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Possible structure of the Pomeron anti its effects on one-particle inclusive cross sections in the
central region
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It is shown that the main features of the central plateau of the one-pion inclusive proton-proton cross
sections can be accounted for by a non-Regge (Pomeron) contribution crp(s). The function a„(s) is the
solution of an integral equation of the convolution type. 0.~(s) contains an "asymptotic part" A + B lns

(responsible for the asymptotic features of the plateau) and a nonasymptotic part I /~swhich determines the
approach to scaling.

I. INTRODUCTION

The properties. of the one-particle inclusive
cross sections ab- cX have been studied theoretic-
ally by many authors (see, e.g. , Refs. 1-7).
Most of these papers are based'on Mueller's
theorem" plus the assumption that, in the cen-
tral region, the forward amplitude abc- abc is
dominated by a double Regge graph.

Assuming double Pomeron exchange, this ap-
proach gives, asymptotically, for the one-particle
inclusive cross section, a zero-slope central
plateau whose height is energy-independent. These
features are not supported by present-energy
data. Moreover, with this approach it is hard to
explain why the asymptotic value of the inclu-
sive cross section is approached from be-
low and why the reactions in which the ~ and bc
channels are exotic exhibit (not "early scaling"
but) the strongest s dependence of the cross sec-
tion. To explain these features, one has to intro-
duce negative couplings (which seems unnatural)
and/or to introduce effectively a "Pomeron
daughter" trajectory Q, which accounts for thresh-
old effects. In all these papers the Pomeron has
been treated, as usual, as a Regge pole with (ap-
proximately) unit intercept.

On the other hand, it is genex'ally believed that
the Pomeron (let alone its daughter) is not a
genuine Regge pole but rather a convenient name
for some complicated interaction mechanism,
whose nature is unknown. It is therefore interest-
ing to investigate whether an expression better
than the simple Regge form g„~ s P ' ' can be
obtained for the Pomeron cross section, and
whether such an expression would lead to a better
agreement with the central-region inclusive-
cross-section data. The main ideas of this ap-
proach are given in this paper and they are

applied to the reaction ab- cg, where a=5=proton
and c =m'. The results are in very good agreement
with the experimental data.

In Sec. II our assumptions are stated and dis-
cussed, an expression is derived for the one-
particle inclusive cross section f(P,), and an inte-
gral equation is obtained for the Pomeron contri-
bution o~(s) to the high-energy hadronic cross sec-
tions. In Sec. III a function op(s) is given which
satisfies that integral equation within terms of
O(1/s) and is consistent with the Froissart bound.
In Sec. IV our results are compared to the experi-
mental data. Finally, our conclusions are briefly
reviewed in Sec. V.

II. BASIC ASSUMPTIONS AND EQUATIONS OF THE MODEL

In the Mueller-Regge approach, the basic formu-
la giving the inclusive cross section f(P,) for
QA» cX &s

where n„e& are Reggeonor Pomeron trajectories,

s„-= (P, —P,)' = —m, p, ,exp(y, —y, ),
sb =(&b & )'= mba exp(yb y )

P, and y, are the four-momenta and rapidities of
the various particles,

=(m '+p ')'"

s„—sb,—/p. , ' = s = m, m, exp( y, —yb),

with y, =In(v s/m, ) and y, =-ln(Ws/mb) .
We now make the following assumptions:

(I) We substitute the simple expression s, P~'i '

of the Pomeron contribution to the cross sections
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by a general expression oP(s, ). Since the mechan-
ism producing the Pomeron contribution is unknown,

o~ is, at this stage, an unknown function, which
will be approximately determineo below. We shall
assume, ' however, that the same unknown mech-
anism is effective in all the Pomeron-exchange
procedures and hence the same function vP(s, )
(apart from a multiplicative constant) appears in
all these cases.

(II) The role of the Mandelstam variable s, for
the channels ac and bc, is played (not by s„-
and s„- but) by

(s„-f Ws &

s, = -, s, =s, exp ln — /-y,
QP. np, , j

(4)
fs„-/ v s

s2 =
2 so:sp exp ln +p

&p,
'

' cvp,

where s, =1 GeV' and n is a dimensionless con-
stant which determines the energy scale. (As will
be seen in Sec. IV, o. is 1.7 for m' and 1.4 for v .)
Then Eq. (1) can be generalized to

f(P,) = [g ' o (s,/s, )o (s,/s, )

+gPR~P (S~/S0)OR(S2/")

+gRP R( )/ 0)VP(S2/S0)

