
PHYSICAL REVIE% D VOLUME 20, NUMBER 9

Current quark masses and structure functions

I NOVEMBER 1979

Norman H. Fuchs
Department of Physics, Purdue Uniuersity, West Lafayette, Indiana 47907

Michael D. Scadron*
Department of Theoretical Physics, Imperial College, London SW7 2BZ, England

(Received 26 January 1979)

Bare quark distribution functions are constructed for valence quarks in 0, 1 mesons and (1/2)+, (3/2)+
baryons. The integrated (x ') moments of these structure functions lead to five independent
determinations of the bare or current quark mass scale, all giving m =(m„+ md)/2= 62 MeV and all
consistent with the current quark mass ratio m, /m —5. Furthermore, the approach also leads to a charmed
current quark mass m, —1200 MeV.

I. INTRODUCTION

It is becoming increasingl. y clear that the quark
masses, which appear in the chiral-SU(4)-breaking
Hamiltonian density (i.e. , the quark mass matrix)

R = q% q =m„uu+ m„dd +m~s +m, cc,
play a significant role in any quark theory of
strong, electromagnetic, or weak interactions.
The' first estimate of the quark mass etio m, /m,
where m = &(m„+m„) and m, are the nonstrange
and strange quark masses, based upon simple as-
sumPtions about the SU(3) transformation proper-
ties of the "bad" quark operators qA. g, led to'
m, /m =25. This scheme also required hadron
mass splittings to be linear in the quark masses
so that the observed decuplet mass splitting of
r mn(bS = 1)= 150 MeV sets the quark mass scale
of m, = 150 MeV or m150/25 = 5 MeV.

On the other hand, present chiral-breaking
phenomenology suggests a quark mass ratio of'
m, /m=5 —6. Also, the extracted fixed Compton
pole' and independently threshold photoproduction
do not favor a very small value of m but, very
roughly, "m m „. This approach has a theoreti-
cal basis in the context of the light-plane trans-
formation properties of the bad quark-density
operators' ' and current vs constituent quarks. '

In this paper we vill work completely within the
framework of quark structure functions as defined
in terms of the scaling variable x= (po+p, )" /(po
+P,)"' in the infinite-momentum frame.

We argue that our approach is in the spirit of
the parton model and quantum chromodynamics
(QCD). Accordingly, we apply these techniques
in the scaling region in order to find the baze or
valence structure functions describing the prob-
ability of finding a quark with momentum fraction
x in a hadron. The integrated (x ') moments of
these base structure functions will in turn set the

scale for the bare (i.e. , current) quark masses
determined by the hadronic matrix elemerits of
(1). This is true provided that these bare quark
structure functions are normalized so as to ac-
count for all the momentum of the simplest bare
quark state in the same way that the physical
structure functions are normalize/ so as to ac-
count for all the momentum of the quarks plus sea
plus Regge contributions. Consequently, these
bare quark structure functions coincide with the
physical structure functions for x- 1, where mo-
mentum conservation requires that if the simplest
quark state alone carries all, the momentum, then
the remaining components (sea and Regge contri-
butions for the physical state, nothing for the bare
quark state) carry no momentum. On the other
hand, for x=0 the two structure functions are
radically different, since momentum conservation
does not uniquely determine the distribution of
momentum. Thus, in the x&~ region, the bare
structure functions resemble the physical struc-
ture functions, while, for x~ &, the bare structure
functions must be determined purely by theoretical
argument. The fact that the physical structure
function is known to account for roughly one half
of the hadron's momentum is not relevant; we de-
mand that the bare structure function account for
all the hadron's momentum, 3nd we normalize ac-

cordinglyy.

Such bare valence structure functions contain
sufficient dynamical information to compute the
mass of the composite hadron from first-order
perturbation theory and the matrix elements of
(had~qq~had). The latter matrix element most
naturally iS proportional to the quark mass in
question and an integrated bare valence structure
function. Therefore, for example, quark sea dis-
tributions, which represent radiative corrections
to the simplest quark distribution, must be ex-
cluded from our bare structure functions. More-
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over, these functions are constructed to contain
no scaling violations. Presumably they represent
driving terms in QCD Bethe-Salpeter equations,
which in turn generate the physical structure func-
tions including scaling violations.

The theory is very restrictive, however, be-
cause there are five independent determinations of
the quark mass scale m or splittings m, ' —rn', two
determinations from the &' baryons and one each
from the 0, 1 mesons and 2' baryons. In Ref. 5
it was shown that, independent of the integrated
structure-function scale, both pseudoscalar-meson
masses and baryon masses, mN 0 term, and Gold-
berger- Treiman discrepancies lead to the same
quark mass ratio

Sec. V we extend the analysis to the charmed-
quark sector, deriving (4) and (5) and comparing
the splitting predictions with the usual static quark
mass picture. The SU(2) breaking which arises
from the difference between m„and m„ is discussed
in Sec. VI.

In Sec. VII we return to the chiral limit for the
masses of the pseudoscalar and vector mesons and
for the octet and decuplet baryons; we attempt to
relate these quantities to SU(6) splitting via a spin-
spin force. We also discuss the connection be-
tween our quark masses with the presently ac-
cepted picture of the static quark masses. We
then summarize our results and draw conclusions
in Sec. VIII.

m, /m = 5. (2)

Given. our theoretical bare quark structure func-
tion with extremely inserisitive integrated scales,
we show here that all five bare structure-function
(x ') moments lead to the same nonstrange-quark
mass scale,

ng =62 MeV. (3)

Since the theory is very much overdetermined
but aiways consistent with (2) and (3), we feel less
hesitant to extract the charmed-quark mass in a
similar manner. Again we find consistency in the
charmed-meson sector for the quark mass ratio:

II. LIGHT-PLANE DECOMPOSITION OF QUARK
OPERATORS AND THE QUARK MASS RATIO

By way of review, we recall that if rn, =m, then
the light-plane charges Q; are identicai" to the
spacelike charges Q&. However, for the theories
in which we are interested, m, Wm forces Q; wQ, ;
as a consequence, one expects hadron states to
transform, to a good approximation, " irreducibly
with respect to the Q&. On the other hand, the
chiral decomposition of the semistrong Hamilton-
ian density

(6a)
m, /m =19-20. (4)

(6b)
Then our quark mass scale (3) unambiguously
predicts

m, =1200 MeV. (5)

The latter value is, of course, about what one
would expect in order that the charmed-quark
mass be somewhat less than the static mass of
&m &-1550 MeV. This most natural requ'irement
places a strong constraint on any theory of chiral-
symmetry breaking —a constraint that appears to
be satisfied only in our scheme.

