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Strong-interaction corrections to the nonleptonic weak-interaction Hamiltonian are calculated in the
leading-logarithmic approximation using quantum chromodynamics. Starting with a six-quark theory, the W
boson, t quark, b quark, and c quark are successively considered as "heavy" and the effective Hamiltonian
calculated. The resulting effective Hamiltonian for strangeness-changing nonleptonic decays involves u, d,
and s quarks and has possible CP-violating pieces both in the usual (V —A) )& (V —A) terms and in
induced, "penguin"-type terms. Numerically, the CP-violating compared to CP-conserving parts of the
latter terms are close to results calculate/ on the basis of the lowest-order "penguin" diagram.

I. INTRODUCTION

In the standard six-quark model. with charge +-,'
quarks u, c, and t and charge --,' quarks d, s, and

b, the left-handed quarks are assigned to weak-
isospin doublets and the right-handed quarks to
weak-isospin singlets of the SU(2) 4 U(1) gauge
group of weak and electromagnetic interactions.
The mixing between quarks in doublets charac-
terized, say, by their charge + —', members, is
describable by three Cabibbo-type angles 0»
and 6I„and by a single phase, 5, which results
in CP violation. The nonlept'onic weak interac-
tion that can result in a net change in quark flavors
is given to lowest order in weak interactions, and
zeroth order in strong interactions, by the product
of a weak current of left-handed quarks, a charged
8'-boson propagator, and another weak current
of left-handed quarks. Neglecting the momentum-
transfer dependence of the 5'-boson propagator,
one has the usual local (V -A) x (V -A) structure
of a current-current weak nonleptonic Hamiltonian.

With the introduction of strong interactions, in

the form of quantum chromodynamics (@CD),
things become more compl. icated. Consider, for
example, that part of the nonleptonic Hamiltonian
responsible for decay of kaons and hyperons which
we wri. te in terms of the "light" quarks u, d, and
s. As the strong interactions are turned on, not
only is the lowest-order (V-A. ) x (V -A. ) term
involving u, d, and s quarks modified by gluon
exchanges between the quarks, but there are dia-
grams involving virtual "heavy" quarks in loops
which contribute to the strangeness-changing non-
leptonic Hamiltonian. These alter the strength
of the (V -A) x (V -A) terms and introduce new
terms with different chiral structure, e.g. ,
(V -A) x V.

It is the purpose of this paper to calculate the
effective nonleptonic Hamiltonian for strange-
ness-changing decays in the six-quark model. We

sue cess ively cons ide r the W bos on, t quark, b

quark, and c quark as very heavy, and use re-
normalization-group techniques to calculate (in
the leading-logarithmic approximation) the re-
sulting effective Hamiltonian remaining at each
stage.

The basic techniques for carrying out such cal-
culations have been l.aid out previously. ' ' They
were even applied in the four-quark model to get
the effective Hamiltonian for strangeness-chang-
ing decays with the charm quark (and lV boson)
taken as heavy. However, there is only one
Cabibbo angle in the four-quark model and no
CP-violating phase. It is the CP-violating pieces
of the effective rionl. eptonic Hamiltonian which
are of special interest to us in this paper.

In a previous paper' we have raised the pos-
sibility that the diagram in Fig. 1 (the so-called
"penguin" diagram) gives rise to a term H"'"'"'" in
the effective Hamiltonian that yields amplitudes
for strange-particle decay with important CP-
violating parts. Other analyses"' cl.aim that
such penguin-type terms make a major contribu-
tion to the amplitudes for A decay into pions and
are responsible for the &I = 2 rule. Assuming
this we showed that in the six-quark model the
magnitude of CP violation arising from the con-
tribution of the matrix el.ement of H '"""'" to the
decay. amplitude is comparable to that coming
from the mass matrix. It followed that the six-
quark model yields predictions for the CP-
violation parameters of the kaon system (in
particular e'/e ) which are distinguishable from
those of the superweak model.

Two questions could be asked about the validity
of using Fig. 1 to estimate the ratio of CP-violat-
ing to CP-conserving amplitudes. First. is the
effect of multiple soft-gluon exchanges. This has
been answered in Ref. 7 where it is shown how the
local four-fermion structure of the effective
Hami. ltonian is preserved despite the presence of
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FIG. 1. "Perguin"-type diagram.

In the standard model' where the gauge group
of weak and electromagnetic interactions is SU(2)
8U(1), the six quarks, u, c, and t with charge
+ 3 and d, s, and b, with charge ——,', are ass igned
to left-handed doublets and right-handed singlets:

multiple soft-gluon exchanges. Essentially, owing
to gauge invariance such soft-gtuon effects go into
corrections to the matrix elements of the local
four-fermion operator H""'"'" resulting from a
calculation of the lowest-order diagram in Fig. 1.
Thus, to leading order in the large masses the
ratio of imaginary (CP-violating) to real (CP
conserving) parts of the E- 2ff amplitude previous-
ly estimated by us is unchanged by the presence
of multiple soft-gluon exchanges.

A second question is the effect of hard-gluon
exchanges. These are expected to alter the re-
sults of our previous calculations. This paper
'provides a detailed answer of the amount of this
change. We systematically analyze the @CD cor-
rections to the effective Hamiltonian in leading-
logar ithmic approximation.

In the next section we describe the method by
which the effective Hamiltonian for nonleptonic
strangeness-changing decays is to be calculated
in the six-quark model. Our approach is peda-
gogical and emphasizes the underlying assumptions
and the conditions necessary for the validity of the
leading-logarithmic approximation. We proceed
by successively considering the W boson, I; quark,
b quark, and finally c quark as heavy. In Sec.
III, numerical results are given. As expected,
CP-violating terms appear in the resulting ef-
fective Hamiltonian, both in the old terms of
(V -A) x (V -A. ) form and in new penguin-type
terms. In the former they are quite small, but
in the latter are large. The ratio of CP-violating
to CP-conserving amplitudes in penguin terms is
comparable to that calculated on the basis of the
lowest-order diagram in Fig. 1 for a typical set
of parameters. Conclusions are then drawn in
Sec. IV. Many of the details concerning the ma-
trices of anomalous dimensions and their eigen-
vectors and eigenvalues are relegated to an
appendix.

