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We present a family of realistic relativistic deuteron wave functions obtained by numerically solving an
integral equation with a m-NN coupling which is a mixture of y and y y" forms. We present six solutions
for different values of the mixing parameter X, varying smoothly from 0 (pure y'y") to 1 (pure y'). We find

that the small relativistic components of the wave function increase rapidly with X, and we give a simple
explanation for this result. In addition to n. exchange, our model includes cr, p, and eo exchanges. Analytic
forms are given for the wave functions which can be used in either position or momentum space. We discuss
the validity of various nonrelativistic approximations and the convergence of the equation.

I. SUMMARY AND RESULTS

A. Introduction

In a previous letter' we presented two relativistic
deuteron wave functions obtained by numerically
solving a relativistic wave equation for the two-nu-
cleon (NN) system. In this paper we present an
entire family of such solutions, obtained with a
more realistic interaction as described below.

. I

The gerieral structure of the wave equation has
been discussed previously and will be reviewed
in Sec. IIA below. Briefly, the equation has the
property that one of the two interacting nucleons
is on its mass shell (so thai if p& is its four-mo-
mentum, P&' ——M') while the other nucleon (with
four-momentum p2) is off-shell. In this paper we
use a relativistic one-boson-exchange (OBE) mod-
el to describe the interaction between the two nu-
cleons. OBE models have been used widely and
have been fo,und by a number of authors to give a
reasonable account of the entire NN spectrum.
We rely on this success to provide the general
justification for using such a model in this paper.
However, only four bosons are included here:
the m, p, cu and a fictitious v chosen to simulate
the bulk of the important bvo-pion-exchange force.
The detailed form that we used for the coupling of
these bosons to the nucleon is described in Sec.
IIC below.

Using this model, it is possible to adjust some
of the OBE parameters so that the relativistic
wave equation has solutions describing the deuter-
on. In order to reduce the arbitrariness of this
procedure, all the OBE parameters except three
were fixed at reasonable values. The three which
were allowed to vary are the vNN coupling constant,
g, '/4v, the cutoff mass in the form factor which
regulates the mNN vertex, A„and a mixing param-
eter, X, in the mNN coupling.

The structure of the AN coupling and the mixing
parameter ~ play a central role in our results,
and will be discussed briefly now. For the mNN

coupling we used

5
s (1 )

Vg f;) rr-'
ff y 2~

where g, is the vNN coupling constant (g, /4v
=14.48) and p& and p; are the final and initial nu-
cleon four-momenta. This form has the property
that when X =1 the coupling is pure y, and when
X =0 the coupling is pure y "y5, and the individual
terms are normalized so that if the nucleon is on-
shell the coupling is completely independent of X

(the equivalence theorem ). However, when the
nucleon is off shell the coupling does depend on ~
and since one of our nucleons is off shell, each
value of X gives a different one-pion-exchange
(OPE) interaction. The long-range part of this
interaction corresponds to the region in momentum
space where the off-shell nucleon approaches its
mass shell, so that it is independent of X, but at
short range, where one of the two nucleons is far
off shell, the interaction is sensitive to ~. This
question will be discussed in some detail in part C
of this section.

Solutions describing the deuteron were obtained
for different values of A. by adjusting g, /4v and A,
so as to obtain the correct binding energy and
quadrupole moment. Solutions for values of X be-
tween 0 and 1.0 (in steps of 0.2) are presented in
part B of this section. Since these solutions are
all closely related, they are viewed as a single
family of wave functions.

In the final part C of this section we discuss
some interesting features of this family of solu-
tions. We make comments about the 0 model as
it pertains to nuclear forces, and about the validi-
ty of nonrelativistic, or semirelativistic approxi-
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mations. In Sec. II we reveiw the theory briefly,
and in Sec. III we discuss the numerical techniques
and convergence of the numerical solutions. The
full expressions for the kernels are presented in
the Appendix.

Before we turn to a description of our wave func-
tions below, we offer the following assessment.
Solving for the relativistic deuteron is, of course, '

only a small part of the task required to fit the en-
tire spectrum of the nucleon-nucleon system.
Nevertheless, deuteron wave functions play an im-
portant role in many physical processes. Examples
of such processes include elastic and inelastic e-
d scattering, backward n-d scattering, and thresh-
old m+d -P+p. For these processes it is some-
times convenient to have a set of different relativ-
istic wave functions, each one of which is realistic
but which differ in their off-shell character. All
of the wave functions presented here are realistic
in the sense that they are determined from the
OBE model with realistic parameters, but the nu-
cleon-nucleon scattering phase shifts have not
been calculated for any of these models. They al-
so have different off-shell properties, as will be
emphasized in part C below. Whether all of these
wave functions will continue to be regarded as
realistic when the entire two-nucleon spectrum is
fitted with an OBE model remains to be seen.

B. The wave functions

In this part we will present our results for the
wave functions as briefly as possible; for more
details and precise definitions the reader is re-
ferred to Sec. II.

Each set of deuteron wave functions we obtain is
composed of four wave functions:

u, the S-state wave function,

I, the D-state wave function,

v
„

the triplet-P-state wave function,

v„the singlet-P-state wave function.

The only wave functions which occur in nonrela-
tivistic theories are u and zo. In a relativistic
framework, u and zo can be thought of as the large
upper components of the coupled Dirac wave func-
tions; the smaller lower components which arise
from the extra degree of freedom possessed by an
off-shell Dirac particle are the P states, v& and
v„which are smaller by a power of v/c and which
have opposite spatial parity than u and M. We wish
to emphasize that the overall parity of our P states
is the same as for the S and D states, just as in
the more familiar case of the wave functions for a
relativistic hydrogen atom, where on finds that
the lo-,ver component of the ground state is also a

TABLE I. The one-boson-exchange (OBE) parameters
common to the family of solutions presented in the
paper. The px'ecise form of the couplings is given in

Sec. II C„with form factors normalized to unity at zero
momentum transfer, as defined in Sec. II E.

Meson (B) Mas s (Me V)

2

4~ R h (Me V)

138.0
400.0
770.0
783.0

14.48
varied

0.4
6.0

6.6
—0.], 2

varied
1600
1600
1600

P state. The P states were first systematically
discussed by Remler, ' and obtained in a semirela-
tivistic calculation by Hornstein and Gross.

The OBE parameters are given in Table I. Note
that the OBE parameters compare reasonably with
those used in other OHE models, except that we
have used a slightly smaller g, and g„.Our value
of g, is probably uncomfortably small, and was
chosen so that we could generate solutions for all
values of X. With a slightly larger g, we could ob-
tain solutions for some but not for all ~. The
smaller g„was chosen purposely to be in better
agreement with other data' than is usually the
case with OBE models —we could easily have used
a larger or smaller value without affecting the
conclusions in this paper significantly. We choose
E,=6.6 to bring our calculation into line with re-
cent estimates of this parameter8; a smaller value
would have allowed us to increase g, .