+ gRR~R(s /so)oR(s /so)~+(w. ) (5)

where oP(s, /s, ) and gR(s, /s0) are the Pomeron
and Reggeon cross sections and where %(p, ,) is a
function which depends strongly on Pr. For 4(g, )
one can use the phenomenological ansatz of Ref.
11, viz. ,

e(p, ) = exp(f) l(.), (6)

where b =-7.1 GeV ' for m' and b =-7.2 GeV ' for
12

The functions oP(s, /s0) and gR(s, /s0) reduce to
simple expressions for large values of s, . These
functions, however, as they stand in Eq. (5), may
(and in fact, as will be seen below, do) contain
also nonasymptotic terms which become impor-
tant when ~y, ~

is not very small.
Let us now consider the interval

Ws Ws

CVP. QP,

which corresponds to -0.6& x& 0.6 for p' and
-0.7& z& 0.7 for 7t, z being the Feynman variable.
Since the end points of that interval correspond to
s, =s, and s, =s„ the inclusive cross section (5)
can be nonzero only within that interval. This can
be looked upon as a threshold effect. In fact, if
one requires oP(s, /s, ) and oR(s, /s, ) to vanish at
and below some threshold (which is certainly not
smaller than s,), then f(P,) must also vanish for

We now write the energy sum rule

d s(su)=a+sf d, f((s)d() 'du, .
C

(8)

Let us consider the contribution to the right-hand
side of (8) of events in which some species of
particles c (e.g. , m') are produced in the interval
(7). Let X, be the fraction of this contribution over
Wsg,„„.In other words, let us define a parameter
A., by the equation

w F., (9)

where the integral with respect to y, is taken in
the interval (7). We now make the following as-
sumption:

(IV) The parameter X, is a constant (s-inde-
pendent. )

The validity of this a,ssumption has been checked
for c = m' and c = p, and for s =24, 48, 543, 936,
1989, 2809, and 3969 GeV'. For each value of s,
the integral with respect to y, has been calculated
by numerical integration of the experimental data
of Refs. 13-15, with z =1.7 for m' and e =1.4 for

The integration with respect to p~ has been
performed by the technique of Ref. 16, using as
input the data for jr =0.4 GeV/c, since for this
value of P~ accurate data exist for the above
seven energies. The results are shown in Fig. 1
and they justify our assumption that A., is s-inde-
pendent, at least for c=m'.

We now introduce the expression (5) of f(P,) into
Eq. (9). To simplify our formulas, we introduce
the notation

( )(= suJ udS. ; (f(u )/d(-u )), . .(10)

(&( .)) =
@

dV.'F(u. )+(I .),=1

values of s, and s, smaller or equal to that thresh-
old. Hence, f(P,) must be zero out of the inter-
val (7). Moreover, in the case where c=v', in

which no diffraction peak appears and most pions
are produced at or near the central region, one
may assume that the majority of pions are pro-
duced via the interaction mechanism that leads to
Eq. (5) and neglect the pions which are not produced
via that mechanism. Hence we make the following
assumption:

(III) Practically all the pions are produced with-
in the interval (7), through double Regge and/or
Pomeron exchange.
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pp~m x

with respect to p. ,' are taken from m, ' to ~. The
last (approximate) equality of (13) can be justified
by expanding F(p, ,), in the right-hand side of Eq.
(11), iri apower series around the point p, =(p,&.

For c =w' one finds (g,&
=0.35 GeV and

&F(u.)& =F((u.&) -0»7F" (&p.&) + = F(&p.&) .
0.1-

;i j.
~ ~

0.0
1O'

I I
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Then, Eq. (9}becomes

X,v,„„=@(F(p, ,)) or A.,v;„„=4 F((g,&),

where (p, ,&
= fdic, '4(p, )p, ,and, where the integrals

(13)

FIG. 1. The s dependence of the parameter A,, defined
in text for c=& . Data from Refs. 13-15,

A similar result holds also for m .
Now let n„=-,' be the intercept of an effective

Regge trajectory exchanged in the reactions ac- ac and bc- bc. For large s, the Reggeon cross
section vR(s/s, ) of Eq. (5) is known to be vR(s)
= (s/s, ) 'I'v„where v, = 1 mb is a constant intro-
duced to make all the constants g of Eq. (5) dimen-
sionless. Then, at high energies, the function

v„„(s)of Eq. (13}can be written as v;„„=vp+GR/
(s/s, )'" +O(1/s), where C„ is a constant and vR
is the same function as in Eq. (5). Substituting this
expression in (13) and using the definition (10) of
the function E, one finds the following integral
equation for the unknown function 0~:

8
v (~" e~~ =

dydee

[GRRvR(e )vR(e~ )+GPRvp(e )v,e ~~

So 0

+GRRvp(e~ )voe ~ +GRRvo e ] +O(1/s), (14)

where G», 6», Q„~, and G» are constants,
whereas

S =- ln[s/(n&g, &)'], (u =- s/2 —y,

and, hence, s,/s, = e s, /s, = e~, and

Z, /Ws=(e +e " )/3n. (i5)