In Sec. II we review the connection between the
light-plane decomposition of the bad quark densi-
ties qA.

& g and demonstrate that the hadronic ma-
trix elements of (1) contain an additional power of
quark mass to leading order in the parton model.
The quark mass ratio (2) is then obtained in three
ways. In Sec. III we begin the discussion of bare
structure functions in terms of the naive weak-
binding approximation and point out its short-
comings for the (x ') moments. Then we improve
upon the approximation by invoking the quark-
structure-function analysis of Farrar and Jackson'
and reinforce it via the spectator-helicity rule. ' '"
These refined structure functions are then used to
extract the quark mass scale (3) in Sec. IV. In

is governed by the spacelike integrals of the axial-
vector currents Q&, and X is given by the quark
mass matrix (1). The mismatch between light-
plane and spacelike charges then requires the "bad"
quark operators, such as@A, &p, to have compli-
cated SU(3) properties, in contrast to the simple
transformation properties qA. &q X; as assumed in
GMOR (Ref. 1). For example, in a vector gauge
theory, the "good" two-component quark fields y
are projected from the Dirac four-component
fields q, which satisfy (i)f —3)I-gg)q =0; this leads
to the light-plane decomposition' ' of (1) for x'+x'
=0 in the light-plane gauge &,= 0:

qsltq q'& (v +igB )3)Iv 'q q+3)I'v 'q .

It is clear from (7) that the operator qJllg has
mixed internal-symmetry transformation proper-
ties If the fi.rst term in (7) dominates over the
second, then the quark masses must necessarily
be quite small and one would be led to simple octet
transformation properties and the GMOR value for
the quark mass ratio m, /m = 25, based on the
pseudoscalar mass spectrum.

From the current quark picture point of view,
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however, the spin-flip structure of the first term
in ('7) would suppress it relative to the second,
nonf lip term. This is similar to what is called Z-
diagram suppression in the infinite-momentum
frame. " " As a consequence, m cannot be very
small compared to typical hadronic mass scales.
We shall see later how this manifests itself in our
scheme. Now, suppression of 2 diagrams, equiva-
lent to suppression of the helicity-fj. ip term in ('1),
leads to simple forms for matrix elements of the
quark scalar density operators. In particular, for
proton matrix elements, SU(3) breaking is ex-
pressed as " "

(pluulp&=2m„f„~ (plddlp) =2m» f» ~

(piss lp) = 2m, f, ,

(8a)

(8b)

with hyperon matrix elements determined by SU(3)
generated by the q, , e.g.,

(Z'luul Z'& = 2m„f„, (Z'Iss I
Z'& = 2m, f» . (8c)

«'lddlA'&= 2m„h. . (9d)

It is possible to extend this scheme to decuplet and
vector-meson matrix elements of bad quark den-
sities.

To make use of the above results, we employ
the decomposition of the total Hamiltonian density
into an SU(3) x SU(3)- and SU(3)-invariant part Xo
[which includes SU(3)-invariant sea and gluon con-
tributions] and the chiral-breaking part X as given
by (6):

&I, Ixlf,.&
= 2m,.', (10)

where (10) is any diagonal hadronic matrix ele-
ment of X in the rest frame, and we have used co-
variant normalization of states.

For the quark mass ratio, consider first pseudo-
scalar-meson mass splitting,

2',' = 2m, ~'+ 4m'h = 2m. @, ,

2m»' = 2m, p'+ 2(m'+ m, ')h = 2m'h, ,

(11a)

(11b)

Here f„»are sim'ply reduced matrix elements of
the scalar quark densities. We will show later
how these quantities are related to (x '& moments
of structure functions; for the purposes of this
section, however, no such additional information
is needed.

Analogously, pion matrix elements of scalar
densities may be expressed as

(»'Iuul»'& = 2m h, &»'lddl»'&= 2m. h, (9a)

»'Iss I»' (Bb)

with SU(3) similarly determining the kaon matrix
elements

«'luulA" '& = 2m. h &A"lrslZ'& = 2m, h, (9c)

Alternatively, one can consider the ratio of the
helicity-nonf lip matrix elements (Olney, h»qlK& and

(Olqy, k,ql»&. Since again quark mass factors as in

(8) occur, in this case m, +m and 2m, respectively,
the quark model commutators

[q,', x'] = —imqy, x,q,
[q'„X']= —i-,'(m, +m)qy, ~,q,

g4

lead to""
m, /m = (2m» /m, ) —1 = 6 . (15)

As discussed above, it is satisfying and signifi-
cant that (14) and (15) give roughly the same quark
mass ratio.

In the present paper, we shall choose to work
With scalar rather than pseudoscalar densities, in
order to extract quark masses. As noted above,
for light quarks the difference is not significant;
in the charm sector, however, we will see below
that a choice should be made. It behooves us to
comment on this problem and to indicate why me
believe our choice is the more reliable one. A

comparison of 'PCAC" (partially conserved axial-
vector current) and "mass formula" estimates of
m, /m, (15) and (14), respectively, is essentialiy
a comparison of estimates of matrix elements of
v's and u's. Numerically, these are not identical
but they are close, because m~ is not too much
larger than m, . They do have the property that
m~, m„are first order in the quark masses

19
mu~ P88.