The reduced wave functions in position space
(i.e., wave function multiplied by r) are normal-
ized according to

P„=— drw (r) = q dqÃ (q),
0

P, =—
I

dec& r = q dqv& q
0

oo

P, = ' drv, '(r) = q'dqv, '(q) .
"0 ' "0

(4)

dr[u'(r) +w'(r) + v, (r) + v, '(r)] = 1,
0

and the normalization condition for the momentum-
space wave functions (which are not reduced) is

r q'dqt. (u)q+w'(q) + v, '(q) + v, '(q)] =-1.
0

(Note that this normalization condition differs by
a factor of v/2 from that employed in Ref. 1.)
The precise definition of these wave functions and
their relationship is given in Sec.II. The D -state and
P-state probabilities are clearly
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TABI,E II. The OBE and deuteron parameters obtained for each member of the family of so-
lutions discussed in the text.

28'g

47I' h~ (MeV) qNR I s

0
0.2
0.4
0.6
0.8
1.0

1.928
2.149
3.306
5.395
7.744

10,27

1220
1400
1 600
1 500
1360
1235

25.80
25.80
25.78
25.80
25.79
25.80

0.8530 4.74
0.8519 4.93
0.8527 4.78
0.8562 4.1 8
0.8584 3.79
0.8595 3,60

0.03 0,00
0.16 0.00
0.42 0.02
0,65 0.06
.0.91 0.13
'l. 25 0.21

0.0263
0.0263
0.0260
0.0258
0.0258
0.0260

Exper imentai 25.84+ 0.13 0.8574 0-0263 +0.0013

The asymptotic D-to-S ratio is defined to be

w(r)
pn/ps = Iimr-- uk' j

These quantities, together with other properties
of our family of wave functions, are presented in
Table II.

Note that the D-state probability is low, and
fairly stable as we increase x, but that both P
state probabilities and g, /4m increase rapidly
with g. %e will discuss the significance of this
result in part C below. The values of the pion cut-
off mass, A„areconsistent with what theoretical
estimates exist, ' and also consistent with our
choice of A =1600 MeV for the other mesons.
The parameters g,2/4v and A, were chosen to give
the correct deuteron binding energy, and experi-
mental quadrupole moment (2.86 mb or 25.8 in our
units of e/Ms ).~0 Attention is drawn to the fact
that we used the usual nonrelativistic formulas for
the quadrupole and magnetic moments; relativistic
formulas exist and we will report on the relativistic
corrections elsewhere.

The wave functions in position space for g =0,
0.4, and 1 are shown in Figs. l.-3 and in momen-
tum space in Figs. 4-6. Note that the wave func-

tions seem to have a similar shape in all cases
(except for v, which is negative for X =0) and that
the principal effect of increasing A. from 0 to 1
seems to be to increase v, (and v, ) by a factor
roughly proportional to X. Attention is called to
the fact that the S-state wave function in position
space has a small oscillation near the origin.

In order to get a feeling for the corrections in-
troduced by our treatment of the nuclear force,
we compared our S- and D-state wave functions
with those of Holinde and Machleidt. The HM2
model, which uses. OBE parameters similar to
ours (except that it includes small 7l and 5 contri-
butions), gives a deuteron wave function with a
4.32% D-state probability, similar to that of the
family presented here. In fact, when one com-
pares the S- and D-state HM2 wave function with
our S and D wave functions for A. =0.4, the com-
parison is so close that the wave functions are
practically indistinguishable (see Table III).
Clearly the biggest effect of this model is the in-
troduction of the P states rather than alteration of
the shape of the S- and D-state wave functions.

In order to-enable our wave functions to be
easily used in other calcu1ations, we fit our numer-
ical solutions to a simple analytical form, which
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FIG. 1. The four deuteron wave functions in position
space for the case A. =O.

FIG. 2. The four deuteron wave functions in position
space for the case A, = 0.4.
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TABLE III. A point-by-point comparison between the $- and D-state wave functions (L and 1iv)

for our X= 0.4 solution and the HM2 solution of Ref. 3.

y (fm) &HM2 N)t= 0.4 tg))„p 4

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2. 0
2.2
2.4
2.6
3.0
4.0
5.0

-0.1 630(-1)
0.4573(-1)
0.1652'

0,2856
0,3820
0.4493
0.4908
0, 5124
0.5195
0.5168
0."078
0.4947
0.4793
0.4452
0.3603
0.2876

-0.1 805(-1)
0.5237(—1)
0.1710
0.2889
0.3828
0.4480
0.4882
0.5090
0.5161
0, 5137
0.5051
0,4925
0.4774
0.4436
0.3586
0.2861

0.2581 (-2)
0.1987(-1)
0.4757(-1)
0.7632(-1)
0.1010
0.1194
0.1308
0.1359
0.1360
0,1323
0,1263
0.1189
0,1110
0.9500(-1)
0.6217(-1)
0.4071(-1)

0.1442(-3)
0.1673(—1)
0.5063(—1)
0.8688(-1)
0.1160
0.1352
0.1450
0.1475
0.1447
0.1387
0.1307
0.1219
0.1129
0.9559(-1)
0.6174(-1)
0.4025(—1)

which determines the number and structure of the
q's; the exact formulas are given in the end of
the Appendix, Eq. (Alo).

One advantage of these functions is that they can
be easily transformed to momentum space. The
momentum- and position-space wave functions are
related by a Bessel transform:

z, (q) = — rdrj, (qr)z, (r),
7l p

z,(r) 2 'i'
g dphil gJ ~l

(12)

where j,(qr) is the spherical Bessel function of
order E:

mines the range of the asymptotic wave function),
and p (a parameter that determines the range of
the short-range structure). The significance of p
and p, suggest that a suitable choice for the I and
w functions is P =v'No and p, =m„and this choice
was taken in this paper. The P-state wave func-
tions should have a shorter range, and this is dis-
cussed below.

The coefficients g„were chosen so that each
wave function would behave properly at the origin,

. l.e ~ )

r+jkn(r) r:o r ~

This requires that the q„satisfy the following sum
rules:

l+4

O=z'„'-gq-„~„„.'-', a=0, 2, . . . , 2f,

Hence

z, (q) =Z f.ki.(q),
n=o

(14)

C Discussion

We now turn to a discussion of some of the fea-
tures of our family of solutions. We will first
discuss how the dependence of the solutions on the
parameter A. can be understood in terms of the
structure of the theory.

where g, „(q)ean be obtained from Eq. (7) by intro-
ducing f, (q) in place of f, (r). We have

2i«2
fo-(q) =

2
fg.(q) =,—jI z ~ ~), (15)

2 $/2 2

f2 (q) = —„o(~+ z).