(u)s, (d)s, (c)s, (s)s, (t)s, (b)s .
The standard choice of quark fields is such that'

d' C1 -s c1 3

I i6
1 2 1 2 3 2 3

I i6b J Sls2 C1S2C3+C2S3e

-s s1 3

ClC2S3 + S2C3e"
i6

C1S2S3
—C2C3e

S

8tlf (x) = J~(x)W„(x)+H.c. ,2
(2)

where W„ is the charged-8"-boson field, J', is the
charged weak current defined by

8' (0) =u(0)y (1 —y, )d'(0)+c(0)y„(1 -y, )s'(0)

+ t(o)y, (1 —y, )&'(0)

=rd), . r-). ..(t~). .. (3)

and g is the gauge coupling constant of the weak
SU(2) subgroup. With no strong interactions the
lowest-order weak current-current interaction at
zero momentum transfer is described by the ef-
fective Hamiltonian density

2

8C„f(0)=,8'„(0)J,(0)+H.c. ,
W

so that the Fermi coupling Gz/v2 =g'/(8Mt»'). In

particular, the strangeness-changing piece of
Eq. (4) is

where c; =cosa;, s& ——sin6;, f'~(1, 2, 3j. Equation
(1) defines the three Cabibbo-type mixing angles
8i and the CP-violating phase, 5. Without loss of
generality the angles 8; may be chosen to lie in

the first quadrant 1o

Weak interactions involving the charged hadronic
current follow from the interaction term in the
Hamiltonian density

jeff = + [ c&s& (sc& ~)»u-„(uzdff )v „+Sic'(cyc2cs S2S3 )(Sac~)» ~(Cgdff)v

+s,s,(c,s,c, + c,sse ")rsitu)v-~(todff )v -~] f
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sci,'„'='& = -
& [A.(o,"+o', ')+A, (o", +o', ')],

(6)

where

0&,'& =[(s u ) „(uqdq) „+(s d ) „(ut&u&&) „]
—[u- q],

A, =s,c,(c,c,c, —s,s, e "),
A, =s,s,(c,s,c, +c,s, e ").

(Sa)

(6b)

Normal ordering of the four-fermion operators
is understood. The space-time coordinates of
all operators are suppressed.

where we have made the color indices n and P on

the quarks (which when repeated are summed from
1 to 3) explicit in preparation for the inclusion of
the strong interactions. It is convenient to re-
write Eq. (5) as

Now introduce the strong interactions in the
form of quantum chromodynamics (QCD), the
gauge theory based on the color SU(3) gauge group
involving vector gluons interacting with quarks.
'The strong interactions modify the lowest-order
weak effective Hamiltonian from the form in Eqs.
(4) and (5). We now proceed to derive in leading-
logarithmic approximation the form of the effec-
tive weak Hamiltonian in the presence of strong
interactions with heavy 8'bosons and heavy t, b,
and c quarks.

First, we take the W boson as much heavier
than any other mass scale in the problem and
consider the S-matrix elements of. the weak inter-
action between low-momentum hadron states com-
posed of light quarks and differing in strangeness
by one unit. This is just the calculation performed in
Hef. 11. Using the operator-product expansion"
(noting that the operators 0,"' and 0,"' are multi-
plicatively renormalized and do not mix with other
operators at the one-loop level), we have that to
leading order in the heavy S'-boson mass

I

d'x T X x O =- A', ', g O&' 0 +~~~,& 0~~ O

+~r r

( &)&&or r&ag&, ~r-r (', r)&~/or-r&0&&&

where g is the renormalization point of the strong
interactions. The matrix elements of the right-
hand side are to be evaluated to all orders in the
strong interactions and to zeroth order in the weak
interactions.

The Wilson coefficients AI'&(M&&, /p, , g) and
A&'&(M~/p, ,g) depend on the choice of renormaliza-
tion scheme. Of course, the renormal. ized opera-
tors 0,' and 0,' also depend on the renormal. iza-
tion scheme in such a way that physical quantities
are rendered scheme independent. We use the
mass -independent minimal-subtraction scheme"
where the renormalization-group equations" are

I

shows that y&'&(g) has the perturbation expansion

2

(g) =
4
—— +O(g ) (12a)

2

~' '(g)=- 2„,+O(g').

p(x)x

and g(l, g) =g, Eq. (10) has the solution

With the running coupling constant g( y, g) defined
by

(
9 8 M~

u —+p(g) r"(g) A—"-
8 p. Bg

(10)

A.(') -—~,g =exp y '
dx

() M
(14)

The y
' characterize the anomalous dimension

of the operators 0,' with q = c or t. The function
P(g) has the perturbation expansion"

p(g) =-(33 —2N~)- 2 +O(g'),

where Nz (which equals 6 here) is the number of
quark flavors. A standard one-loop calculation"

In a leading-logarithmic cal culation the coefficients
A& "&(l,g(M&&, /p, ,g)) can be replaced by their free-
field values A, given in Eq. (8) because the running
fine-structure constant a =g'/4x is small at the
mass scale of t.he W and because the value of their
first dependent variable being unity implies no
other large logarithms can be generat'ed by
higher-order strong interactions. Using Eqs.
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(11) and (12)

y( )(x) 2u{ )

P(~)
+ terms finite at x = 0,

with

~( ) 33-2'�'
( ) -12

a
33 —2'

(16a)

(16b)

choosing p above the onset of scaling, Eq. (15)
may be substituted back into Eq. (14) to obtain
the result:"

",(~)
~(.) Mw g'(Mw/u, g) '

g'(l, g)

n(Mw') '
«(u') (17)

At this s tage our effective weak Hamiltonian den-
sity is

(~ 0&'+~ o")eff 2 ~2 (~2) ( c c + »»

»».(M,') '
f)'(»» )-

The matrix elements of the above effective weak
Hamiltonian density are to be evaluated to all
orders in the strong interactions and to zeroth
order in the weak interactions. Note that jeff
does not expl. icitly involve the W-boson field. We
want to derive an effective Hamiltonian without
explicit dependence on the heavy W-boson, t-quark,
b-quark, and c-quark fields. Equation (18) is the
first step towards this goal.

We now proceed to consider the t quark as very
heavy and eliminate it from explicitly appearing
in our effective weak Hamiltonian for strangeness-
changing processes. What happens to the operators
0,' and 0&' is different, and we consider the
more complicated case of 0&' first.

We assume that m, is much greater than all
other quark masses, the momenta of the external
states, and the renormalization point mass, p. .
The work of Appelquist and Carrazone" tells us
that to order 1/m, ' all the dependence of ampli-
tudes on the heavy t-quark mass can be absorbed
into renormalization effects and hence into a
redefinition of the coupling constant, mass pa-
rameters, and scale of operators. This suggests
the fo1.lowing factorization:

B&,'& =- B&'&(1, O) =+ 1,
B&2' = B,' (1, 0) =+1.