1

upon the O(1/s) terms of (14). E.g. , one can use
for o~ the ansatz

(17a)

which vanishes at s = s~ and differs by terms of
O(l/s) from the asymptotic expression

In writing (14) we have used the fact that G»
=G» (because a= b =proton), and hence the inte-
grand is symmetric with respect to the substitution
~- S- cu, and the two integrals corresponding to
the two terms of (15}can be reduced to one. The
constants G of (14) are related to the constants g
of (5) by

6] = g] for i =PP) PA, RP)w4

m4 C„
RR y n gRR v 2n(~

At first sight, use of the asymptotic form o~
-I/vs, in Eq. (14) may seem unjustified, since the
integral (14) contains contributions also from small
s, values. In fact, in that integral s, can become
as small as some effective threshold value s~, for
which vR vanishes [i.e. , s; ~ sr where vR(sr) =0].
However, the low-energy effects can be charged

(17b)

Using (17a), one would end up with the same inte-
gral equation [within terms of O(1/s)] as the equa-
tion (14) found above, with the form (17b).

III. APPROXIMATE SOLUTION OF THE INTEGRAL
EQUATION

The integral equation (14) can, in principle, be
solved numerically for the unknown function 0~.
However, conciseness, as well as a more immedi-
ate applicability in phenomenological analyses and

perhaps a deeper physical insight, can be gained
if a relatively simple approximate closed func-
tional form can be suggested, instead of the ex-
pression o~ ~ s"& ' used in the past. 'lt is there-
fore interesting to investigate whether an approxi-
mate solution of (14) can be found in a closed form
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which would satisfy the Froissart pound and would
be consistent with the high-energy experimental
data.

Since, in deriving Eq. (14), we have omitted
terms of O(1/s), we require that the approximate
solution should satisfy (14) within terms of order
(1/s). A relatively simple ansatz, suggested by
the behavior of high-energy cross sections, which
satisfies all the above requirements is

o~(s/so) =A+Bin(s/so) +», +O(1/s) . (18)
F

S So

Here A. and B have the known fixed values observed
from high-energy cross sections (e.g. from Ref.
17), viz. , A= 23.3 mb and B=2.5 mb for a =b
=proton. The constant T' is not directly observable
from high-energy cross sections because in prac-
tice the third term of (18) is confused with Regge
terms of the same order of magnitude. An "ef-
fective order of magnitude" of l" can be estimated
by requiring that 0~ should vanish at some reason-
able low-energy threshold (e.g. , near s =4m~'

( A B I'
(y(g) =—+—,+

7 +1/2 (19)

By the convolution theorem, the LT of the right-

= 4 GeV' for a=5=proton) i.e. , that the effective
value of I" should also simulate the effect of the
terms of O(1/s), which have been omitted. Then
I'= -45 mb.

An ansatz even simpler than (18) which is also
suggested by the high-energy data, viz. , the an-
satz cr~ =A+Bin(s/s, ), cannot reproduce that
threshold behavior. Moreover, it leads to unac-
ceptable behavior for f(P,) and will not be further
considered.

If one requires that the ansatz (18) satisfy the
integral equation (14) within terms of O(1/s), one
obtains three consistency equations. The fastest
way to obtain these equations is by taking Laplace
transforms (LT's) of both sides of (14). If one
uses the variable $ instead of s and denotes by v

the conjugate variable of 5', then the LT of the
Pomeron cross section (18) is

P~=0.2 slav/c =~+

N~~l& q

'U

LLI

10-1

0 „

:0
0

fa (claw)

4.9
. 6.8

~ 30.6

52.8

FIG. 2. A fit of the inclusive pp ~ X cross sections calculated from formula (5) with 0'~ and oz given by (18) and
(17a) and with u(~+) =1.7, sz, (m'+) =1 GeV, a(r ) =1.4, sz (~ ) =1.9 GeV . Data from Hefs. 13-15.
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hand side of (14) is

G~~o(~ +1)(x(r) +G~„o,o(v +1) 1
+—

2

1 1
3 +Gzs 0 ~ i" 3 ~ (20)7+2

Using (19) and (20), equating the coefficients of
1/r, 1/T', and 1/(v + —,') on both sides of the LT of
(14), and omitting terms proportional to 1/(r + k)
with k &1 [since they correspond to terms of
O(1/s') with k~1], one finds the consistency equa-
tions

1 =G (A+B+ —,r),
GJ,~(A+2B+ ~ T', ) =-lnM, ,

(21a)

(21b)

r, =r+G,„/G„, M, =o'&q, )'/s, . (22)

Thus, the function (18) satisfies the integral
equation (14) within terms of O(1/s), provided the
constants A, B, I Gpp Gp~ Ggg and e satisfy
Eq. (21).