Each wave function is therefore completely spe-
cified in both momentum and position space by the
parameters N, P, p, and b„.We found that N=8
was sufficient in all cases, and p, =m, was ade-
quate. For P we chose n =v'Me for the S- and D-
state wave functions and m, for the P-state wave
functions when X 10. This is because the P-state
wave functions vanish outside of the nuclear force,
and hence their range should coincide with the
longest range of the nuclear force. When A. =0,
however, the OPE makes a negligible contribution
to the I' states, and hence in this case we choose
P =m, =400 MeV. These parameters, together
with the b„'s,are given in Tg,ble Dt.
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TABLE IV. Tabulation of the expansion coefficients [defined in Eqs. (6) and (14)f and P parameter for v& and v~ I'Eq.
(8)] for each family of wave functions. The four numbers in each box are the coefficients for u, sv, v&, and v~ in that
order. In ail cases the p parameter is 138 Mev, and the p parameter for u and w is o'. =~Me as discussed in the text.

0,2 0.4 0.6 0.8 1.0

P (MeV)
for v& and v,

bp

b4

b6

400

0.404 60
0.106 57 x10

-0.916 62 x10 i

—0.710 40 x10
—0.49210 x10
—0.710 88 x10"

0.152 61 x10'
0.176 62 x 10'

-0.16'1 25
-0.881 75
-0.11155 x10~
-0.205 26 x 102

-0.22935 x10~
0.392 46 x 10'
0.484 07 x 10~

0.126 81 x 103

0.642 52 x10'
-0.160 89 x102
—0.122 59 x'103
-0.466 22 x 103

-0.150 78 x 10~

0.351 07 x 102

0.180 46 x 10"'

0.106 83 x10

0.210 48 x 102
-0.271 13x 102
-0.145 55 x 10
-0,15379 x10
—0.132 86 x 10
-0.272 64 x 102

0.471 69 x10
0.13509 x 10

0,404 04
0.10625x10 i

0.397 22x10 3

0.16962x10 3

—0.487 69 x 10
-0.702 49 x 10

0.514 76 x10
0.354 56 x10"

—0.151 81
-0.863 68
-O. '1 92 16
-0.436 57

-0.227 78 x '10'

0.380 99x10~
0.'110 24 x10 i

0.401 39x10~
' 0.61908x10'
-0.154 57 x102
—0.207 81 x10~
-0.213 22 x 102

-0.145 85 x 102

0,330 94 x 10'
—0.19842 x 10'

0.657 97 x10'

0,204 16x 102
-0.248 38 x 10

0.13935 x lo'
—. 0,121 38 x 10

-0,126 53 x 102
-0.252 52 x 102
-0,240 67 x 10

0.13135x10

138

0.406 27
0.105 89 x10 ~

0.752 80 x10
0.41566xl0 3

-0.488 17 x10
-0.705 46 x10

0.109 57
0.619 62 x10

-9.141 80
-0.846 50
-0.550 89
-0.600 43

-0.241 36 x10~
0.354 55 x10~
0.416 30 x 10'
0.486 88 x10~

0.593 24 x10~
-0.13965 x 102
-0.160 92 x 102
-0.237 89 x102

-0.13507 x 102

0.290 06 x 10
0.346 51 x 10~

0.690 93 x10'

0.19513x 10~
-0,20446 x 102
-0.455 55 x 102
-0.122 15x 103

-0.3.23 67 x I.O~

-0.213 02 x 10
0.342 21 x 102

0.128 28 x 10

0.411 13
0.106 20 x 10
0.11367 x10
0.608 18x 10

—0.498 37 x10
0 73440x10
0.171 00
0.992 28 x10

-0.148 02
—0.830 06
—0.909 66
-0.102 57 x 10 ~

-0.262 26 x10~
0.293 93 x 10'
0.7'1 6 35 x10'
0.874 92 x10'

0.548 72 x 10~
-0.10337 x 102
-0.302 21 x 102
-0.440 41 x 102

-0.11036x 102

0.19343 x 10'
0.714 24 x 102

0,13106 x 103

0.16644 x 10
-0,10337 x 102

-0.104 35 x 10
—0.236 25 x 10

-0.11129 x 102
-0.121 36 x 10

0.91447 x10
0.251 95 x 103

138

0.413 83
0.106 77 x 10
0.15342 x10-'
0.831 41 x10"3

-0.507 59 x 10
-0.763 56x10

0.235 20
0.134 83

-0.161 75
-0.81 5 32
-0.127 81 x 10
-0.137 64 x10

-0.266 78 x10~
0.234 27 x10~
0.101 75 x lo'
0.11768x102

0.475 62 x 10
-0.658 82 x 10~
-0.448 58 x 102
-0.591 84 x10'

0 800 36 x 101
0.915 96 x 10~

0.11060 x10 3

0.17591 x 10

0.123 23 x 10~

0.355 15
-0.167 93x 10

' -0,31699x 10

-0.831 24 x 10
-0.245 52 x 10~

0.154 01 x 10
0.338 31 x 10

0.414 19
0.107 60 x 10
0.19385x10 2

0.10843x'1 0

-0,515 60 x10
-0.788 28 x10

0.301 63
0.167 70

-0.177 12
-0.809 67
-0.165 53 x10
-0.'1 63 62 x10~

-0.249 87 x10~
0,19246x10~
0.131 58 x10~
0.13746 x 10

0.379 04 x10
-0.375 28 x 10'
-0,594 89 x10~
-0,682 86 x10

0 56440x101
0.11881 x 10~

0,150 44 x 103
0.200 61 x10

0.929 77 x10
0,889 86 x 10

—. 0.233 39x 10
-0.358 36 x 10

-0.617 g7 x lo'
O.M2 90 x10
0.218 77 x 103

0.380 37 x 10

To provide a background for the discussion, it
is helpful to review the structure of our wave equa-
tion. It can be written in the form '

convenient to disregard it to simplify the discus-
sion. In this case (16) may be reduced to a more
conventional form by eliminating g

-(2E -M, )g'= V"g'+ V' g,
M/=V /+V g,

(16) (17a)

where E is the energy operator for a free nucleon,
the potential matrix is in general a Hermitian non-
local spin-dependent operator in momentum space,
and g has the spin structure of a nonrelativistic
deuteron wave function (containing g and tn), and
the spin structure of g, which contains v, and v„
will be reviewed in Sec. IIB.

We will show below that the neglect of V does
not introduce serious errors, and it is in any case

MV
d

(17b)

In Eq. (17a) we have exploited the Hermiticity of
the potential matrix to write the second term in
the effective potential in a form which displays
its positive-definite character. This term was
referred to as the quadratic potential in Ref. 2.
Etluation (17) will serve as a convenient starting
point for our discussion.
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g /47r2

10.0

6.0

4.0

2.0

0.0 I

0.0 0.2
i

0.4
I

0.6 0.8 1.0

=(()/c) are retained (which we refer to as the
semirelativistic limit), then in the OPE approxi-
mation one finds that the result is proportional to
~. This reflects the well known fact that only the
off-diagonal y coupling favors transitions to
negative-energy states described by (I), or (in al-
ternative language) coupling to the famous par-
ticle-antiparticle "pair" states. More precisely,
it was found in this limit that the long-range part
of e, and v are

FIG. 7. The 0' coupling constant vs X2. The dots are
the six'cases presented in Table II; the straight line
was drawn to guide the eye.