Higher-order terms will modify the relations—
just as higher-order terms are required to ensure
that f» &f; the axial-vector charge operator is
y o',y in terms of current quarks (i.e. , to l.owest

. order in quark masses), but there will be correc-
tions. For the axial charge and other local oper-
ators, these can be estimated by the method of

where we shall retain the h, terms for the moment.
The difference between (lla) and (11b) eliminates
the unknown chiral-symmetric nz, J' term, leading
to

m»' —m,'= (m,
' —m')(h —h, ) =0.23 GeV'. (12)

Also, in the soft pion limit, the X, contribution
vanishes and isA = [q„X ] gives""

m„'= (»IX'I»&,.„=2m'h+m, 'h, .

Comparing (13) with (lla) then forces m,z'=0, the
GoMstone limit. Then we assume the Zweig rule
h, =0, which follows directly from the n'w 0 term of
&,„=m„' and (13). Then the ratio of (12) to (13) is
independent of the scale 4 and determines the
quark mass ratio'

m, '/m'= (2m»'/m, ') —1, m, /m = 5. (14)
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&& cp(xg) x, $)d x~d)dx ) (16)

which come from qA. ;q and qA. &y,q, are more un-
certain, since the nonlocality in x will generate
corrections. Thus the scalar and pseudoscalar
density operators will have to be corrected in

higher order; the corrections are different for .

qh. , q and qA. ;y, q, since qA&q requires a correction
arising from the V ' only, while qA, ;y, q requires
this and additionally one from the &, (just as Q,'

does).
An independent estimate of the quark mass ratio

can be found from the octet baryon mass splittings
analogous to (11):

(NlKlN) = 2m„' = 2moB'+2m'(f „+f,) + 2m, 'f, . (17)

Along with similar SU(3) splittings for the hy-

perons, ' we may combine (17) to find the SU(3)
average mass"

1
mB I su(3) = moB + -(2m' + m, ') (f„+f~ +f,)

= 8(2m~'+2m„'+m~'+3mz') =1.34 GeV'.

(18)

Carlitz and Weyers, ' modified to incorporate
some mass-breaking effects. The method breaks
down for charmed-quark-carrying hadrons —the
"corrections" may well be larger than the zeroth
order term. Moreover, corrections to matrix
elements of nonlocal operators such as

(x) (&~ V~ + 3)I)e (x —$) 2 l

A. , t'1

(o,j

for &~~=65 MeV.
This result, saying that 0',„ is a true measure

of the quark mass ratio, has also been derived in
light-plane language. " Moreover, the fact that
(21) is consistent with the quark mass ratio as de-
duced from pseudoscalar-meson states, (14) and

(15), argues strongly for no Z diagram or no quark
helicity-flip term, assumptions leading to our ini-
tial ansatz (8) or (9). Further support for m, /m
=5 is obtained from the known Goldberger-Treiman
discrepancy 6„„=1 —m„g„/f,g„„, which leads
to""' m, /m = 5 in either our chiral-breaking
scheme or that of GMOR; no additional quark mass
factors appear here because (Nlqy, h.„qlN) is a
spin-flip transition dominated by a &~ ~ T~-type
operator rather than JR as in (7). In short, our
scheme alone is consistent with all the data; the
alternative GMOR picture requires o,„arid 6,„to
be reduced, respectively, to 0,„-25 MeV and

6,„-0.01, rather than O, j, -65 MeV, 6,„0.06.
The present model therefore gives a consistent

description of chiral-symmetry breaking charac-
terized by the current quark mass ratio (2), and

we thus proceed to consider the current quark
mass scale.

III. BARE QUARK STRUCTURE FUNCTIONS

The bare quark probability scales, which we

were so careful to divide out in the last section,
have a very simple structure. Normalizing the
pion charge matrix element to the valence value
of unity (one up quark in the w'), we have""'"

Then eliminating the unknown chiral-symmetric
mass m, B' between (17) and (18), we obtain the nu-

cleon SU(3) mass shift (the quadratic analog of
1149—939 =210 MeV) in terms of quark parame-
ters for f, =o as

1—(m'luy, ulw') = dxh(x) =1,
0

1

(m' luulw') = 2m„h, h = dxh(x)/x.
0

(22a)

(22b)

am„' = 3(m,'- m')(f„+f~)
= m B'

l sc(,i —m„' = 0.46 Gev' . (19)

2m„.,„=(Nl[Q;, i»'] IN)

=m(Nluu+ddlN) =2m'(f„+f„) . (2o)

To obtain the quark mass ratio from (19), we must
also use the nucleon analog of the nn & term, ex-
tracted to be about 65 MeV from the most recent
accurate data": 1—(pluy ulp)= dxu(x) = 2,

0

1

(PluulP) =2m„f„, f„= dxu(x)/x,
0

(23a)

(23b)

The factor of 2m„ in (22) is a reflection of the
additional quark mass factor in the dominant se-
cond term of (7), while the factor of x ' in h is
generated by the bilocal operator V ' in (7).
Similarly, for the proton we have in the parton-
quark picture'" -"

The form (20), first derived in Ref. 14, has the
same quark-structure-function dependence as (19)
so that their ratio is independent of the quark
scales

while for the 4" decuplet matrix elements
1—(a"luy, ulb, ")= dx fB(x) = 3,

0
(24a)

m, '/m' =(3sm~'/m„&, „)+ 1,

m, /m=5

(21a)

(21b)

1

(b, ++luul 6++) = 2m, fB, fB = dx fB(x)/x.
0

(24b)
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1

2(x)„+(x)~ = dx x[u(x) +d(x)] = 1,
0

h, =h,. =f,=0,

(25a)

(25b)

where the down structure function in (25a) is nor-
malized to fo dxd(x) = 1 with

1

(PiddiP) = 2m~ f~, f~ = dxd(x)/x.
0

(26)

There are no more than the above (five) bare
structure functions in the SU(3) extension of the
0, 1 meson and &, 2 baryon matrix elements
because, e.g. ,

(Z'~uu[Z+) = 2m„f„, (Z'[ss (Z') = 2m, f, (2Va)

(m'(dd(v')=2m, h, (K'(ss~K')=2m, h, (2Vb)

(Z*'[uu)Z*') = 32m„fn, (:"*')uu[:-*')= s&ill„fn,

(27c)

&
Z*' Izcul Z*') = 32~ fn &

"* luul -"*')= 32~.fD ~

(27d)

The latter equations (27d) are a consistent state-
ment of the bare valence picture with SU(3) broken
only in the quark mass factors in (23b), (27a),
(27b), etc. , and not in the bare structure-function
integral.