(21a)

The operators 0„0„0„and0, are generated
by the strong interactions through penguin-type
diagrams, so that in free-fieM theory

(21b)

However, the operators O~ are not multiplica-
tively renormalized at the one-loop level, i.e.,
they mix among themselves. As shown in the
appendix, the renormalization-group equation
their coefficients B (m»/l», ,g) satisfy is

Here y' is the transpose of the anoma. ious-di-
mension matrix of the operators 0; in the effective
theory of strong interactions with five quarks
and coupling g'. It is the eigenvectors of y' that
correspond to operators which are multiplicatively
renormalized. We write the coefficient functions
B»' (m»/»». ,g) of these multiplicatively renormalized
operators as

where the primed matrix elements are evaluated
to all orders in an effective theory of strong inter-
actions" with five quark flavors, coupling
g'(m»ll», , g) and mass Parameters m„', ma, . . . , ma.
Thus,

(~0, [&'=([0,[&(g', l, m„', . . . , m, ).
To carry out the expansion of Eq. (19) in leading-
log approximation we find that six linearly inde-
pendent operators 0; are sufficient. We choose
them a,s foll. ows:

0, = (s d )v-A(uaua)v- A,

02 = (S da) v A (u au ) v

Oa =(s d )v-A[(uaua)v-A+ ~ '+(baba)v-A]
(20)

o4=(s-da)V-A[(uau. l -A+" +(bab. )V-A],

0, = (s~d~)v -Al ( aua)v+A+ ~ + (baba)v, „],
0, = (soda)v-A[(uau~)V+A+ ~ ~ ~ + (ba bc)v+A] ~

These operators are sufficient since they close
under renormalization at the one-loop level. The
operators 0, and 0, already occur to zeroth order
in strong interactions: We read off from Eq. (7)
that

~(*) & g yz ~( ) (23)

(19) and denote the corresponding eigenvalues of
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&B( ~g =0. 24

The solution to this equation may be found with
the aid of the running coupling constant g(y, g)
defined by'

1-y,(x)1
x )

(25)

with g(l, g) =g. Note that this is not the usual def-
inition of the running coupling constant [Eq. (13)],
but the integrand in Eq. (25) for small x has the
same leading behavior given by 1/P(x) as the
integrand in Eq. (13). Setting y =m, /)(, , it is now
easily shown that the solution of Eq. (24) is

E (1() y(xxexp, ' dx B( )(l,g).
g '(»1) i)&,g) p (x)

(26)

P' is the P function in the effective theory with five
quarks and coupling g'. This P function has the
perturbation expans ion

y' by y~. The matrix y' is found in the Appendix
along with its eigenvalues and the ma, trix V. For
the B;* (m, /)), ,g), the renormaiization-group
equation corresponding to Eq. (22) is

—+p(g) —+y~(g)m~ +y '
(g) -yl(g')

~

( 8 8 8 (+)
8g ' '8mt '

)

,(~)Notice that the factor [o.'(m, ')/o(p, ')] ' out in
front of the summation in Eq. (30) combines with
the earlier factor [c((M~')/o(()). ')]' in Eq. (16)
to give [o.(M)) ')/a(m, ')]' . In leading-log approx-
imation the coefficients B (1,g) can be replaced
by their free-field values as given in Eq. (21),
since no large logarithms can be generated from
QCD loop integrals with the first argument of
B (m, /p, ,g) set equal to unity and because we
assume the running fine-structure constant is
small at the t-quark mass.

The case of the operators 0,' is much simpler.
The charm quark field which appears explicitly
in these operators is of course not directly affected
at this stage of considering the t quark as very
heavy and the 0,' are just multiplicatively re-
normaliz ed:

(31)

Note that the matrix elements on the right-hand
side are again to be evaluated in the effective
five-quark theory with coupling g'(m&/)), ,g). The
coefficients B ') (m, /)(, , g) satisfy

8 8 8
e.—, +(& (e) e„e& (&.*)~

e
1"(&1)-1"(Z'))

t

x B(' —',g =0. (32)

13

P'(g') = -(33 —2'), +O(g")

withe =5, and we write

' + finite terms at x = 0.y (x) 2a,'

p'(x) x

(2'I)

(28)

The anomalous dimension y' ' (g') is that of 0,
and is a function of the coupling g' in the effective
five-quark theory, while y

'
(g) depends ong, the

coupling in the six-quark theory.
Solving Eq. (32) in the same manner as Eq.

(24) gives

Choosing p. as before, above the onset of scaling,
we may use Eqs. (15) and (28) to get"

2
" -a(+) 2-() m, o(m, ) n(m, ) -(),

))g (~e) ~l(~2) 1 (1g'
(29)

g (1 z ) y/(+) (x)xe»p —, de) &1"(),g)
g I p'x

We have used g'(1, g)= g(m, /p, ,g), which is valid
in a l.eading-log calculation since the running
fine-structure constant is small at the t-quark
mass. Finally, using the linear relationship
between the eigenvectors B; and the B,. we have

(m ') -" ro.(m ')
~(v') ~'(g')

(33)

2
- -a('& - 2- a.(,) m, n(m, ) ~ n(m, )

1 B(+)(1 )

(30)

In leading- logarithmic approximation
B"'(1,g(m, /p, ,g)) can be replaced by its free-field
value of +1.

Our effective weak Hamiltonian density is now
free of explicit dependence on the heavy t-quark
field and has the form
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(as=t) Ga n(mt') '
n(Mw ) (,) n(m, ') ' n(M(v') '

( )
2 v 2 n'((j, 2) n(m, ') ' ' n'()t2) n(m, ')

2 gt ) ~(+)

y n(mt ) jy 1 g( ) n( IY )
~ / Okj P(~2) jt t n(m 2) j t

+g Pv ( ' 'v '. B'-'
I

' jio
n'(p. 2) " ' „),n(m ') t

i, ) t
(34)

All operators on the right-hand side are to have
their matrix elements evaluated in the effective
theory with five quarks, coupling g'(mt/p, g) and

/ lmasses w„, m„, . . . , m, .
The next step of considering the b quark as very

heavy is similar to what was just accomplished for
the t quark, with the addition of some indices.
This time the matrix elements of the operators
0; of Eq. (20) evaluated in the effective five-quark
theory are to be expressed in terms of matrix
elements of

p, + ' g', +y~~m~, 5~~5 „Bg mb
A, n

m'
+x,,(a )5 - ~„x-'(a") c™,((') =o,

(3'f)

with y' and y' being anomal, ous-dimension ma-
trices of the operators O„.. . , O, and I'„.. . , P„
respec tive ly.

