the case of a
perfect fluid one may assume that the conditions p
~0 and p &0 should hold everywhere and p, —3p& 0
just outside the apparent horizon. An adequate
treatment of the question of propagation of disturb-
ances in the medium necessitates an analysis of
the perturbation of the spacetime under considera-
tion, which is beyond the scope of the present
work. "

To impose these conditions on the density and
pressure, even in the simple solutions under study,
requires recourse to numerical work. Therefore,
to study the collapse analytically, it proves exped-
ient to consider the special case of the solutions
with uniform density, i.e., P =y =0. Let v» 0, n6
&0, and &o=(n6) '~' be the scaling parameter.
Then the metric form (1) is isotropic, with R = bx,
and
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tern so that at the singularity

y =1+2v'~' (101)

0= ~ — + (103)

and hence da/dF &0, so that a is a monotonic func-
tion of F. Therefore, if at the initial instant t=0,
(p/p, )« = -I+a+a„„is so specified that the physi-
cal re«quirement (g —3p)« ~ 0 is satisfied, then at
any later time a3 decreases and a„„increases,
forcing (p/g)~„ to decrease with time. Thus p,
—3p~ 0 is always true outside the apparent horizon
once it is satisfied at the marginally trapped sur-
face initially. The singular surface r~ =~v' ' at
which the pressure diverges is spacelike for v&0
and null for v=0.

The uniform density models obey a scaling law.
All physical length parameters scale as ~ and the
density and pressure scale as co '. The total
charge to mass ratio for these models is given by
o/(I+a) which, together with ~a~ ~1 and e &0, im-
plies that

~ Q ~
& M if the system is time dependent.

Thus an extreme Reissner-Nordstrom black hole

The marginally trapped surface at a given time is
at It = n~+ (m' —q')'~', so that from Eqs. (96)—(98)
one finds that

F' —2E+ o' =2eE'/F s',
at the apparent horizon. It is interesting to note
that although the coordinate radius of the singular
surface increases in time, yet the physical radius
of this surface, &oA F„ is a constant. Moreover,
at a given time, the reduced physical radius ranges
monotonically from E~ to Fs (cf. BB/sr = ah ~ 0).
The behavior of the apparent horizon can be simply
described in terms of a graphic solution of Kq.
(102). In the Cartesian (F, G) plane, consider the
two curves

G, = (E —Fz)(E- I +2v'i')

and

G, =2' /F ' for E F-
There can be at most one point of crossing 6, = G,
where the apparent horizon occurs and F=F™„H.
Let there be such a point at some given time. At
any later time F~ has decreased and hence the
graph of G, is more highly curved resulting in a
larger value of E«. A time may come, however,
at which the two curves are tangent, i.e., G, =G,
and dG, /dF = dG, /dE at the maximum value of F«,
namely, E„"„=—,

' [3+ (9 —8o')' ']. From this time
on no' solution exists. Therefore the corresponding

. reduced boundary radius FB can range from ~
down to [4c/(E —I )] P

It is simple to show that

cannot result from the collapse of such a configu-
ration of matter. It now remains to give explicit
examples of such configurations. Let ~ = I and
A(t=0) =A in what follows. If at t=0 one chooses
E„„=2and F~= —,', then a one-parameter class of
models is obtained with 32m = (&)'o' and ~16» ~o'

gyp' For the upper limit of e 2 -0.9, the bound-
ary surface is initially almost trapped and from
Eq. (88), g8-~. However, for the minimum al-
lowed value of o'-0.5, one has the minimum value
of the initial redshift given by z~-15. It is simple
to show that in each configuration z~ increases
monotonically until it diverges at the instant that
all matter has just passed through the horizon. To
see an example of a v =0 configuration, let F„„=—,

'
and Es= + at t =0. Then e is given by Eq. (102) as
81& = 2(-')'

It is a general property of the uniform density
models that the inner horizon does not exist in the
physical region since R &B~. The spacetime re-
gion exterior to the matter is part of the analytic-
ally-extended Reissner-Nordstrom solution. In
the present solutions the nature of the (spacelike or
null) singular region that consists of charged
(completely) collapsed matter is not altered by the
accretion of neutral perfect fluid matter. A char-
acteristic feature of the uniform density models is
that the solutions possess a singularity at t =0.
However, this need not be the case for the general
class of solutions discussed in the previous sec-
tion. It has been shown" that (in the absence of
electric charge) solutions exist in that class which
are regular at t =0 but develop a (spacelike) singu-
larity in the process of gravitational collapse, the
singular region always being enclosed within a
horizon.