We next construct an initial (naive) dynamical
model for the bare structure functions in the seeak-
binding aPPxoximation. Here we assume that the
bound valence quarks in the hadrons are free, with
each quark carrying an equal share of the hadron
momentum:

The 1 -vector mesons have structure functions as
defined for the pions (22), but with h h».

If 0, 0», f „, fn are to be finite, it is clear that
the quark probability distributions h(x), etc , .must
vanish as x-0. This tells us again that we are
dealing with the bare structure functions which do
vanish as x- 0 once the sea and gluon contribu-
tions are subtracted out. The bare structure func-
tions are then normalized to account for all of the
hadron's momentum. Thus, for our bare struc-
ture functions we demand that

mentum as in (25). A major flaw in this model is
that the SU(6) structure of (29) and (28) leads to
m z = m &. That is, in terms of the baryon semi-
strong d/f ratio, the formalism (22)-(27) to (10)
leads to' '

d/f = I —2(f./f. )

3kB z
—mg —m p,

—m
5 m-„' —m~

(30a)

(30b)

h (x) (1 —x)' as x- 1,
u(x)-(I —x)' as x- l.

(31a)

(31b)

The fact that the struck quark I.n Fig. 2 has the
same spin direction as the proton follows from
subtle arguments" concerning the polarizations of
all the particles. This result together with (31a)

f~/f. = o 64.
and not f~/f„=0. 5 as in (29).

To improve upon the weak-binding approxima-
tion we next invoke the vector-gluon analysis near
x = 1,'"whereby the valence quarks are free but
exchange a single gluon for the case of the pion,
as shown in Fig. 1.

The external photon probes the hadron's struc-
ture function in the scaiing region. For large Q'
and x=1, the quark which couples to the electro-
magnetic current necessarily has a very large in-
variant mass P', even in the seal. ing limit"
[P' m'(I —x) '], where m is a characteristic
mass or P~ scale (for the virtual quark). Under
the usual assumption that the quarks, roughly
speaking, equally share the e'nergy of the hadron,
each of the internal lines marked with an x in Fig.
1 have a large virtual mass of order (Q')' ',
therefore, it is reasonable to expect that the ef-
fective quark-gluon couplings in Fig. 1 are small,
so that one may use lowest-order perturbation the-
ory. Simil. arly, the lowest-order graphs, such as
the one of Fig. 2, dominate the proton structure
function u(x) as x-1 and Q'- ~.

Di,rect computation of the Feynman graphs of
Figs. 1 and 2 then leads to"'"

h(x) = 6(x ——,'), h»(x) = 6(x —~z),

u(x) = 26(x —3), d(x) = 6(x —g),

fD(x) =36(x —s) .

(28a)

(28b)

(28c)

While this is certainly a very crude model, it wil. l
turn out that its integrated (x ') moments

h=h»=2, f„=6=2f~, fr=9 (29)

are surprisingly close to those derived from more
sophisticated approaches. By construction, (28)
forces the valence quarks to carry all of the mo-

d

FIG. l. Single-gtuon exchange (dashed line) between
valence u and d quarks in the Vt

'. The external photon
(wavy line) is virtual, with -k =@2 ~. Quark propa-
gators marked with an x have large invariant masses.
The shaded confinement wave functions are presumed
to keep the emerging quarks at low invariant mass.
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FIG. 2. Gluon-exchange graph for the proton analo-
gous to Fig. l.

is most simply expressed by the "spectator'-
helicity" rule"

G
t (x) (I x)2ns-&+~I~A ~at as x- 1 (32)

h(x) =G„g„+(x)=G~t„+(x) =30x'(1 —x)',

hv(x) = 30x'(1 —x)',

fD(x) = 504x'(1 —x)'.

(34a)

(34b)

(34c)

where n, is the number of spectator quarks in
hadron A. when quark a acquires all the momentum
and A. &, A, are the respective he1.icities in the in-
finite-momentum frame.

The rule says that it becomes hard to force one
of the quarks to have all of the momentum of the
hadron at x=1, and it becomes progressively more
difficult the greater the number of spectator quarks
we must stop to do it, since gx, =1. The specific
exponent i.s a consequence of QCD; the (1 —x)' de-
pendence near x=1 for the nucl. eon agrees well
with data" on F ~2( )xand F,'"(x), as does (3la) for
the pion structure function" near x= l.