Defining the linear combinations of coefficient
functions

P, =(S(ada))V A(ttatta)V At

P, =(s d) „(tt u, )

~m', , ) ~m (38)

P, =(s d )v-~[(~aua)v-~+' ~ ~ +(csea)v-x]

P.=(s.da) ~[(ga& )v ~+" +(cac )v-~1 (3 5)

P, = (smdm)v ~[(us us)v+~+ ' ~ + (ca ca)v+~] t

P, =(s da)v-~[(ttau )v,~+ ~ ~ +(cac )v, ~],

evaluated in an effective theory with four-quark
flavors (u, d, s, and c). The coupling and masses
in the effective four-quark theory are denoted by
g"(mk'/)j, ,g') and m„", . .. , m,", respectively. To
leading order we may write

(36)

where the prime (double prime) denotes evalua-
tion in the effective five (four) quark theory. The
Ck(mk/)j, ,g') can be shown to obey an equation of
the form

as corresponding to operators which are multiplic-
atively renormalized, i.e., do not mix with other
operators, the renormalization-group equations
diagonalize into the form

( +P(g'), , +~l l, , +~l(g') ~."(z"))-
b

Ix+c)™,a') vq --0. ($9)

The matrices W and y" together with the eigen-
values of the latter are found in the Appendix.

With the aid of a new running coupling defined by
a '( 2 .a ') 1

lnY = dx, (40)
g I 'x

these equations may be solved very analogously to
Eq. (24). We leave out some of the details and
skip to the solution in the leading-logarithmic
approximation:

nt mt2 $ -at' nt mt2 am fc" )[ ) =~ ~v ( ') v-' ~w ( ' w' c'~1-'
k ~ tg ~ ~ t j nt(~2) jk ~ am niI(~2) ml

i, l m

For reasons stated before, in a leading-logarithm calculation the coefficients Ct(1,g ) can be replaced by
their free-field values:

Ct =- Ct (1, 0) = 5t t ~

The operators 0,' are multiplicatively renormalized and the expansion of their matrix elements gives
results like those in Eq. (33) with appropriate changes.

Our effective Hamiltonian now takes the following form at the four-quark level:
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a,o&-)

aPP (+) a P(+) a(+)
~(As=i) Gz a'(mp ) a(m, ) a(M)v )

' (,)
a"((l2) a'(mi2) a(m, ')

+I~I2 a +~2 a +~2 a

PP

+ g g w„.(™',w'. ,c,'
k, n il, m

Q PB
a('l M 2 a(-)

( ) - (~. ( ) - ( )

The final step of considering the charm quark
as very heavy is more questionable from the phe-
nomenological viewpoint. It also involves a tech-
nical point which is easy to miss. When we pro-
ceed to expand the matrix elements of the opera-
tors I'». . . , P, evaluated in the effective four-
quark theory in terms of matrix elements of
operators evaluated in an effective three-quark
theory, it is natural to define'

Q, =(Smdm)v A(usuS)» „,
Q2 = (s d2)v -A(u()u )v -A

Q, = (s d )v-A[(usus)V-A+(d( d( )v-A+(sass)v-A]

Q, =(s.d ) — [(usu ) -A+(dad ) - +(s s.) ],
Q, =(s d ) „[(u u ) „„+(d d ),„+(s s ),„],
Q, =(Smd())v A[(u()um)», A+(d()dm)», A+(SpSm)», A].

(44)

These operators close under renormalization at the

one-loop level, but they are linearly dependent:

Q, =-Q, +Q, +Q, (45)

Hence we must then use only five operators, "
which we choose as Q„Q„Q„Q„and Q, .

Expressing matrix elements of the operators
evaluated in the effective four-quark theory in
terms of matrix elements of operators evaluated
in the effective three-quark theory, we write

r=12 2232 526

(46)

Dr c II ~-1 S c II

are the coefficients of multiplicatively renormal-
ized operators. The diagonalized renormaliza-
tion-group equations are

with g"' and m„"', rn„'", ns,"' representing the coupling
constant and quark masses in the effective three-
quark theory. The linear combinations

8 8 8 m."r —+(r'(tt") +r rrr' rr""(a") r"'(t("') g tr ' a") w -=o
I m

and have the solution in leading-logarithmic approximation after reexpressing the D's in terms of D's,

mN ~II fm»2'i am ' n"'m""" '~
l ~ tg ~ nm art(~2) ml ~ ra attt(~2) aP n tg

n, p

(48)

8 8 8
(t +(r'(a') —+r"(a")m' +r "(a') o — ( "r)an ' ' a") =o.

Bp,
' 8g" 8&l pr pr

c

The coefficients corresponding to multiplicatively renormalized operators are just as in Eq. (47), and the
solution to Eq. (51) with the usual approximations is

~II(~II2i -a "(~) cy"'m" i
r ~ tg =

rt( 2) taalll ((l 2) 'aP P: i t g
p, e

(51)

(52)

In leading-logarithm approximation the DP(1,g") can be replaced by their free-field values, DP. These are
5„p, except when n = 4, in which case D4 = -1, D', = 1, D', = 1, and D,' =D', = 0.

Because we are considering the charm quark as heavy, the operat'ors 0,' are no longer just multiplica-
tively renormalized at the one-loop level and we must also expand

")&la I&"' (50)

The renormalization-group equations obeyed by the D,' (m,"/p, , g") are
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The free-field values, D2~'~ =D2~'(1, 0), are D~" =+1, D2i' =+ 1, and all others zero.
We are finally ready to collect all our results and write the previously advertised effective Hamiltonian

in the "light" three-quark sector. It is the following sum of Wilson coefficients times local four-fermion
operators which do not explicitly involve the heavy 5'-boson, top, bottom, and charm quark fields:' ~ ~x (

" '""~"x- && '" ""~' ' ' " ('
(, )i' - () (' ( )i ( )

i

( )
o'2 c)nt())2) )

' a 2 lc)n(~n2)) o.'(m22) ) o.(mP)

+n(~n2) aa" +i(~i2) am

)h, n, r p, q lsm

All summations are from 1 through 6, except those overp, q, and r which run through 1, 2, 3, 5, and 6.

III. NUMERICAL RESULTS FOR THE EFFECTIVE
NONLEPTONIC HAMILTONIAN

We are now in a position to perform the arithme-
tic operations made explicit in Eq. (53) and to ex-
amine the resulting Wilson coefficients of the op-
erators Q„Q„Q„Q„and Q, in the effective
Hamiltonian for nonleptonic, strangeness-changing
interactions, Since the matrices, V, W, and X,
as given in the appendix, are composed of irra-
tional numbers and since various fractional powers
of a(M2) with M'=M2, 2, m, 2, etc. are rampant,
quantitatively rather little is transparent about
these coefficients in general. . We then are forced
to proceed by choosing a parametrization for
n(M2) and values for the W and quark masses,
substituting in Eq. (53), and reading off the co-
efficients of the Q; for that particular set of
choices.

Moreover, our outlook is basically qualitative.
We have calculated the QCD effects in the leading-
logarithmic approximation. While we have some
confidence that at the first step M& is a large-
enough mass for this to be a credible procedure„
by the last step of considering rn, a heavy mass
we have used this approximation beyond the region
where it can be reasonably justified.