Note added in Proof. In connection with the ques-
tion raised at the end of Appendix B, we have un-
dertaken a comprehensive study (to be published
elsewhere) of the spherically symmetric, shear
free motions of charged or uncharged perfect
fluids obeying an equation of state p =p(p, ), includ-
ing the special case of P =0 everywhere. Among
other things, we have answered the above question
in the negative, that is, we have shown that there
does not exist an interior Beissner-Nordstrom
solution whose fluid is subject to the conditions
specif ied above.
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APPENDIX A

In this appendix the Riemann and Einstein ten-
sors for the metric form (1) are given. The non-
zero components of the Riemann tensor may be ob-
tained from the following:

0 b
(8 ioi = aa „„——a „b „—bb «+ —a ~ b, , (AI)

APPENDIX B

The purpose of this appendix is to express the
gravitational field equations for the metric form
(30). The only nonzero components of the Einstein
tensor are given by

gj +2 pl/ g/2 4
Goo=3 -- —

o 2 — -- +—
00 ~~ A)2

I

G0~ =Gio =-2&01 10 (B2)

At
II

4

~ e a 0

aR R
2 a„B„-ItB„+—A, , a, ,

2dl„„=sin 86l„„,
R g

2
(R033i = sin gg022i y

(A3)

(A4)

(A5) G„=»n'gG22,

(B4}

(B6)

bA' R$,2,2=, btRt-RR „„+—brR „,
' 2

(R, , =sing@. . .
»3 =2rnR sin'8,

~ ~where (0, 1, 2, 3) = (t, r, 8, p) and g is given by

(A6)

(A7)

(A8) Go& =o

G|i —p G22 - -2B
(B6)

(B7)

where (0, 1, 2, 3) = (t, p, 8, y). The energy-momen-
tum tensor is diagonal and the gravitational field
equations are given by

1 1 18= —R ——a R ——b R, tr a $r, t b, t (A9)
A Goo —B g =8wp,

B G|i+ B g =8wP.

(B8)

(B9}

a2G 0 + b 2G 1 0 (A11)

R „G0 —8 toy (A12)

R, tGi' —B,rG0' = -2 (A13)

and

G 2 G 3
2 3

o(& ~~ +
b-

b Rb Ra ab

It is interesting to note that
(A 14)

—G Q"' = —R R"'4 Pft 4 Pyg

2 4
=16g'(p, '+3p')+4m ~, (p, +P) +

(A 15)

Similarly, the nonzero components of the Einstein
tensor are given by the following relations:

2

a

2x(E „/E 2E /E) =DE-
This equation may be integrated to give

2xE „,= C (x}E + D(x)E',

(B10)

(B11)

where C is an arbitrary function of &. With a par-
ticular choice of C and D, and the appropriate
boundary conditions, Eq. (B11)may in principle
be solved to find B. It can also be shown that C
and D are related to the conformal curvature of
spacetime by

g, =--, CE'-aE'.2 (B12)
In connection with Eqs. (B8) and (B9}, an inter-

esting result has been obtained by Mansouri. ' He
has shown that if the state of a bounded, perfect
fluid is time dependent, then, in the absence of a
net electric charge, no equation of state of the

Equations (33) and (34) follow directly from (B6)
and (B7}, respectively, and the density and pres-

,sure can be evaluated from (B8) and (B9).
It has been showno2 that Eqs. (B6) and (B7}com-

bine to give an interesting nonlinear partial dif-
ferential equation for B '. Let x=p', E(t, x) =1/
B(t, p}, D(x) = g'(p), and eliminate A between Eqs.
(B6) and (B7). It follows that
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form p =p(p, ) can exist, except for the trivial case
@=0. This result is contingent on the assumption
of spherically-symmetric shear-free motion. It is
important to note that no restrictions are placed
on the local laws of physics within the framework
of the relativistic theory of gravitation. It follows
that if an equation of state of the form p = p(p, ) is
imposed, then, in time, the motion will develop
shear. Alternatively, if the motion is to be shear-
free, then a more complicated equation of state,
capable of taking due account of hear conduction,
etc. , must be assumed.

In the light of Mansouri's result, the question
naturally arises whether a charged perfect-fluid
sphere undergoing shear-free collapse ( or expan-
sion) admits an equation of state of the form
P=p(p). This appears to be an open question at
the present time.

The boundary of the matter region is given by the
hypersurface

(C5)

2 P-1G 2 g2

2 +P-1G 2 y2

AF, F „—A G, G „=0,
G=R,

G„=B„.
It follows from these relations that

(C6)

(C 7)

(C8)

(C9)

(C10)

r —r~=0,
which is always timelike. Thus the O' Brien-Synge
conditions require that g„, and g„, p be continuous
at r =r~ except perhaps for grr, r a d gtr, r' Thus at
r=rB, and for any (allowed) value of t, the follow-
ing equalities hold:

J

APPENDIX C M = m(t, r,)+ —,
'- q'/tt, . (C11)