This powerful rule (32) not only allows us to de-
duce immediately that h„(x) (1 —x)', d(x) (1 —x)',
and fD(x) (1 —x)' near x- 1, but it also enables us
to construct the x-0 behavior of the five baze
structure functions. In this case, momentum con-
servation requires (25), i.e. , x+x =1, where x
represents the momentum fraction of the spectator
quarks in the hadron in question. We can there-
fore extend (32) to

G,i„(x) x'"* "'i " i as x-0, (33)
I I

where n, .and X, represent the number of specta-
tors and helicity of the quark (or diquark pair)
with momentum fraction x . For the case of the 0
and 1 mesons, quark-antiquark symmetry re-
quires h(x) and hv(x) to be symmetric in x and x
= 1 —x so that, in fact, h(x) and h„(x)-x' as x-0.
The decuplet bare structure function is only slight-
ly more complicated with 1 —x =x representing a
diquark quark of spin-1 with momentum fraction x.
Then with v4=1 and 2ik„—A., i= 1 we apply (32) near
x -1 or x-0 to find fD(x)-x' as x-0. Knowledge
of the end-point behavior plus normalization condi-
tions, which reflect the constraint that the simplest
bare quark state carry all of the hadron's momen-
tum, essentially pins down these three bare struc-
ture functions to be

While determination of the leading x-0 depen-
dence of the proton bare structure functions with
n, = 1 and 2ik„—A, i= 1 gives the same x' behavior
as in (34), the complete x dependence is more
complicated for two reasons. First, following
Ref. 9, because the proton quark spins are not all
aligned as in the 0, 1, and 2' cases, we must
fold in the QCD color-statistics factor

&n„i) /&n, t) = 5, (35)

u, (x) = 20x'[5(l —x)'+ —", (1 —x)'),

do(x) = 20x'[(1 —x)'+ —", (1 —x)']

(37a)

(37b)

and the desired ratio f„,/f„0=0.6 according to (30).
However, as remarked earlier, the exact bare
structure functions must satisfy the momentum
conservation condition (25). It turns out that in
fact Eqs. (37) almost meet this requirement,
giving instead g&x, ) =- 1.19. This small 19% dis-
crepancy and f„o/f„,=0.6 provide a posteriori
justification for our entire bare structure scheme.
To eliminate even this discrepancy we need only
weight (37) by a smooth function of x which does
not vanish at x= 0 or x= 1, while satisfying (25)
and not altering f~/f„ to any great degree. We
find that

u(x) = 49(1 —~x)'x'[5(1 —x)'+ 2.3(1 —x)'], (38a)

d(x) = 49 (1 ——,'x)'x '[(1 —x)'+ 4.6 (1 —x)'j (38b)

which says that there are five times as many up
quarks as down quarks with spins pointing in the
direction of the proton. This factor (35) in turn
predicts that vW, =-', at x=1, in reasonable agree-
ment with experiment. ' Furthermore, the 5:1
ratio is seen" in the inclusive cross section for
P+P-m'+anything, near x=1. Second, we must
break the SU(6)-symmetry relation f„/f„=2, if
we are to avoid the SU(6) prediction m z = m A as in
(29). These two requirements can only be satis-
fied if we keep not only the leading behavior near
x = 1, (1 —x)', but also the next to the leading be-
havior as dictated by the spectator-helicity rule
(32), (1 —x)'. The QCD color-statistics factor of
these latter terms with quark spin in the opposite
direction to that of the proton (so that 2iA.„-A., i=2)
1s

(36)

The combination of (35) and (36) corresponds to a
1 2total of —,

' + —,
' = 2 up quarks and 3+ 3 = 1 down quarks

in the proton, as required.
Finally, demanding the normalizations ju= 2

and f d = 1, our first attempt to construct the pro-
ton bare structure functions (denoted by the sub-
script zero) leads to
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IV. CURRENT QUARK MASS SCALE

Given the five integrated structure-function mo-
ments in (39), we can determine five independent
estimates of the current quark mass scale m or
splitting m, ' —m'. Since we know from Sec. II
that m, /m =5, it is clear that we will be able to
obtain five values of m. If the theory is meaning-
ful, then all five determinations should be about
the same.

For the 0 mesons, we repeat the analysis for
~ the pion which led to (14), again employing

(n~H, ~n) =0, but this time we do not divide out the
scale:

(n ~FI~n) = 2m ' = 2m'h + 2m'h

and for h = 2 from (39),

(40)

m =m„/~2h =m, /v5 =62 MeV. (41)

For the 1 mesons there is no Goldstone theorem
but the analogs of (40);. dividing out the factor of 2,

m '=mov'+2' ky, (42a)

m»*'=m, »'+ (m, '+m')h» (42b)

gives for A&
——2 the splitting

m, ' —m' = (m»*' —m p')/h» = 4.8m,', (43)

corresponding again to m = 62 MeV for m, /m = 5.
The fact that (41) is exactly reproduced is, of
course, an SU(6) statement m»*' —mz'=m»' —m,',
which is a consequence of any quark model, as is
the equal splitting law m ~' —m&*' =m~*' —m~' with
m&'=m~' and cp pure ss. We note, however, that
although m, am breaks SU(6), the SU(6) equality
h =h& is still mai. ntained and this is consistent
with meson spectroscopy.

Proceeding on to the baryon sector, we note

is satisfactory, with the function (1 ——,'x)' pushing
the peak of (37a) down from s0.40 closer to 0.35,
while only altering the ratio f~ /f„slightly to 0.57.

Finally, we are prepared to calculate the inte-
grated (x ') moments of the five bare structure
functions (34) and (38). Due to the x' behavior as
x-0, these integrals are all finite as demanded'if
the theory is.to make any sense. We obtain

h=h= 2, f„=7.9, fr=4.5, fn=12

and note that the scales are very close to the weak-
binding results in (29), suggesting that these scales
are somewhat insensitive to the dynamical model
employed, providing that one invokes correct kine-

.matics and valence charge normalization. This
gives us added confidence that the quark masses
obtained in the next section are almost model-in-.
dependent results.

that the two 2' scales f„=7.9 and f~=4.5 are only
approximate results which give f~/f„=0. 57 rather
than the experimental value 0.64. It is then pre-
ferable to combine f„and f~ to obtain a pure non-
strange-quark estimate of rn from the nucleon ma-
trix elements of the & term, " found in (20), giving
in this case for v» = 65 MeV and f„+f„=12.4

m„&„=m'(f„+f„), m = 70 MeV. (44)

A second, octet-breaking estimate from the &'

baryons picks out the sensitive combination f„f~-
via the baryon matrix elements (17) in order to
eliminate the m,~' contributions'

pBg 8 m m

= —,'o(8m ' —2m„'+3mA' —Bmr')

=0.31 GeV' =16m„'. (45)

Then for our estimate f„f„=3.4 —we obtain the
current quark splitting

m, ' —m' =ms' ~,/(f„f~) =4.7m-,', (46)

m, ' —m' = 5.4m,', (48)

only slightly higher than the 1 and 2' octet split-
tings. In terms of a quark mass scale with m, /m
= 5, this discrepancy is even smaller than that of
(48), m 65 MeV.