On the positive side, what is carried out here is
well defined and systematic. The degree of ac-
curacy is obviously no worse than any of the
.earlier calculations'4 which involve only the
"heavy" charm quark (and W boson) in the leading-
logarithmic approximation. Not only is the ac-
curacy of the calculation expected to be better for
the b and I; quarks, but their effect was not taken
into account previously. With regard to CI' viola-
tion they play a dominant role as we shall see

I

pr es ently.
To investigate the effective nonleptonic Hamil-

tonian numerically we first of all need to decide
on the running QCD fine-structure constant o.(Q2),
the values of the heavy quark masses, and p.' or
alternatively n()).2) In th.e ieading-logarithmic
approximation

12m 1
33 —2N) ln(Q'/A') (54)

where we take A' = 0.1 GeV', a value consistent
with recent data when QCD is used to parametrize
the breakdown of scale invariance in deep-inelastic
neut'rino scattering. ' When the leading-logarith-
mic approximation is valid, the cal.cul.ation is in-
sensitive to the precise value of A. The number of
quark flavors is K& = 6 for the fine-structure con-
stant we have called o.(Q2), while n'{Q2), a"(Q2),
and o."'(Q2) have Nz =5, 4, and 3, respectively,
as they pertain to effective theories with those
corresponding numbers of quark flavors.

We take m, to be 1.5 GeV and mt, to be 4.5 GeV
on the basis of P and T spectroscopy. '" The (-
quark mass is unknown at this time, and we use
values of 15 and 30 GeV to get an idea of the sen-
sitivity of the results to this quantity. For M&

we take the value 85 GeV, consistent with the value
obtained within SU(2) 8U(1), given the recent
measurements" of sin262, . In evaluating Eq. (53)
we donotdifferentiatebetweenm~ andm~, m," and

m„etc. , again consistent with our l.eading-log-
ar ithm approximation philosophy.

Finally a value is required for n(p2) [or more
exactly o."'(p2)]. We want to choose p, to be a
typical. "light" hadron mass scale or inverse size,
where n(g2) is of order unity. We let a(g2) =0.75,
1.0, and 1.25 to check the variation of the result-
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ing effective nonleptonie Hamiltonian to this
choice. In fact, the values of S-matrix elements
of the weak interaction cannot depend on the choice
of the renormalization point p. , or equivalently
a(p, '). The matrix elements of the four-fermion
operators, Q;, also have an implicit p, dependence
which exactly compensates that of their coeffic-
ients which we have calculated. %e are left to
make a choice of p. , hopefully close to the typical
light hadron mass seal. e of the problem, so that
", hard"-gluon effects are contained as much as
possible in the Wilson coefficients and not the
matrix elements of Q;, but high enough that their
calculation in leading-logarithm approximation
makes some sense. "

In terms of the operators, Q„Q„Q„Q„and
Q, defined previously in Eq. (44), the nonleptonic
Hamiltonian involving u, d, and s quark fields
has the form

2 -i6 /7'=S, +S2C2S3e //CJC3, (56)

along with the other masses specified'previously.
Values of the coefficients for all six cases corre-
sponding to u(g') =0.75, 1.0, and 1.25 and m, =15
GeV and 30 GeV are found in Table I.

Referring back to Etl. (5), we see that before
accounting for the effects of QCD, the coefficients
of the usual four-fermion operator Q„as well as
the "penguin"-induced operators Q„Q„and Q,
were all zero. In the sector involving u, d, s
quarks the strangeness-changing weak Hamiltonian

=' = —~ s,c,c,[(-0.87+ 0.036m)Q,

+ (1.51 —0.036T)Q,

+ (-0.021 —0.012T)Q,

+ (0.011+0.007' )Q,

+ (-0.047 —0.072T)Q, ],
(55)

when m, =15 GeV and a(p') =1 and where

then just involves Q, with unit coefficient. Thus
the presence of strong-interaction QCD correc-
tions has brought, in the operators Q„Q„Q„
and Q„changed the coefficient of Q„and given
all coefficients an imaginary (CP-violating) part
through the qu'antity 7, which enters through
penguin-type diagrams involving a heavy-quark
loop.

The portion of t:he nonleptonic Hamil. tonian in-
volving only the operators Q, and Q, is the tra-
ditionally calculated (V -A) && (V -A) four-fermion
piece with neglect of all penguin-type effects. The
sum of coefficients of Q, and Q, is proportional
to the coefficient of an operator transforming pure-
ly as I = &, which cannot mix under strong-inter-
ac tion renormaliz ation w ith penguin contributions
which are pure I = 2. As a consequence, one
simple check of the calculation is to note that the
quantity 7., arising from penguin contributions,
always has the same magnitude and opposite sign
in its contribution to the coefficients of Q, and Q, .

The combination of operators Q, -Q, transforms
purely as f=, while the combination Q, +Q, has
an I = $ piece. The ratio of coefficients of Q, —Q,
and Q, +Q„ is a measure of Df = s or octet en-
hancement by QCD, as first calculated in Ref.
11. Our inclusion of penguin operators and their
mixing makes little numerical difference for the
coefficients of Q, and Q, . Slightly more important
in comparison with earlier work is our taking into
account not only the heavy 8'boson, but each heavy
quark successively in computing the leading-loga-
rithmic QCD effects. As a result the earlier
[n(M~')/n(p, ')]""is replaced by

[n(M~')/a(m, ')]' "'
[o.(m, ')/n'(m f,

')]" '

[~(mI2)/cIII(mII2)]II [ctS(mII2)/~III(~s)]II

even if all penguin effects are neglected. Numer-
ically the coefficient of Q, —Q, is enhanced by a
factor of 2 to 3 and that of Q, +Q, suppressed by
0.6 to 0.7 for our choice of masses. In agreement

TABLE I. Coefficients of the operators Q(, Q2, Q3, Q5, arid Q6 defined in Eq. (46) in the effective Hamiltonian, 3'.eff
( Gs'stcts3/W2) (p; C;Q;), for strangeness-changing, nonleptonic weak decays; r = s2 + s2C2S3e

' /cpc 3.