The major differences between various members
of our family of solutions, as displayed in Table
II, is that both the effective o coupling constant
and P-state components increase rapidly with the
mixing parameter A. . In fact, the increase in g, /
4m is almost linear in x, as can be seen from
Fig. 7. However, while the P-state probabilities
grow rapidly with A. , their dependence on A.

' is
not quite linear, and a more precise relation is
obtained for the leading expansion coefficients of
n, and v, . The first two coefficients, which give
a good account of the asymptotic form, are shown
in Fig. 8, where one can see that their dependence
on X is nearly linear. [The coefficients for the X

=0 case should not be compared with the others
because the mass used in the analytical form Eq.
(9) is not the same. ]

Both of these results can be readily understood
from Eq. (17}. If one calculates the V potential
in the limit where only terms of order k'/M

v,(~)—=x(4')vs(~, ~ (g+

x [v 2u(r) +w(~)],

"'")="(4;)~(~).~" .)
x [u(r) —v 2w(r)],

(18)

(+) &(u(1/2)+ 2g(3/2))
4~(I + p. /M )

(.19)

is known experimentally to be nearly zero at
threshold, "

which is completely consistent with the results of
Fig. 8. Furthermore, since the V

' potential oc-
curs squared in (17a), there is a short-range re-
pulsion which grows with X, and if this is to be
counteracted by an attraction supplied by the o,
then it is also clear why the square of the o coup-
ling constant should grow linearly with x (Fig. 7).

An alternative explanation of linear dependence
of g, on X comes from m-N scattering. The sym-
metric scattering length, defined to be the weighted-
average of the isospin —,

' and 2 scattering lengths,

2.0
p, a',„y=——0.002 +0.009 . (20)

1.8—

1.6—

1.4—

1.2—

However, the nucleon pole terms calculated with
the generalized m Ncoupling -(1}can give quite a
large value for this scattering length (6 -=p, /2M):

() g, 252 2

P&x yore —
4 1+25 ~

1

1.0—
=——1.88K —0.010. (21)

1.8—

1.6—

1..4—

The cause of this difficulty is again related to the
large coupling to pair states coming from the y5

part of the mN coupling, and in this case one well
known cure is provided by the o. The v meson
also contributes to the symmetric scattering length

1.2-

0.0 0.2 0.4 0.6
I

0.8 1.0

/,".f. v

4m m, 1+26' (22)

FIG. 8. The first two expansion coefficients, bo and

g&, for v& and v vs X. The 20 dots are the actual nuIn-
bers from Table IV for the cases A. ~ 0.2. The straight
lines were drawn to guide the eye.

2 2oft g'~)('
m, M

(23)

where f, is the vw)) coupling constant, and will can-
cel the large result from the nucleon pole provided
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The well-known o model, "constructed for a pure
y interaction (x = 1), has precisely this property.
The 0 model also gives

2
VE iy

fy M goy

and inserting this result into Eq. (23) gives

(24)

(25)

I2.0

I I.O

10,0

9.0—

8.0

7.0
g /47'.2

6.0-

5.0— 0.6

4,0—

2.0

I.O

1200 I400 l600
A (Mev)

I800

FIG. 9. Locus of points in the plane of the cr coupling
constant and pion-form-factor mass for a fixed A, ,
which give a solution of the integral equation with the
correct deuteron binding energy. The fixed va1ue of A.

corresponding to each line is labeled on the figure.

Hence, a linear dependence of the 0 coupling con-
stant on A. is also expected from the requirement
that a' ' be suppressed.

Thus, from either of these points of view (which
are closely related), the results of Fig. 7 are
easily understood. We wish to point out, however,
that no consideration of m-N scattering was built
into our calculation in advance; our 0 coupling
constant was determined solely by the static prop-
erties of the deuteron. In this sense, our result
seems to crudely suggest that a realistic deuteron
cannot be obtained unless the description of m-N

scattering is also realistic.
In our model, the 0 meson thus provides the

mechanism of pair suppression required of realis-
tic models. ~3 However, we point out that the a

does not completely suppress the pair states, or
else the small wave functions v, and v, would be
'consistently small for all values of X.

Finally, in Fig. 9 we show how the a coupling
constant depends on the pion cutoff mass if all

other parameters are held constant and if, for a
given A„,g, is searched until it gives a bound
state at the right energy. This figure gives direct
evidence for the repulsive nature of the extra
quadratic term in Eq. (7a). Without this repulsive
term the OPE potential is attractive, and one would
therefore expect the total potential to become more
attractive (primarily through tbe tensor force) as
A, increases, and therefore require a smaller g,.
The cases for A. =0 and 0.2 show this very clearly,
but the other cases, particularly for X &0.4, show
the opposite effect —increasing the strength of the
OPE requires move attraction from the 0.

To verify that it is the quadratic term in (17a)
which produces this repulsion, we estimate the
overall effect of the central part of the potential
(including the quadratic term) by calculating the
volume integral of the regularized potential in the
semirelativistic limit.

p. t r dr V,«(central)
0

29 M As(5A+1)
8 p, (A+1)~

where e=(g, /4v)(p. /2M) =0.08 and A =A,/m, .
Note how the second term is repulsive, and if A,

is large enough the second term will, dominate,
making the effect of the entire potential repulsive.
It is amusing that this crude estimate Eq. (26)
gives a va.lue of g, =0.25 for this critical value,
in fair agreement with the results of Fig. 9. A
more precise estimate would require that we take
account of the (attractive) tensor force, which
would lead to a larger number for the critical val-
ue of ~.

Now we turn to the question of how reliable are
various approximations to our relativistic equa-
tion. Two.approximations we consider are

/

1. neglect V

2. neglect both V and V (but not V ).
The first approximation would mean that Eq. (17)
was an exact solution of our coupled equations,
and that an equation for g could be obtained which
has precisely the same structure as a SchrMinger
equation with a new effective potential including the
quadratic repulsive term. The second approxima-
tion also eliminates the quadratic repulsive term
and gives a Schrodinger equation for g with only
the usual V" potential, and as such simulates the
approach taken by almost all other investigators.
%e retain the potential V in this approximation in
order to estimate the size of tbe g wave function,
which is related to meson-exchange "pair" current
effects. '4

The effect of making these two approximations is
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TABLE V. Comparison of OBE and deuteron parameters when V = 0 with exact results
from Table II (labeled with an asterisk). The first row of numbers beneath the exact solu-
tion is case (a) as described in the text; the second case is (b).