Thus, all five estimates appear to be consistent
with the ratio m, /m = 5 and the scale m = 62 MeV.
It would be nice, of course, to extract this current
quark mass scale directly from experiment. Two
such possibilities have been considered. " The
fixed-pole residue from Compton scattering

C& = —,S', x = —, „+-'
0

(49)

which is remarkably close to the 1 result (43).
Or equivalently for m, /m =5, Eq. (46) implies
m =61 MeV, only slightly below (41) and (44). In
terms of the Z-A mass difference, (17) leads to
m r' = m~'+ (m, ' —m') f~, which is slightly lower
than the actual Z mass; correspondingly, mA is
slightly higher than experiment, both results fol-
lowing because (30b) is not exactly satisfied by
(39).

Finally, for the 2' decuplet baryons, the quadra-
tic mass formula (17) is known to be well satisfied
by experiment and the Okubo equal-splitting law.
We average over the slight deviations by computing
the pure octet-splitting part via mr*' =mz, '+ 3(m, '
—m')fn, etc. , leading to'

mD' ~, = p(m,
' —m')fn = -'(mn'+m. g' —2m~')

=0.42 GeV'=21. 6m '. (47)

Then for fD =12, Eq. (47) predicts the splitting
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V. CHIRAL-BREAKING ANALYSIS IN THE
CHARMED-QUARK SECTOR

Having found consistency for m, /rn and m in all
types of meson and baryon chiral-SU(3)-breaking
configurations, we proceed to extend the theory
to the SU(4) charmed-quark sector. Rather than
leading to a whole host of new chiral-breaking pa-
rameters, the SU(4) sector involves only the ratio
rn, /m and scale m, , the latter two, of course,
linked to m as determined in the last section.

Consider first the observed pseudoscalar-meson
spectrum"

m~=138 MeV,

mz =496 Me7, nzz' = 12.9m~'

ma =1866 Mey, mD2 =183m,'

m~ = 2030 + 60 MeV, m~'= 216m„'.

(50)

In the current-quark model we may continue to
take bare valence quark distributions so that the
SU(4) extension of (22b), (27b), and (27d) is, for

&D'IddlD') = 2m' h
~

&D'Icc ID'& = 2m, h,

(F'lss IF'& = 2m, h, (F'Ice
l
F'& = 2m, h,

(51a)

(51b)

&D'IuulD'& = &D'I» ID'&

= (F'fuulF'& = (F'lddlF') = 0. (51c)

The charmed-hadron matrix elements of H=+p
+ P combined with (51) and the Goldstone condition
then leads to

mD' = (m, '+m')h,

m„' = (m, '+m, ')h.
(52 a)

(52b)

Dividing (52) by m, '=2m'h results in quark mass
ratios similar to (14),

includes unknown contributions for x&1 outside
the scaling region but they are thought to be small.
However, even the extracted value' C" =1 may be
altered by the currently measured rising cross
section at high energies. Secondly, the photopro-
duction multipole amplitude at threshold can, in

principle, determine the nonstrange current quark
mass. A rough estimate" yields m -m„but a
more detailed covariant treatment" leads to values
of m varying from —m, to 2m „, depending on
the data employed. Clearly, more accurate low-
energy photoproduction data are needed to obtain
a reliable value of m in this way.

It is certainly significant that (53a) and (53b) are
in almost perfect agreement.

To reinforce this result we also work out the
nonf lip pseudoscalar-meson transitions in the
quark model:

&ols A, lv&=f„m, '=-m&olqy, ~„q I»&, (54a)

m, /rn = 2 (m /m ) —1 = 26, (55a)

m +m 2m'
m m~

== 6 —=23s- mc-
m ' m

(55b)

Both (55a) and (55b) are reasonably consistent with
one another and with (53). Just as in the non-
strange sector, we sha11. continue to prefer the
mass-formula method of determining the current
quark masses, (52) and (53), over the PCAC
method, (54) and (55). For matrix elements in-
volving (heavy) charmed quarks, an early indica-
tion that large corrections are necessary can be
found in the paper of Buccella et al."

These results for quark mass ratios involving

rn, are in good agreement with some recent work.
Ong" has shown that the discrepancy between the
Weinberg" sum rules and the leptonic decays of
J/P is resolved by the inclusion of effects of quark
masses, along lines suggested by Bernard et al.";
he finds m, /rn, = 3.9, in good agreement with our
value of 4. Moreover, Fritzsch" has obtained a
relation between the Cabibbo angle and the quark
mass ratios:

(m, m,)"—(m„m,)"
(56)

Without questioning the validity of his derivation,
we would like to note that our derived mass ratios
give 8=13, quite close to the experimental value.

The 1 vector-meson sector also has a bearing
on the charmed current quark mass. The mass
formulas analogous to (42) are

&ols A»IA&=f. m»'=-k(m, +m)&olqy, &~II~&, (54b)

(ol s AD ID& =fDmD' = —2(m, +m)(olqy, xnqlD&, (54c)

(Ols A, IF&=f,rn '= '(m, —+—m, )(Olqy, ~,qlF&.