Parameters

Q'(p ') = 0.75, rpg &
= 15 Ge V

n(p, ) =1.00, ~& =15 GeV

C) C2 C5 c,
-0.72+ 0.035& +1.40 —0.0357 -0.013—0.015T +0.007+ 0.0087 -0.025 —0.0597'

-0.87+ 0.036T +1.51-0.0367' -0.021 —0.0127' +0.011+ 0.007T -0.047 —0.072 7

e(p, ) =1.25,

n(p, ) = 0.75,

~(j ') =1.00,

&(p ) =1.25,

ng& =15 GeV -1.00+ 0.036& +1.61 —0.0367 -0.028- 0.0107 +0.015+ 0.0067' -0.069- 0.0857

~& = 30 GeV -0.71+0.042& +1.39- 0.042T -0.013-0.0177 +0.007+ 0.0097 -0.025- 0. 0767'

re&
= 30 GeV -0.86+ 0.0437 +1.50- 0.043& -0.021- 0.0137 +0.011+ 0.0087' -0.047 —0. 0937

gpss&
= 30 Ge V -0.99+0.043T +1.60 —0.043& -0.027- 0.0117' +0.014+ 0.0077 -0.068- 0.109&
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with all. earlier results this is in the correct di-
rection, but much too small to explain the high
degree of accuracy of the ~Z= & rule in nonlep-
tonic decays of strange particles.

The penguin terms Q„Q„and Q, transform
as purely Z = ~ on the other hand. Our calculation
indicates their coefficients are smaller than those
of Q, and Q„ typically by an order of magnitude
for g, . However, arguments can be made that the
(V -A) x (V+A) structure of Q, leads to enhanced
ma'trix elements, '4 by one order of magnitude or
more, when the nonleptonic decays involve pions
in the final sta, te. Bather extensive a,nalyses of
strange ba, ryon and meson decays seems to support
the hypothesis that the matrix elements of the
operator Q, make major contributions to such
decays and can qualitatively account for the suc-
cess of the &Z= rule. """

As already noted, through strong-interaction
effects each operator in the effective Hamiltonian
has a coefficient with an imaginary as well as
real part. This imaginary part, which in each
case enters through Imv and is then proportional
to 8 c2s3 s in', leads to CP violation in decay
amplitudes.

This is in addition to CP-violating effects which
occur in the mass matrix in the six-quark model. .
We recall that for the E '-A' system, ca, l.culation
of the contribution to the mass matrix given in
Fig. 2 leads to"

When 5=0 and there is no CP violation we de-
fine the real decay amplitude A.,'=0 for E - nm

(1=0)by

&2x(I = 0)~ 11l'=Ol
~

6' 0& Al'=o'e"o (60)

A, =A", -"+ifA", "ImC, /HeC„ (61)

where C, is the coefficient of Q, in the effective
nonleptonic Hamilton ian. Def ining

where 50 is the I = 0 strong-interaction mn phase
shift. A similar definition applies to the ampli-
tude A2l'='l for A' '- mx (1 = 2).

When s,c,s, sin5 4 0 and CP is violated, an in-
spection of the coefficients of the operators Q,
and Q, immediately shows that the ratio of their
imaginary to real parts is -10 's, c,s, sin5. This
is not true for the penguin-type operators Q„Q„
and Q, where the corresponding ratio is
-s,c,s, sin5. If these later operators contribute
at all. significantly to E' decay, clearly they will
yield the largest CP-violating effects in these
amplitudes. We recall in particular that matrix
elements of Q, are supposed to be especially
large and important in weak nonleptonic decays
like Ko- mm.

Let f be the fraction" of the E '- xw (1= 0)
ampl. itude arising from the penguin-type operator
Q, . Then the total amplitude for E —wm (1=0)
when 5 4 0 is to a good approximation,

with

= 2s,c,s, sin5P(6„q)
ReM, 2

(57)
$ =flmC, /ReC, ,

we have

0 0

(62)

(63)

P(8„l)) = ——
c2 'g +s2 —282 c2

(58}

since g is small.
The standard convention that Ao is reaP' may

be accomplished by redefining the phases of the
E' and X' states:

/1~'&- e-"(fs'&,

when s, and s, are considered as small quantities.
Here g =m, '/m, ' and M» is the eiement of the
~ o go mass matrix defined by 7

~ &Z'[11,[n&&&[11,[Ko&
l2 ~ Wl i+~

At the same time

Illl M» Illl Mgg
2g 2gReM„ReM„

In standard notation" the CP-violation parameter

ImI', 2+& Im M,2C=1 (I'~- I'~)/2+i (m, —ml, )
(64)

U, c, t 'lf' ]4 UqG

Experimentally" —;(I',—I"~)= -(me —mL, ). Within
the convention A, real ImI'„/Im M„can be ne-
glected. "'" Using 2ReM„=m& —mz, , we have

:'VNMhh, : e" '(e„+2/}.= 1
(65)

FIG. 2. Diagram contributing to the K -K mass
matrix. The phase angle m/4 in Eq. (65), which originates
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TABLE II. Values of the quantity (, which leads to CP violation in E —«decay ampli-
tudes; &, the contribution to CP violation from the mass matrix calculated with 0& =15; and
the resulting ratio of CP-violation parameters, &'/& for 0& =15' and f=0.75.

Parameters

&(p, ) =0.75 pyg& =15 GeV

e(p, ) =1.00 gpss&
=15 GeV

~(p~) = 1.25 &pe&
= 15 Ge V

&(p, ) =-0.75 m&=30 GeV

&(p, ) =-1.00 yg&=30 GeV

0.(p, ) = 1.25 pyg&
= 30 Ge V

(/f g~c~g3 sinO

—(0.423+st~) ~

-(0.651+s,') '

-(0.811+g, ') '

—(0.326+ sp )

-(0.505+ s~ )

-(0.624+ s, ') '

& /s~c~s3sin4

10.4

10.4

10.4

18.2

18 ~ 2

18.2

1/50

1/80

1/100

1/80

1/120

1/1 50

in the Ai, and E& mass and width values, has the
precise value". 43.8'+ 0.2', just as in the super-
weak model. 'o

The other CP-violation parameter is

i;(~ ~ ) lmA~
(66)

CP violation from the penguin-type operator
Q, (with I = —,') cannot enter the amplitude A, which
involves a &I = ~ transition. However, the re-
definition of E ' and E' phases to make A, real
gives A., a phase e ". The experimental. mn phase
shifts 60 and 6, together with A.,/A, =+ —,'0 yields

(O'I)

The experimental value" of the phase angle, which
we have approximated by w/4 in Eq. (O'I), is 37
+ 6'. Combining Eqs. (65) and (6"I) gives

1 I -2(
E 20 iE +2() (68)

Values of the parameter $, which enters the
CP-viol. ating. parameters & and e', are given in

Table II for the different choices of m, and o.(g')
discussed previously. Also, in Table II is the
usual contribution to CP violation from the mass
matrix, e, calculated with 0, =15'.