Adt*'+A—'dr*'+ r"'(dg*'+sin'g*dy*'),

(C1)
where A =1 —2M/r*+ q'/r*'. Consider a coordin-
ate transformation of the form

t+ =F(t, r), (C2)

r* =G(t, r), (C3)

8*=g and y*=y. Under this transformation the
Beissner-Nordstrom metric takes the form

&*=-(AF '-A 'G ')at'

2(AF, F „—A 'G, G-„)dt dr

+(-AF „'+A 'G „')dr'+G'dQ'. (C4)

In this appendix the conditions under which the
solutions of the gravitational field equations inter-
ior and exterior to the matter region can be joined
smoothly will be discussed. Consider a matter
distribution such that there is a hypersurface of
matter discontinuity in spacetime. The spacetime
may be covered by different coordinate patches,
but the metric tensor should be such that the proper
distance between any two events (even across the
surface of discontinuity) may be properly defined.
Thus the metric tensor should be a continuous
function of position and time. However, the partial
derivatives of the metric tensor may change dis-
continuously across the boundary surface of matter
as shown by O' Brien and Synge. '4 The O' Brien-
Synge conditions, which are the same as the re-
quirement that the first and second fundamental
forms be continuous at any non-null hypersurface,
have been shown to be equivalent to the Lichnero-
wicz conditions by Israel and Robson. '6

Let t*, r~, j9*, and y * be the Reissner-
Nordstrom coordinates for the matter-free region.
The metric form is then given by

The O' Brien-Synge conditions also require in this
case that T„"be continuous at r =r~. For the inter-
ior solution T„"=p —f, whereas for the exterior
solution T„"= -q'/(8vG4), so that

p(t )- g ( B Q
8vff B' (C12)

This equation simply follows from (C11) by differ-
entiation with respect to time. It must be re-
marked that the conditions to be imposed on the
continuity of g„„, other than Eq. (C10), are all
already contained in (C6)-(C10) so that no new re-
lation can be obtained.

In a physical problem fields other than the gravi-
tational may be present in which case certaincon-
tinuity conditions shouM be imposed on these fields
in conformity with the corresponding field equa-
tions. In the case under consideration, it is clear
that the absence of a surface concentration of
charge at r =r~ requires the continuity of the radi-
al (electric) field. This is equivalent to the re-
quirement that

q(r, ) = q, A 'r, 'W, '" = q. (C13)

It follows from (C11) and (C12) that p(t, rB) =0 and

m(t, rB) = M, as expected.
The functions + and G may now be chosen such

that * is a proper metric form for the analytic
extension of the Reissner-Nordstrom spacetime
beyond the outer horizon r~ =R, . Thus throughout
the collapse of the charged fluid sphere the exterior
spacetime region is part of the complete analytic
continuation of the Heissner-Nordstrom space-
time. ' The junction conditions discussed here,
therefore, apply throughout the gravitational col-
lapse of the fluid.

From the point of view of the stationary (Heis-
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k" = Id „(A ', 1, 0, 0, ), (C15)

where w„ is the observed frequency at ~*-~. The
emitted frequency is given by ~,=-k„u„,", where

u(,)" = a I(F, G, 0, 0) at r =re. (C16)

The redshift z~ observed at infinity owing to the
motion of the boundary surface is defined by 1+z~
= &u, /&u„. Equation (88) then follows from. (G11) and

(C14)-(C16).
Once the surface of collapsing matter can no

longer communicate with the external observers,
a test electromagnetic ray emitted radially out-
ward from the boundary surface is trapped by the
gravitational field in the matter-free region and

eventually reaches the timelike (Heissner-
Nordstrom) singularity at r" =0. Thus this time-
like singularity still exists in the matter-free re-
gion in the complete extension of the solutions un-
der consideration in this paper. However, the ex-
istence of a singularity in a manifestly rnatter-free
region is not in accord with the physical nature of
a spacetime singularity which results from the
gravitational collapse of matter (i.e. , a matter
singularity). It appears that this unphysical feature
is perhaps due to the spherical symmetry of the
spacetimes under discussion and will disappear in
a generic spacetime manifold.

APPENDIX D

In this appendix the general solution for v=0 is
considered. This solution can be given by the me-
tric form (30) with

A=(I+~U) ',
a= -~- v '(1+~U),

(D I)
(D2)

where V= yp'+6 and U(p) &0 is arbitrary. The
density and pressure are given by

8~p, =3(i/~)' —4(X/g)'V'A "+12y6(~/g)'A'

+2A V(~/g)'(VA" +26p 'A'), (D3)

8IIp = -3(i/Z) '+ ——(i/X) —4y6 (Z/g) 'A' .
A dt

(D4)

sner-Nordstrom) observers at the asymptotically
flat region of spacetime, the equation of motion of
the boundary surface is given by t*=F(t,rs) and r*
=R(t, rs), where F may be determined from

~B 2M Q BF
a —b 1 — — + =0 at r =y~.