"R m

0.2

* 1.928
1.942

~ 2.149
2.138
2.225

1220
1220

1400
1450
1400

25.80
25.79

25.80
25.80
25.75

0.8530
0.8531

0.8519
0.8514
0.8524

4.74
4.72

4.93
5.02
4.85

0.03
0.04

0.16
0.21
0.19

0.00 0.0263
0.00 0.0263

0.00 0.0263
0.00 0.0263
0.00 0.0262

0.4 3.306
3.489
3.505

1600
1700
1600

25.78
25.78
25.73

0.8527
0.8529
0.8536

4.78
4.76
4.63

0.42
0.52
0.48

0.02
0.02
0.02

0.0260
0.0259
0.0259

0.6

0.8

1.0

~ 5.395
5.610
5.517

* 7.744
7.898
7.609

*10.27
10.39
9.636

1500
1580
1500

1360
1450
1360

1235
1350
1235

25.80
25.81
25.65

25.79
25.78
25.37

25.80
25.79
25.74

0.8562
0.8564
0.8571

0.8584
0.8589
0.8597

0.8595
0.8598
0.8618

4.18
14

4.02

3.79
3.76
3.56

3.60
3.56
3.20

0.65
0.70
0.6,9

0.91
0.92
0.94

1.25
1.20
1.33

0.06 0.0258
0.05 0.0257
0.06 0.0257

0.13 0.0258
0.10 0.0256
0.13 0.0256

0.21 0.0260
0.17 0.0257
0.26 0.0256

summarized in Tables V and VI. In Table V we
compare the exact solution (reproduced from Table
II) with the V =0 results for two cases: (a) when
both A, and g, are readjusted to give the correct
binding energy and quadrupole moment, and (b)
when A, is kept the same, and only g, is adjusted
to give the correct binding energy. In this latter
case the quadrupole moment and percent D state
is always lower and the percent P states are al-
ways the same or greater. Note that in either
case, the effects are greater as ~ increases, and
the maximum error in the worst case is no more
than about 5%. One sees that neglecting V intro-
duces only a small error.

When V is also neglected, the situation changes,
and this is illustrated in Table VI. Here we pre-
sent the solutions with both A, and g, readjusted to

give the correct quadrupole moment. In this case
we use the nonrelativistic normalization,

dx u +zv
0

(27)

for all results except I', and I'„which are still
defined as before. Our intention is to reproduce in
Table VI the results of a theory which from the
start neglects the g channel, and then calculates

afterwards using Eq. (17b).
Note that, although g, '/4~ in Table VI shows a '

very slight dependence on ~, the dramatic depen-
dence on X which we saw before is absent. This is-

a reflection of the fact that the pair states have
been suppressed from the start by simply omitting
them from the equation, and hence the 0 meson is
no longer needed to provide the suppression. The

TABLE VI. The OBE and deuteron parameters when V and V~= 0, as discussed in the
text.

A, (Mev) @NR Ps

0
0.2
0.4
0.6
0.8
1.0

1.861
1.902
1.946
1.979
2,012
-2.028

1190
1215
1240
1270
1300
1340

25.81
25.82
25,82
25,82
25.81
25.81

0.8530
0.8537
0.8545
0.8551
0.8559
0.8563

4.73
4.61
4.48
4.36
4,24
4.16

0.04
0.16
0.38
0,71
1.15
1.73

0.00
0.00
0.03
0.09
0.20
0.39

0.0264
0.$264
0.0265
0.0265
0.0266
0.0266
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differences between Tables II and VI increase as A.

increases, with the maximum effect for the case X

=1. We see. that the case in Table VI tends to give
la, rger D and P states by as much as 50% than in
Table II (or V) and, of course, much smaller val-
ues for g,'. Si.nce the I' states provide an alterna-
tive may to calculate the so-called meson-exchange
pair terms, which give the largest effect in most
meson-exchange calculations, ' these differences
may be significant.

Our principal conclusion from this part of the
discussion is that neglecting V seems not to alter
things very much, while neglecting U changes the
character of the calculation, and may introduce
significant differences.

We conclude this section with a few short re-
marks about Ref. 1. In that paper we showed that
when ~ =1, there is sufficient repulsion generated
by the OPE to give very reasonable deuteron wave
functions —even for the simplified case when we
consider only o and m exchange. Unfortunately,
because of a numerical error in the program, we
also concluded that the same was true for the case
X =.0. However, when X =0 it is impossible to ob-
tain reasonable wave functions for a deuteron with
only o and m exchange —there is simply too much
attraction. For smaller X, one needs the repulsion
introduced by p and z exchanges, and one must
use a model similar to the ones presented here.
Our result for A. =1 in Ref. 1 was correct, and was
reproduced by the present treatment, but t;he X = 0
result was incorrect and should not be used.

We now turn to a more detailed account of the
equation, the interactions, and the numerical tech-
niques.

II. THEORY

A. The relativistic wave equation

For our. wave equation we use the relativistic
prescription of Ref. 2, where one nucleon is on its
mass shell (particle 1 in this case). The wave
equation is three-dimensional, and is written

dk(IC),.(P) =-
& V„... (P, k P)

x G, , ,„,„.„„(k,P)(1'C),„„„(k),(28)

where p. and v are Dirac spinor indices', P =(M~, O)

is the total energy-momentum four-vector, p and
k are relative four-momenta (defined below), V is
the interaction kernel with particle 1 on the mass
shell, and T'C is the covariant deuteron nucleon
vertex function discussed below. The two-body
Green's function, G, is

[M+y ~ (~+k)],[M+y (-.'P -k)],
2E «M~(2E« -M„)

where the subscripts 1 and 2 denote the Dirac
indices of nucleons l(i&'i&") and 2(v'v"), respective-
ly. Since particle 1 is on shell, we impose the
condition

(«P + k) =(-,'P +p) =M (30)

which gives A,
' and p in terms of the three-vectors

pandk:

k = (E« —~«M„,k),

p=(E« —2M~ p)

E„=(M'+12)'".
(81)

The vertex function I C, where C is the Dirac
charge-conjugation matrix, is related to the
Blankenbecler and Cook vertex I'C' by

(I'C)„'„=(f'C)„„, (82)

where we remind the reader that the Dirac index
i& is associated with (the on shell) particle 1 and
v (the off shell) particle, 2. It is often convenient
to represent 1"C (or I"C) as a matrix in Dirac
space, in which case (32) implies

r=c'r'c '

=-cr'c '

&y h+-P~-— (ey g+ —P ~), (33)
G" I -y'p2
M M M

where g is the four-vector polarization of the deu-
teron and p2 ——2P -p is the four-momentum of the
off-shell particle (particle 2) which is to be multi-
plied from the left in E&I. (33). The four invariant
functions I', 6, H, and I will sometimes be refer-
red to collectively by I';, where i=1, 2, 3, 4, re-
spectively. They are all functions of the only scal-
ar variable not fixed by energy-momentum con-
servation, p&'. Blankenbecler and Cook shomed
that (33) is the most general form of the vertex
with particle 2 off shell.