Although obtained in a very different manner,
the results in our earlier paper and those calcu-
lated here for $ are quite comparable quantitative-
ly. However, since in our earlier paper we cal-
culated the ratio of imaginary to real parts of the
singl. e lowest-order penguin diagram, while here
we have done an all-orders l.eading-logarithmic
calculation, there is no obvious direct comparison
or simple approximation in which the latter results
shouM go over into the former. Nevertheless, the
agreement not only in sign but also roughly in
magnitude for $ is gratifying and lends additional
support to our earlier conclusions' on CP viola-

tion in the six-quark model.
The parameter & in Table II is calculated to

zeroeth order in QCD. The QCD radiative correc-
tions to ReM„have been calculated"" in the four-
quark model. using the leading-logarithmic approx-
imation and were found to be negligible. In view
of this, it is perhaps not unreasonable to assume
that QCD radiative corr'ections to e are also
small. In. what follows we shall rriake this assump-
tion.

The parameter g/(s, c,s, sin6) is always nega-
tive and of order unity. As such, 2$ is compar-
able in magnitude and opposite in sign to &,
leading to comparable contributions from decay
amplitudes (2g) and the mass matrix (& ) to the
GP-violation parameter &. However, the phase 5

may be freely adjusted to fit the experimental
magnitude and sign' of & and no quantitative test
of the contribution from e„or 2g is possible from
e alone. But in e'/e the common factor s,c,s, sin6
cancels out and predictions dependent on only
2$/e follow. In Table II values of e'/e are given
for the different choices of m& and o.'(p') dis-
cussed previously with 0, =15' and f=0."15. The
sign of e'/e is positive and Table II indicates that
values of 0.7 && 10 ' to 2 && 10 ' are typical for
E /e.

IV. CONCLUSIONS

In this paper we have derived the effective
Hamiltonian for strangeness-changing nonleptonic
decays in the six-quark model. The QCD correc-
tions were calculated to all orders in the strong
coupling in leading-logarithmic approximation by
successively considering the 8'boson, t quark,
b quark, and c quark as heavy and removing them
from appearing explicitly in the effective Hamil-
tonian. At the last stage we remain with an effec-
tive Hamiltonian which is a sum of local four-
fermion operators involving u, d, and s quark
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TABLE III. Same as Table I but with & =0.01 GeV.

Parameters C2 C5 c,
n(p2} = 0.75,

n(p ) = 1.00,

n(p ) =3..25,

n(p, ) = P.75,

n(p'} = 1.pp,

n(p') =1.25,

m, = 30 Ge V -0.76+ 0.0267 +1.42 —0.026& -0.025 —0.008& +0.013+0.005& —0.065 —O.060 7'

m& = 30 GeV -0.92+ 0.027& +1.54 —0.0277' -0.032 —0.0067' +0.017+0.004& -0.097 —0.075&

m& = 30 GeV —1.05+ 0.0277 +1.65 —0.0277 -0.037 —0.0047 +0.020+ 0.0037 -0.127 —0.088&

m& =15 GeV -0.77+ 0.0217 +1.43 —0.021& -0.026 —0.006& +0.013+0.004& -0.065 —0.045&

m& = 15 GeV -0.93+ 0.0217 +1.55 —0.021& —0.032 —0.0057' +0.017+0.003~ -0.097 —0.055~

m& = 15 GeV -1.06+ 0.0217 +1.65 —0.021& —0.037 —0.0037 +0.020+ 0.0027 —0.128 —0.065&

fields times their corresponding Wilson coeffi-
cients.

Our calculation follows a well. defined and sys-
tematic path to the effective nonleptonic Hamil-
tonian. While the interaction corresponding to the
penguin diagram in Fig. 1 may be incorporated by
hand into an extra term in an effective Hamil. -
tonian, "then one does not know how to take into
account higher-order QCD effects correctly. "
In fact, as this paper has examined in detail,
the penguin-type terms in the weak nonleptonic
Hamiltonian originate at the same level as do the
QCD corrections to the usual (V -A) x (V -A) four-
fermion terms and the two kinds of operators even
mix with each other.

In the resulting Hamiltonian there are five lin-
early independent four-fermion local operators.
Two of these are the usual (V -A. ) x (V -A) opera-
tors, but with coefficients that have been changed
by QCD effects. Numerical evaluation gives an

enhancement of the combination transforming as
I = ~, but only by a factor of 2 to 3. As already
concluded by others, " this is in the right direc-
tion, but is inadequate in magnitude to explain the
success of the 4I =-,' rule for strange-particle
nonleptonic weak decays. The other thr, ee opera-
tors are penguinlike, purely I = &, and arise
through QCD diagrams involving heavy quark
loops. Although their coefficients turn out to be
small upon numerical evaluation, it is arguable'~

that they have enhanced matrix elements for weak
decays of kaons and hyperons. If important por-
tions of such amplitudes come from these penguin-
like operators, an explanation of the ~= 2 rule
is then possible.

The QCD corrections result in imaginary, CP-
violating parts to the coefficients of all five opera-
tors. For the penguirilike operators the imaginary
part of their coefficients is about the same mag-
nitude as their real part times s,c,s, sin5. As-
suming these operators make a dominant contribu-
tion to the K- ww (I=0) decay amplitude results
in comparable contributions to CP violation in the
E'-E' system from the mass matrix and the de-
cay amplitude itself. Both these contributions are
proportional to s,c,s, sin5, the magnitude and sign
of which may be fixed to give the observed value
of the CP-violation parameter &.

However, in the quantity e'/e the factor
s,c,s, sin5 cancels out and we predict real values
ranging from + 0.7 x 10 ' to + 2 x 10 ' from our
calculation and choice of parameters. The smal-
ler values correspond to larger values of m, or
o.(g'). Using a larger value of 8, or a smaller
value of A can also give smaller values of e'/e.
For example, with" A' =0.01 GeV' but the other
parameters chosen as before we find (see Tables
III and IV) values of e'/c ranging from about
+0.3x10 ' to+0.5x10 '.

The present experimental value is e'/e

TABLE IV. Same as Tab].e II but with~ =0.01 GeV.

Parameters

n(p ) =-0.75,

n(p, ) =].,

n(p ) = 1.25,

n(p, ) = P.75,

n(p2} =1,

n(p2) = 1.25,

m~ =15 GeV

m, =15 GeV

m& =15 GeV

m, =30 GeV

m~=30 GeV

mq =30 GeV

$/f s2c2S3 sin&

-(1.461+ s2') '

-(1.76O+ s

-(1.963+»')-'

-(1.O76+ s,') '

-(1.295+ sg2) ~

-(1.442+ S2 )

C~/S2c2S3 S ln~

10.4

10.4

10.4

18.2

18.2

18.2

1/19O

1/23O

1/260

1/260

1/310

1/35O
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= -0.003+ 0.014, but experiments now planned'
should be capable of measuring or limiting e'/e
to the level of a fraction of a percent. As such
they might be capable of distinguishing the six-
quark model3' with important penguinlike con-
tributions to A'- 2m decay from the superweak
model, "where &'=0, as explanations .of the
violation of CI' invariance.
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APPENDIX

In this section we outline the derivation of the
equations and give numerical results for the
quantities which appear in Sec. II. In Sec. II a
rather fundamental. role was played by the re-
normalization group Eqs. (22), (32), (37), and
(48). To get Eq. (22), for example, one merely
appl. ies t(d/dp to both sides of Eq. (19)using

(A1)

FIG. 3. Diagrams entering the calculation of the re-
normalization of the local four-fermion operators {rep-
resented by the square box) through QCD effects.