Br R R Bt

(C 14)

This relation follows simply from (C6) and (C11).
If a radial electromagnetic ray is emitted from the
surface of the collapsing system and reaches the
stationary observers at infinity, then the wave
vector is given by

Furthermore, the mass and charge within a
spherical region of "radius" p canbe expressed as

m =—Bp3 — +

A'
/=OP JP e

(D5)

(D6)

It is interesting to note that in the static ease ~
=g the pressure is simply given by tI = —(2II) 'ybA'
so that a reasonable solution may be obtained if
y6 ~ 0. In the special ease where V= 1 (i.e. , y =0
and 5 =1), the pressure vanishes and g = op, with
o =1 and

2+3 p2 ~

It also follows from Eqs. (D5) and (D6) that in this
case q=IIm and ItIo =aA. This special class of sol-
utions has been discussed by Bonner. 27

For many choices of the function U a regular sol-
ution may be obtained for v =0. However, a singu-
larity may appear if U-~ (or A-0) as p-0. This
may be seen by an examination of (D3) and (D4),
and by stipulating that m and q be finite in the re-
gion under consideration even in the presence of
a singularity. In particular, the pressure diverges
at A =0 if A, (t) differs from a simple exponential,
i.e., d(QADI)/dtW0. It may be simply shown that if
a singularity of this nature does appear, then the
singular hypersurface is null.

APPENDIX E

The aim of this appendix is to consider a situa-
tion where the ratio of the charge density to the
total charge, g/Q, is negative. Assume that a col-
lapsing configuration of this type exists which
starts from rest with n &0, P = 0, y &0, and 5 &0.
The total charge Q and the total mass M are then
given by

q=~. (i- ",),
r: 3 -1

Q/M =a (1+ ", +4
&max ~+max

(E 1)

(E2)

where II =—X,/rs.
The graph of R versus r for the general situation

in which n, p, y, and 5 are all positive can have

where & = (u6) 't2 is a scaling parameter. One may
set A. =AD at 1=0 without any loss in generality. It
follows that the time evolution of the system is
given by
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APPENDIX F

'The solution of the differential equation governing
the time development of the uniform density col-
lapsing configurations under consideration in this
paper, Eq. (100), is studied ln this appendix. Let
v =t/(&uA ) and define

" (1+y + vy')'~'I (x) =
5/g dy (Fl)

at most three local extrema (one minimum and two
maxima) for positive r. This can be simply seen
by the application of Descartes' rule to the sixth-
order polynomial that is obtained from SIt/sr =0.
It may also be shown that the y coordinate of the
minimum increases with time, whereas those of
the maxima decrease. When. P =0 this graph has at
most two extrema (a minimum and a maximum).
This is indeed the case if in addition the relation
r,„»rs holds for all time. Let rj and r, denote
the x coordinates of the minimum and the maxi-
mum, respectively. Then rj & x, and at /=0, the
apparent horizon is at r„~~ & ~j & r~ & r, . Assume
that o' «1 and that z~ is infinitesimally close to
yj. Then it is possible toshow that the apparent
horizon expands outward, i.e., jk —q2& '- amp. g' &0
at the apparent horizon. It is also possible to sat-
isfy the requirement that p, —3p &0 outside the ap-
parent horizon since p, is finite- at the boundary.
Thus with all physical requirements satisfied, the
above furnishes the mathematical description of a
charged, gravitationally- collapsed system which
accretes perfect-fluid matter of opposite charge
that is initially static, and for which the event hori-
zon subsequently forms in an infinitesimally short
period of time.

Then it follows simply that

r.(~/~, ) I.—(g/r, ) = (2~}'™~, (F2)

Next, let vg0 and define F and E to be Legendre's
elliptic integrals of the first and second kind, re-
spectively. Then

g

F (u, v) = (1 —v' sin'u') '~'du'
0

Q

E(u, v) = (1 —v2 sinmu')' 'du',
0

for v' & 1. I„(x) may then be expressed as

(F4)

(F6)

I„(x)= —vx+ —+1 vx- —+4v 3 x X g+S

+2s(1+ —', v) F(&fi, s(o']'~')

—~3s 'E(Q, s~a ~'~')+constant, (F6)

where s '=(1+ (o~)/2, g=tan '(x''/s} and the con-
stant term depends only on v. Equations (F2},
(F3), and (F6) implicitly determine X as a function
of T ~

where it is assumed that A, (f =0) = A . This assump-
tion does not diminish the generality of the treat-
ment given here since the configurations of inter-
est are invariant under the transformation z-Qr
and A. -QX, where Qx0 is a constant.

If v=0, then it is easy to see that

j/2
1(x)=28inh '(x ') —2(1+—

—1+ —
~

+constant.
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