The interaction kernel V will be discussed in
part C below; for now we mill use the fact that in
an OBE model V has the form

V =+V,(p, k, Py. &»J &» (84)

where J3 is summed over the four bosons m, o, p,
and ~, V~ is a scalar function, and A& and A2 are
Dirac matrices in the space of particles 1 and 2
which describe the spin interaction of the exchanged
boson with the nucleons. Using this form, we may
reduce E&I. (28) to a convenient matrix form:

(27&) 2E«M~(2E« -M~)

x(62[M +y («P —k)]I'(k)[M —y'(«P+ k)]

(85)



20 FAMILY OF RELATIVISTIC DEUTERON %A VE FUNCTIONS

where

A, =CA, C. (36)

Finally, substituting the form (33), multiplying
out the Dirac matrices, and integrating over dQ„
which can be done analytically, we can reduce Eq.
(35) to a matrix integral equation of the general
form

er ns

1
Xi, o

—
~2 (o', P' + t'-, o') ~

X&, i =P'Ps .
We use the notation

(40}

' s,.(p)= J aaz, ,(p, ap, {a),
0

(37)
O&=~rr ] 0'2 =ass

(41)

where the E; stands for E, G, H, and I as dis-
cussed above.

Equation (37) was solved numerically to obtain
the results discussed in Sec. I. The numerical
techniques are discussed in Sec. III, and explicit
formulas for the kernels K;, are given in the Ap-
pendix. In the next part below we describe how

the wave functions are related to the invariants
obtained directly from (37).

$M
~)&2Xg ~=

sr

where g~ and A are given by

(l, i, 0), (,= (1,- i, 0) .-1 1

(42}

We can transform this direct-product represen-
tation for the wave function into matrix form with
the identity:

B. The relativistic wave functions $0=(0,0, 1), (43}

In this part we briefly review the definition of
the relativistic wave functions and their relation-
ship to the invariants E, G, 6, and I.

The wave functions for the deuteron have been
discussed in Refs. 1, 2, and 6. The common def-
inition adopted in all these references is

'"(- )I'C '"'
( )

[2M,(2m) ]' ' E~(2E~-M„)

M 6 "(p)1'cu'"' (p)
les(P =

[2M (2 )2]2(2

(38)

where we have used the matrix representation for
I and have therefore suppressed the Dirac indices.

The wave functions u, se, v&, and v, can be con-
nected with the invariants E, G, H, and I through
these equations. For the direct-product represen-
tation we choose the definition

A =v, A. v, .
Using this we obtain alternative expressions for

and g,

(,'.(p)=~4, ~(p) '&

+ ~ (Sp' pv'p —0' ()
sr

(44}

—
~~ (~ Pu $ Pf) ~~'-

Using this 2 ~2 matrix form, we obtain the desired
relations directly from Eq. (38) by reducing the
right-hand side to 2~2 matrix form:

P G(P) +M(2E, +M)F(P)
SvMv'2lUI~E ~(2E ~

—M„}

2v(P)—
~g- ( ~3' 2Po' 2-Po'('~2) X), z

Ws
4,.(p)=-~~ .(P)—( 2- 2)'P

vi(P) I+
~2 2(+2++2) P X1, M&

(2M + E,)H(P )

3~MV2M„E, '

~(p) = v 2[p G(p) -M(E~ M)F(p)]-
SvMv'2M„E~(2E~ M~}-

v 2(E, -M)H(P)
3mMv'2M' p

3 "' pH(p}
2 ' v'2M EPI '

(45)

which differs by precisely a factor of v'm/2 from
the definition given in Ref. 6. In Eq. (39), P now

stands for the unit three-vector in the p direction
[and should not be confused with (31)] and X& ~ (M
=1,0, -1) is the spin-1 combination

These equations differ again by a factor of v'2/m

from those in Ref. 1, but are otherwise identical.
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The inverse relations are

E(P) = mv'2M, (2E~ -M„)u(P) — u)(P)
1
2

2)i /2

y, (p) = —
~ Jt r'dr~(rj), (pr),

Q

"„'=(-,')'"f ) "uy, ())),() ),
(50)

+ VgP

FyV ')
H(P) =vv'2M„— v, (P),"p 2

I(p) =- )vT'2M, (2E, -M&) — —
2 u)(p)

+ -"u 3v, (P)
p

(46)

where y, stands for any of u(l =0), u)(1=2}, or v,
or v, (l =1). [Recall Eq. (12).] The normalization
conditions' were given in Eqs. (2) and (3}, and
the factor of 2j)) which occurred in the p-space
condition in Ref. 6 has been eliminated.

We now turn to a discussion of the interaction
kernel.

C. The relativistic interaction kernel

The interaction kernel includes terms from the
exchanges of the four bosons, 71, 0, p, and (d. As
sketched in Eq. (34), they all have the form

V, = V, (p, k, I )A,"'A2"
The position-space wave functions are defined to be

G,AI')(A)A2(')(- A)

m 2 g2 i 2)m Jp

(51)

(l'„',(r) =( —

)q~2 J d pe"'"(l)„,(P),

(',.(y)=(q

)sinful'ue"'

(i(),

which gives the direct-product representation

1 u(r)-
4«(r) =,—@4m

(47)
where 4 is the four-momentum transferred by
particle 1 to the exchanged boson

A=p —k=(E~ E„,p-k-), -

and m~ is the boson mass, G~ the effective coup-
ling constant, and I';, the form factor at the
8-N-N vertex for particle i which will be discussed
below. It remains only to specify G~ and A' ' for
each boson:

u)(r)+ ~ (3o&'r(72'p-ot o2 Xt, u
I

iv 3 v, (r)1-
v4m r 2

1 v(r)1-+
2

' 2(&(+&2)'r X(, u

(46)
Pion:

2

~'"(~)=(.,'+() -~)', ', '(;
2M

(53)

or in matrix form
2G, =-g, ,

A'"(A) =1;
(54)

(3(7 rr (-o $)
1 u)(r) - - io,
2 r 2-'

2Gp=-3gp )

(55)

iVS v (r). )~4~

(o rv $ r" (). -

(49) I

where the vector indict. s on the A's are contracted
to make a scalar product;

These are precisely the same definitions previous-
ly employed, ' but the factor of v'2/m introduced in
Eqs. (39), (44), and (45) now mean that the rela-
tions between the P-space and x-space wave func-
tions take on a more symmetrical form than given
in Ref. 6:

2G„=-g„

A'. '(a)=(y'+ 'g""a„),
(56)

where again the vector indices on the A's are con-
tracted to make a scalar product.
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Since particle 1 is on its mass shell, some sim-
plifications in A& are possible by use of the Dirac
equation. For the m, p, and & we have

A,"(a)=y,',

A,' '(a)=(y"((+R )- (P" +P'+):").
(57)

We emphasize, however, that a similar simplifi-
cation i.s not possible for particle 2.