(A5)0, = Z»0

where a superscript "0"denotes a bare unre-
normalized quantity. Z» is the matrix renormal-
ization which arises because of the composite
nature of the local four-fermion operators 0&.
The matrix y;(g') is defined by

loop level was considered in Ref. 11 where it was
shown that the y

' (g) are given by Eq. (12). From
Eq. (16), withe ——6, it follows that

a" =-,', ,
a&-' =--,", . (A4)

At the one-loop level. the operators 0& undergo
a renormalization

and

(I o l)

(A2)

(A6)

3 0 0 0 0

yig(g ) = Q ~ i((lJ d

Note that the Z» are a function of the coupling
g' since the renormalization of the operators 0,.
is calculated in the effective five-quark theory
with that coupling. A straightforward calculation
of the "infinite part" of the one-particle-irreduc-
ible diagrams in Fig. 3, using Landau gauge,
gives

1 1
9 3

1
3

=( u, „+(((g), +&,(g)m, &' ——,z) .

(A3)

i2

&fg(g') = 6,. 0 0

0 0

11 11
9 3

22 2
9.

0 0 0 0 0 -3

+o(g").

In Eqs. (Al) and (A3) the partial derivative with
respect to p, is at constant g and m„where
(I~{u,d, . . . , t}, while in Eq. (A2) it is at constant
g' and m,', where q~{u,d, . . . , b}.

The y
'

(g) and the matrix y,';(g') arise because
the operators 0,' and 0& are local four-fermion
operators and require renormalization. The re-
normalization ef the operators 0,' at the one-

0 0 5 5
9 3

5
9

19
3 Q

(A7)

In the calcu1.ation of the renormalization of the
local four-fermion operators„O;, the masses of
the l.ight up, down, and strange quarks was set to
zero. If this was not done the operators 0; would
close under renormalization at the one-loop level.
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At the two-loop level a transition color magnetic
moment term mustbe added. However, the presence
of such an operator does not alter the Wilson coeffi-
cients of the localfour-fermion operators, 0&, from
their value calculated with the light quark masses set
to zero. The transition color magnetic moment
operator itself is explicitly proportional to a light
quark mass yielding small matrix elements. Also
the Wilson coefficient of the magnetic moment

"»l»'(g')l'», = 5;y)(g'),

where

(A8)

operator is expected to be small. These facts
justify our approximation of setting the u, d, and
s quark masses to zero.

The matrix y,'; (g') can be diagonalized by the
tra, nsformation

0

0

-0.694 83

0.694 83

0.705 76

0.705 76

0.150 42 0.231 61 -1.253 0.166 84 -0.100 82 0.426 81

-0..2089 -0.231 61 1.0843 0.081 196 -0.100 82 0.824 14
(A9)

0.032 942

0.616 88

0.104 26 0.939 24

0.213 23 -0.345 13

-0.3322

0.280 45,

and

-6.8954

and

12y" (g') =
4 .+o(g"), (A13a)

f2

yg(g') = 8„,
-3.2429

1.1166

. 3 1327

+O(g") . (A10)

I2
y' (g') =- +O(g") ~2g2

The case where the quark is treated as very
heavy is similar to the above and we simply state
results:

Combining (A10) with the perturbative expansion
of P'(g') in Eq. (27) yields the a/'. of Eq. (28):

-0.8994

-1 3 0 0 0

3 -1 l
9 3 9

0

a'. =j

j.2
23

-0.422 99

0.145 64
6

23

(All)

f/2
y// (g//)mn

8m

0 0 3

0 0 23 1
9 3

4
9

0 0 4 4
9 3

4
9 3 J

0 0 0 0 1 -3

+ O(g"') .

0.408 61

Note that a2' = a'~ and a4 =a' '~, wher e

y
/(+) (~) 2g /(»)

—+ terms finite at x = 0
p'(x) x (A12)

nf) )A, g ~ Pfn ~nm~n

l,'P

where

(A15)

y„"„(g")is diagonalized by the transformation
/

0.675 52

-0.675 52

0 0.705 98

0.705 98

0

0

-0.130 11 -0.337 76 -1.2092 0.140 75 -0.11766 0.472 46

0.182 74 0.337 76 1.1043 0.067 129 -0.11766 0.801 99
(A16)

-0.029 59

-0.653 16

0.064 119 0.963 26

0.149 69 -0.348 59

-0.300 23

0.239 08
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& si( «)n 8 2

-7.0428

-3.501

1.0974
+O(g"') . (A17)

Again a" =a" and a" = a" ' .2.
When the heavy-charm-quark expansion is per-

formed only the five operators Q„Q„Q„Q„
and Q, defined in Eq. (44) are required. We find
that

3 O O O t

2.8909 w",'(g") = 6,,

8 2
3 3

11 ll
3 3

1
9 9

22 2
9 9

2 + O(g/I/4)

It follows from (AIV) and the perturbative ex-
pansion of P'(g") that

-0.845 14
12
25

0 0 0

(A19)

F11
n

-0.420 12

0.13169
(A18)

The matrix yg (g"') is diagonalized by the trans-
formation

6
25

0.346 91

i +mr(ger@ 6 +ex(gare)

P, r

where

(A2o)

0.168 66 -0.71436 0.052 633 0.848 53 0.690 88

-0.168 66 0.714 36 -0.052 633 0.565 69 -0.690 88

X„~= -0.050 165 -0.030 949 -0.165 52 -0.282 84 -1.1481 (A21)

0.028 133 0.018728 -1.0044

0.783 61 0.049 722 0.357 26

0.232 29

-0.174 86

and

I1I2

&
el

(g «r
)

g'

8~2

70222 1

-3.7559

1.0761 +O(g"'4) . (A22)

2.6797

-0.802 46

-0.417 32

0.11957 (A23)

in the four-quark model using a different operator
basis. The fourth eigenvalue corresponds to the
multiplicatively renormaliz ed isospin- 2 operator
3Q, + 2Q, —Q3. Finally

Note that these eigenvatues check with those of
Ref. 3 where the effective Hamilt;onian for strange-
ness-changing nonleptonic decays was calculated
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