GG„r,(2A+4B+ T',)+G,„- ' = r/4M, , (21c)RR G

where

I I I 1

210-

P =0.2 l3a&/c:

x=0

4
5

N r r.
LLl

c

10-

I t s l I ~ I I

] 2
s I i 1 s a l I

1
I'

s I
aev'

I)
FIG. 3. The energy dependence of the inclusive PP ~ X cross section calculated from formula (5) at y, =0, with

ap and 0~ given by (18) and (17a) and with u(~+) =1.7, sz(~+) =1 GeV, u (~ ) =1.4, sz (~ ) =1.9 GeV . Data from Refs.
18 and 19.
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IV. COMPARISON PATH EXPERIMENT

The values of the Pomeron constants A, J3, I'
have been given in the previous section. Now, re-
quiring that the expression o,„„=o~+Cs/(s/s, )'"
should approximate the observed behavior of
o,„„(PP), one can estimate that Cs is of the order
of 100 mb. (However, all the subsequent fits of
this paper are not sensitive to the value of C„.)
Also, from Fig. 1, one has immediately X„+=0.14,
X,-=0.09 and from Eq. (12), for the assumed
form of 4, one finds 4,+=0.0294 GeV', 4, -
=0.0284 GeV', (p, ,) =0.348 GeV, and (p, , )
=0.0347 GeV. Then, once some value is assumed
for o. , everything is fixed: The- constraint equa-
tions (21) can be solved for G~~, G~s, and

Gss and then Eqs. (16) can be used to find

gI,~, g~R, and g„„. Once the constants g are de-
termined, the inclusive cross section f(P, ) can be
calculated from (5) with o~ given by (18) and os
given by (17a) or (17b). If (17b) is used, then the
energy dependence of the central (x=0) point and

the slope of the central plateau can be fitted, but
the shape of the edges of the plateau cannot be re-
produced, since (17b) has not an acceptable low-
energy (threshold) behavior. If (17a) is used,
then also the shape of the edges of the plateau is
very well reproduced, provided the "threshold
parameter" s~ is appropriately adjusted. Thus,
for each t."-particle species, there are two free
parameters (o. and sr) with which one fits the
energy dependence of f(P,) at x=y, =0 and the
shape of the plateau, including the edges. The
results shown in Figs. 2 and 3 are obtained for
o (v') = 1.7, sr(rr') =1 GeV', and o(rr ) = 1.4, sr(rr )
= 1.9 GeV'. The agreement with the experimental
data is very good throughout the range 24 GeV'
& s& 3000 GeV'.

Moreover, it is easy to see that (18) implies the
following welcome properties for f(P,):

(a) The plateau height increases, even asym-.
ptotically.

(b) On either side of the central point, f(P, )
decreases like y, ' (even asymptotically).

(c) Scaling is approached from below, like
/Sl/4

(d) If the channels ac and bc were exotic, one

would have I.R~ =g» =g» = 0.
Then the s dependence of f( P,) would be the

strongest, because the coefficient of 1/s"' (which
is proportional to I', = I'+G~s/G~~& 0 with I'= -45)
is absolutely larger if t"» =0.

V. CONCLUSIONS

The central idea of this paper is that the Pomeron
(being a more complicated entity than a simple
Hegge pole) may have a structure which cannot be
adequately reproduced by the classical parametriz-
ation o,(s) ~s i'@ '.

This possibility has been investigated by deriving
an integral equation for the Pomeron cross section
o~(s), and then writing an approximate solution.
which satisfies this equation within terms of
O(1/s). This solution strongly suggests the exis-
tence of negative nonasymptotic terms swithin the
Pomeron. [It is significant that the simple form
o~(s) -A+Bins, suggested by the asymptotic data,
does not satisfy the integral equation, for reason-
able values of the parameters, unless such nega-
tive nonasymptotic terms are included. ]

It is conceivable that these terms, if they exist,
are not directly observable in cr„, (because there
their effect is confused with that of Hegge terms
of the same order of magnitude), but they may be
detectable indirectly, through their effect on in-
clusive cross sections.

On the other hand, if such terms are included in
the expression of cr~(s), then not only is the inte-
gral equation satisfied within terms of O(1/s) but
also (at least for pfr- rr'g) the slope of the central
plateau and the energy dependence of its height are
reproduced quite well throughout the region 25
& s& 3000 GeV', with only one free parameter cv.

If threshold effects in the Reggeon cross section
are taken into account (which involves the introduc-
tion of an additional "threshold parameter" sr),
then also the observed shape of the edges of the
plateau can be reproduced. Moreover, essentially
all the observed central-region features [see
points (a)-(d) of Sec. IV], which are very hard to
explain with the traditional Pomeron parametriza-
tion, are here obtained as natural consequences.
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