D. Reduction of the equation

r
dQ k' =aP" + bp',

p (56)

dy„k'(k ()=BP"(P $)+CP"(P $)+D)",
2F p

where

Z„1 8 1ka= z
Mq 2 Mq 2 p

k
b =. —z t

p (59)

k k2
C =~Pp(z); D =—[P,(e) —I],

and k= lkl, p= lpl, z =k p, and Pq(z) is a Legen-

Using the above equations, Eq. (35) can be re-
duced to Eq. (3'I). Here we wish to sketch some
of the steps in the reduction.

Use must be made of (36), and it must be re-
called that multiplication from the right by a factor
of CgF(p) is implied on both sides of Eq. (35).
This means that we may always reduce y'P by
working it to the far right and using the Dirac equa-
tion to reduce it to —(M + ~y'P). Recall that P' $

=0.
The integration over dQ, can be done by using

the following identities:

dre polynomial.
After the (t) integration has been performed, the

integration over z can also be done. This will be
described in the Appendix.

E. The form factors

For the boson-nucleon form factor we used a
pole form regularized to unity at zero momentum
transfer (this differs from the convention of many
authors who normalize their form factors to unity
at the meson mass). The specific form used was

2

Ae —6 +(M —p;)+(M —k; )' (60)

where A~ is the cutoff mass for boson 8, P; and
k; are the four-momenta of the external and intern-
al nucleons, respectively, and i=1 or 2 depending
on the nucleon with which the boson in interacting.
This form was adopted to improve convergence,
as we discuss below, and was suggested to us by
the work of Ezawa. '

Note that for particle 1, which is on mass shell,
I" reduces to the same form as the boson propaga-
tor with an effective mass squared of A~, while
for the off-shell particle 2 it reduces to a similar
form with a momentum-dependent effective mass
squared of Ae'+2M„(E~+E,-M~). The boson
propagator plus the form factors can be conveni-
ently decomposed into partial fractions and the z
integrations done analytically. The final formulas
and the results for the z integration are tabulated
in the Appendix.

F. Convergence and behavior of the wave functions

at large momentum"

We conclude this section with an examination of
the convergence of our integral equations, and a
self-consistent determination of the behavior of
the wave functions at large momentum.

For simplicity, first consider the spinless case
with the exchange of one boson, where our integral
equation would be

2 d kM A 4'

(2v)' E„(2E„-M,) (m, ' —~')(A, ' —~')'(A, ,
' —~')' (61)

where

& =2M -2Z+), +2p'k,
+ 2M~(Eq+Z„-M„},

(62}

and e & 0 is the power falloff of the form factor. The object is to see how large & must be before we are
guaranteed that (61) converges.

If the integral on the right-hand side of (61) converges, then we may examine it when p is very large,
obtaining the estimate
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l ' "g ' " k'dkMI"(k) 1+26

2P 4v 0 E)(2E), -Mq) & i (E„-kz) '(E„+Mq k-g}' 2P
(63)

This will then be the asymptotic behavior of I" provided & is large enough so that the constant C exists. To
see if C exists, we look at the large-k behavior of its integrand. When k is large, we note that the z inte-
gration peaks very strongly at z =1, so that me may approximate the integral by taking z = 1 in the slowly
varying part:

W, 4'1 1 ~,4' 1 2k '
lim li dz (E, —kz)'*'(E, +M, —kz)' I', ka (E, —k)' Ml 4 ) (64)

Hence, replacing I'(k) by its expected asymptotic
form, -the full integrand goes like

and (69}for D. This gives the requirement

const &&— (65}

indicating that it converges for e &- 1. Note that,
if we had used the conventional dipole form factor,
then the z integral would have gone like k ' ' and
the full integrand would go like k ' for all e. In
this case, it appears that convergence cannot be
improved by increasing e.

With spin, the argument is a bit more involved.
First, if we take the limit P -~, detailed examina-
tion of the numerators of the kernels given in the
Appendix shows that I' falls off more slowly than
G, H, and I,

] 26

p~
p

a, b-k,
B,C,D -k',

we obtain for the kernels involving E
dakR . F(k)As4'O(k')

0 E.(2E. -M. ) (m. '- n')(A. '- A2)'(A. 2'- A')'

f" dk k
k)+26 P

(72)

and when the other terms are examined, we find
that all other terms converge for e= l.

Finally, we must check that (66) works for finite
P. Now, the problem is simple because the large
k behavior of the kernel can be easily read off for
finite P. Usirig the results for large k,

G, H, I

but the combination

(66)
which converges if

j.g? & ~

(67}

z = 1+0(k ') . (68)

This means that the quantities (59) can be estima-
ted as follows:

f-26a-- —,'+O(k ) &

pb-k
pa- [--,'k+O(k' "}], (69)

p C-k
D -O(k' ')

Examination of the term k2&", for example, gives
for the coefficient

C2&
=—const & dk k

where we have used (64), the estimate (66) for E,
(70)

Next we check the large-k dependence of the inte™
grands of the coefficients multiplying these leading
terms, using the fact that in the large-k region,
the z integration peaks near 1 as discussed above,
and we can replace

For the terms involving G, H, and I, we have one
extra power of k in both the numerator and the de-
nominator, so the situation is the same. We con-
clude that e =1 gives a convergent set of integral
equations.

Finally, from Eqs. (45) andthegeneralresult(66)
and (67), we obtain the estimate

1~ 1+2&

x((P) ~-: —
IPj

(75)

If there are cooperative cancellations, convergence
could be more rapid.

III. NUMERICAL METHODS

In this section we review the numerical tech-
niques used and discuss the numerical convergence
of our solutions.

We first solved Eq. (37) numerically by convert-
ing the integration from 0 to into a discrete sum
over a finite number of points, the number of
which we denote by K~. Since (37) is a 4X 4 coupled
integral equation, this required finding the eigen-
values and eigenvectors of a 4'~&&4N~ matrix.
Qnce I', G, H, and'I were known at the N~ points,
we computed u, se, v„and v, at these same points
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using Eq. (45). Then, instead of dealing with these
functions at these discrete points, we fitted the
four wave functions with the momentum-space
analytical forms of Eq. (14) and (15) using N terms
in the expansion. This gave un-normalized expan-
sion coefficients of the solutions, b„.Using the
analytical forms, from which analytical expres-
sions for the norm [Eq. (3)j, Q, p. „andthe posi-
tion-space wave functions are readily obtainable,
we normalized the b„'s,computed Q, p.„,and P„
P„P„andprinted out both the momentum-space
and position-space wave functions at convenient
points.

There are thus three problems associated with
obtaining the numerical solutions:

(i) What is the optimum choice of points to con-
vert the integral into a discrete sum?

(ii) How many points, N~, are needed?
(iii) How many terms, N, are needed in the

analytical expansion?
We relied on the work of Chao and Jackson to

answer the first question. They show that the op-
timum way to choose the points is to first map the
interval from 0 to into itself using a function of
the form

stable. This was done for different values of the
scale parameter g until a value of q was found for
which convergence was most convincing. An ex-
ample of the convergence is illustrated in Table
VII for the case X =0, and the choice N= 8 (as dis-
cussed below). Note that convergence is not ex-
cellent, but seems believable, and X~=32, g
=0.056 gives the best results. These parameters
were also used for all other cases presented in
Table II.