(54d)

Scaling the matrix elements on the right-hand side
of (54) by the appropriate quark mass combination
in our parton-quark-model scheme, as in the
second term of (7) or as in (22)—(27) and (51), the
ratio of (54b) to (54a) produces (15), while the
ratio of (54c) or (54d) to (54a) predicts for f,=f»

rn, '/m' = 2 (m~'/m ') —1, m, /m = 19 (53a)
mn*' = m,»'+ (m.'+rn')h»,

m 4 =ma» +(m +m )h» ~

(57a)

(57b)
(53b)

While the I'* mass 2140 MeV has large uncer-
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tainties, the D~ mass of 2007 MeV is accurately
known. " Given (57) and h» =it, the amazing ac-
curacy of the corresponding meson SU(6) mass re-
lations

TABLE I. The masses of the charmed baryons (in
MeV). Masses in the column labeled DGG are from Ref.
38; masses in the column labeled FS are results of the
present work, normalized to the same value of the Co
mass for comparison. Notation is that of Ref. 44.2, 2 2 2 2 2

mDW mD —

mph'

m g —m p
—Ill ff (58)

DGG FS Quark content
argues very strongl. y in favor of our quadratic-
mass-formula, current-quark-model approach.
Put another way, the magnitude of the charmed-
to nonstrange-quark mass splittings based upon
theyarton structure-function scales (39), i.e. ,
h =h& = ~, leads to

(mc' —m, ')/lt = 1.38 GeV', (59a)
Cm 2

~

~ ~~A 2 ~~
~

~

~

~

2

2 ~
~

2

~
2

~

~

~

~

~I

~

2
t

~

~
I(m, *' m, ')/—lt, =1.37 Gev'. (59b)

The consistency between the 0 and 1 charmed
sectors is reassuring. We therefore take seri-
ously the implied quark mass scale

m, = (m, /m)m =19x 62 MeV= 1200 MeV, (60)

C()

C(
A
S
T

X

T)f:

X„

Xs
8

2200
2360
2420
2510
2680
3550
3730

2420

2560
2720
3610

3770
4810

2200
2700
2310
2780
2750
3490
3570

c[ud]
cuu, c{ud), cdd
c[sN], c[sd]
c{su), c{sdj.
CSS

cc~, ccrc
ccs

3650
4300

ccs
CCC

2810 cuu, c{ud), cdd

2890 c{su), c{sd)
2860 css
3570 ' ccu, ccd

with an uncertainty of about 100 MeV due to the
uncertainties in the determination of the ratio
m, /m and the scale. The value implied by (59),
m, =1170 MeV, falls within this range. With hind-
sight, Eq. (60) is about what one might expect for
the charmed mrrent quark mass scale. That is,
just as our derived current quark masses m = 62
MeV and m, = 310 MeV are somewhat lighter than
the static quark masses' of m" = z m

p
350 MeV

and m,"=
~ m ~= 550 MeV, we should expect that

m, as given by (60) would be lighter than the static
value of m,"=

& m&=1550 MeV. We regard this de-
rived Pattern and (60) as one of the major results
of this analysis.

Before leaving the meson sector, it is well to
point out why the neutral isoscalar 0 and 1

states, q, g, »i„&u, y, P, have been left out of our
chiral-breaking analysis up to this point. This is
because they can mix with the neutral gluons, thus
destroying the simple quad rat ic m as s formulas
from which our results are derived. ""The U(1)
problem" for the q, g states is an example of the
complications that can arise. Clearly, the neutral
isoscalar mesons must be incorporated into the
theory, but we defer discussion of this problem to
future work.

Lastly, we turn to a description of chiral break-
ing in the charmed-baryon sector. Unfortunately,
the charmed-baryon masses are not yet well de-
termined, although it is suggested from neutrino
events at BNL and CERN,"A photoproduction at
Fermilab, "and inclusive hadron-to-lepton cross-
section ratios at SLAC" that the low-lying charmed
baryons are in the 2.3 GeV region. The static
quark mass picture" certainly suggests this re-
gion, but as we shall show, so does the current

mc,
' =m„'+ (m,

' —m')f„, (61a)

m c,
' —m„' (m, /m)' —1

m
' m„' (m, /m)'=1 '

Given m, /m=19 from (53a) and m, /m =5, Eq. (6lb)
predicts that mc, =2.97 GeV, while fs=4. 5 and (59)
predict from (61a) that mc, =2.65 GeV. We see
that there is a 300 MeV uncertainty in our predic-
tions due to our imprecise knowledge of m, ', m, /
m, f„, and fs. Nevertheless, the Pattern of the
spectrum of charmed baryons can be obtained
simply from our estimates of these parameters
together with mass formulas such as (61), which
are analogous to formulas of Gaillard et al." In
Table I we present our results for the charmed-
baryon masses normalized to the same value for
the C, mass so as to facilitate comparison. There
is a qualitative distinction in the pattern of sym-
metry breaking between our prediction and that of
Ref. 38. However, owing to the uncertainty in the
various parameters (we have used f„=7.9 and fs
=4.5 to obtain the values given in the table) a quan-
titative comparison is not possible.

(61b)

VI. MASS DIFFERENCE OF 8 AND d QUARKS

Now that we have determined the quark masses
m„m„and m, for completeness we should fix
the u and d quark masses separately, rather than
only their average mass m. To estimate the SU(2)

quark picture.
Consider, for example, the C, isovector charmed

baryons" with quark content C,"(cuu), C,'(cIud)),
and C', (cdd). Ignoring the SU(2) splitting, our cur-
rent-quark scheme gives
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quark mass splitting, we may use the SU(3) x SU(3)
Dashen theorem" for pseudoscalar electromagne-
tic mass splittings or, alternatively, the fitted
X«matrix elements for baryon electromagnetic
mass splittings (these two estimates are, in fact,
consistent').

Perhaps the cleanest way to indicate the result
is to concentrate on the m ~, —m ~ = —7.9 MeV
splitting, since 3C«contributes almost nothing to
this difference. In our scheme, we may then write

mz+' —mz '= (m„' —m~')f„= —0.019 GeV'. (62)

Then for f„=7.9 and m = 62 MeV, Eq. (62) leads to

m~ —m„= 19 MeV, m~/m„= 1.37,

m„= 52 MeV, m„= 72 MeV.
(63)

On the other hand, the SU(2) splitting may be
extracted from meson mass data. The K-meson
electromagnetic mass difference arises from two
sources,

mK+ mKO (mK+ mKO )ZJ + (mK+ m+0 )

= —0.0040 GeV', (64)

(mx+' —mxo')~ = (m„' —m„')h.

The first term is given by Dashen's theorem,

(65)

where the second term is induced by the u-d quark
mass difference

m»' = m„' —rn'(f„+f~) = 46m ~' —3m „'= 43m „',
(68c)

corresponding to mp~ =9&0 MeV, while for the
decuplet baryons

m»' —-m~' —m'fD= 78m~' —3m„'=75m~'. (68d)

We observe that m pv m p p m M p+ pB

which suggests that the chiral-symmetric SU(6)
splitting between the meson multiplets, and also
between the baryon multiplets, may have the same
origin, such as a spin-spin term in 3Cp. That this
is reasonable was suggested some time ago" in a
study of the phenomenology of the current-con-
stituent quark transformation for the vector-gluon
model. The Hamiltonian for the vector-gluon
model is easily written; formulated in terms of
null-plane operators, the interaction piece of the
Hamiltonian has a term linear in the transverse
components of the gluon field A~, a term quadratic
in A~, and a "Coulomb" term in which A~ does not
appear. " In order to exhibit the SU(6) properties
of these terms, one must first use the Melosh
transform so as to express them as functions of
constiutent quark operators. One finds that the
"Coulomb" piece of the interaction gives rise to
a contribution of the form

(m~+' —mxo')~~= (m, „+'—m, o') =+0.0013 GeV'.
p (xi, $), V,g (x„g), (69)

Therefore, for h = 2.5 and m = 62 MeV,

m„—m„= 17 MeV, m~/m„= 1.32,

m„=53 MeV, m~=71. MeV,

(66)

(67)

in good agreement with (63), which was obtained
from baryon mass data alone.

VII. CHIRAL-SYMMETRIC MASSES AND SU(6)
SPLITTING OF 0 '

Now that we know the scale of all of the current
quark masses, we may return to the general
chiral decomposition (34) and identify the various
chiral-symmetric masses, mp&', m«', mp~', and
m~' which are the hadronic matrix elements of
3C, within a given SU(6) multiplet. We already
know from a comparison of (lla) and (13) that the
Goldstone, pseudosc alar m ass is

which is not invariant under SU(6) but in fact
transforms as a sum of terms which occur in the
product 35 & 35. It is SU(3) invariant, however,
and thus can give rise to the kind of mass splitting
described above.

The mechanism suggested above is analogous to
that used by De Rujula et al."to construct a spin-
spin force between static quarks. Their static
quark masses, m(static) = —,

'
m ~= 3 m~ = 350 MeV

and m, (static) = 2 m „= ~ m e= 550 MeV, are derived
by linking the A-N splitting with the Z-A splitting.
For our current quark scheme, the 6-N splitting
is associated with the chiral-symmetric part of
X, while the Z-A splitting depends upon the SU(6)
breaking of f„/f„ from 0.5 to 0.6 according to (30).
It would be a quite convincing test of our scheme
to show that a spin-spin force, such as that con-
tained in (69), in fact leads to the prescribed
SU(6) splittings (68). We are currently examining
this possibility.

2=mph =0. (68a)

Likewise, 2mp':2mpp +4@i &p' so that

mo„'=mz' —2m'h~=3lm„' —m„'=30m '. (68b)

For the octet baryons, (42) gives

VIII. CONCLUSION

We have shown that in the present current-quark
model a consistent picture emerges for the theory
of chiral-symmetry breaking and the phenomen-
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ology of hadron spectroscopy if the current quark
masses (i.e. , the masses appearing in the QCD
Lagrangian density) are m = 62 MeV, m, = 5m =310
MeV, and m, =1200 MeV. The quark mass ratio
m, /m is determined in three different ways (0
masses, &„u, Goldberger- Treiman discrepancy)
and the quark mass scale is set in five indepen-
dent ways from the (x ') bare structure-function
moments. The ratio m, /rn is found from the 0—
meson masses, and is consistent with the 1

masses.
Our current-quark picture does not contradict,

but rather complements the static-quark picture. "
The latter approach is best suited to explain the

vector mesons and ~' baryons; it does not de-
scribe the 0 mesons well, especially the light-
mass pion. On the other hand, our chiral-breaking
approach is designed to explain, first and fore-
most, the pion; however, we have seen that it also
gives a respectable description of all of the other
0 and 1, &' and 2' states, light and heavy. Our
approach, however, is not consistent with the
competing GMOR chiral-breaking model, ' with
current quark masses" m =5 MeV, m, =25m=150
MeV, and nz, =1500 MeV. This latter theory is
based solely on the ratio m, /m as found from the
0 masses, assuming the first, spin-flip term in

(7) to have simple SU(3) transformation properties
and to dominate the quark mass matrix. In de-
fense of our current-quark approach to chiral-

symmetry breaking, we note that quark models
not directly related to the mass ratio m, /m (such
as the MIT bag model, mass-breaking scheme"
or the one-loop calculation of quark masses in
QCD") appear to generate nonstrange quark
masses of the order of 40-120 MeV, roughly con-
sistent with our scale of 62 MeV. Moreover, as
mentioned above, recent analysis" resolving the
discrepancy between the steinberg sum rules"
and the leptonic decays of J/f results in a current
quark mass ratio m, /m, =3.9; a similar result
follows" from arguments based on asymptotic
freedom. All these estimates are consistent with
our results, but differ drastically from the GMOR
values. "
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