Finally, the choice N=8 was found to be quite
satisfactory for all cases. The eight expansion
coefficients for each wave function were deter-
mined by a least-squares fit to the 32 points using
the IMSL routine. We found that, in order to have
smooth and reliable wave functions, it was neces-
sary to considerably overdetermine the functions
so that the fits would not have the freedom to de-
viate wildly and go through every point.

Note added in Proof The .experimental value of
the asymptotic D-to-S ratio given in Table II is
the recent measurement of H. E. Conzetl et al. ,
Phys. Rev. Lett. 43, 572 (1979).

Z=—sinh '

where a'=Me and g is an adjustable parameter
(which we refer to as the scale parameter). After
the integrand has been mapped, we use the Gauss-
Laguerre integration procedure to determine the
points Z; (and hence k;) and the weights W; associ-
ated with each point Z;.

To answer the second question, we simply in-
creased N~ until all important parameters were
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0.028 0.056 0.112

2
Rg
4m

&pw

16
24
32

16
24
32

16
24
32

16
24
32

25.95
25.76
25.79

2.092
1,938.
1.934

4.761
4.711
4.757

0.024 06
0.023 95
0.023 96

-0.19
+0.03

—0.154
-0.004

-0.050
+0.046

-0.000 11
+0.000 01 .

25.92
25.84
25.80

1.927
1.929
1.928

4.782
4.760
4.741

0.024 1 5
0.024 04
0.023 99

-0.08
—0.04

+0.002
-0.001

-0.022
-0.019

-0.000 11
-0.000 05

26.20
25.99
25.90
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1.918
1.923

4.825
4.779
4.760

0.024 59
0.024 28
0.024 14

-0.21
-0.09
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+0.005

-0.46
-0.19

-0.000 31
-0.00014
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APPENDIX

Here we collect together the results for the ker-
nel in Eq. (37), and the q's of Eq. (7) [in Eq. (A10)
below].

Each term in the kernel is the sum of four con-
tributions from m, o, p, and & exchanges. Each
of these contributions is in turn a sum of three
terms arising from a partial-fraction decomposi-
tion of the boson propagator and form factors.
Symbols in the following are defined at the end of
the formulas.

The kernels are all of the form

(B}K;;— K,', , B=m, e, p, (d

(~} G~ k M Aq4

4v P M~ E,(2E, -M~)

k,', (Xs/2Pk) k,', (Xag/2Pk)

(XB) XB)(Xs, —xs) (XB( XB)(XB XBg)

(Xa, —Xs, )(Xs, —X~)
'

where

Xs =m~ + 2EP» —2M

X, —A +2&,a'„-2m',
Xs2 =Xa( + 2M~(E» +E» -M~) .

In the following lists for kIs', the superscripts (B)
and the arguments are suppressed.

g. pion

The pion kernels are given by [X is the mixing
parameter defined in Eq. (1)]

k =—+M(b —1) — b+A. +(1-A) E a+~D E ~ M~E» Mg

k(2 ——(1 -&) 3 (E» -E»)D,

Mq D 1 EP, bP'k„= (2E, -M, ) Xa + (1 —Z) —,+——,' +
M 2M' 2 2M 2M'

k(4 ——

q (2E» -M~)D,

kqi ——M(2b —1 —C) +(1 —X)—(E»a -E»B),Mq

Mq

k» — (2E, -M»)jr[a+ p(1-b)] +(1 -X)[—'(1+C) —b]],M

»i4= M(~~ -~.)I&-c-((-x) .+ ' '(B+l((-C)I
(

k3&=2M(b-1)+(1 —X) + " "[a+~(1—b)]2M 2M

(A2)

k32 =2

k» — ' (2E» -M, )[a + -,'(1 —b],2M

k34 ——0,
k4) ——»N(b —C) +XMB+ (1 —X)»M(b —1),

k42 ——-LMB+(I - )X. -- + —M(C —b)+ ' '[B+—'(b —C)]2M 2 2M

k43
—(1-X) '(2E, -M~)(a+2 —b —B+»C),

2M

k44 ——X — — (2E» —M~)[B+»(b —C)] .
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2. 0

The v kernels were ex pressed in terms of anothe r, mo re primitive set of kernels as follows:
(a) (6)k;i —S;) + S;3, k;q ——S;4 —S;3

k, a
——

g (2Z~ ™~)S;(,k g
—

2 (2E„™s)S;3,(,) M„(,) M„
(A3)

where i = 1 to 4 as before. The S kernels are

S&&
——2M (1+a), S&q -M——(b+ 1) —~[a+ ~(1 —b)],

D D
S =-— S'4

S~( 2M [a +———,'(1 —b)j, S,) ——-M(l + b), S$3 M(C +——b),

M"4-M' 2 SB& ——M[a + —,(1 —b)], S3~
———(1 + b),

M
(A4)

D
83 =o, 34=, 4i —

42 —0
2M

S43 —-M[B+ ~(b ——C }], S44 ————(C + b) .

3. VeeIor

The»ector kernels were expressed in terms of exactly the same equations as (A3), except with

V;,. replacing S;, on the right-hand side. The V;,. were in turn constructed from still more primitive
vector ke me ls, v;, , and ke me ls s;; which have exactly the same st ructur e as the S;, given in Eq.
(A4) except with m, and A, replaced by m» and Av. The relationship between the V, and the v's and s's is

Vi&
——(1 -K» )vt& -Kv(1+K«)U&3+ —,'Kv (3-R)s&& -Kv(l -Kv)(s&3 ——,'xs&&),

V12 (1+K»)&~g+K»(1+K«)[~U~~ + a&(&3&+ sap)] +Kv[l + aR»(1 —R)]s&~+Kv(1 -R v)(zs~~ +st4) +Rv (zxs31+ &s34) ~

V/3 (1+K»)013+Kv[1+ zK«(l -R)]s fa y

V(, ——K»(1+K»)zvf3+ pK» (3 -R)s(4+ —',K v(1 -R v}(xs34+ 2zs(3),

Vp& =(1+K«)vg) -Rv(1+K «)(vf f + vs +su) +R v[1 + —,'Rv(l -R)]sz& -R„(1-K»)(s~& —2se&) +Kv (2s&3+ys43),
2 1

Vpg
——(1+R») &gp -K«(1+K«)(vq, -2vep+ «yv4) —zopf —vp4+ spy —2s3g s2$ —s24)

+Kv[2 + (K v/2}(3 —R)]sr' -Kv [z(2sgg —4ssg) + 2sg4 —4s34 +ys44]

Vm =(1 +Kv) mrs K v(1 +Kv)(v&3 + ~y g43 + sos + ~zy s43) +K v[2 + aR «(3 -R)]s&3,

V~4
—(1 +R v)vq4 -K»(l +R «)(~yv44 —zvgs —zsq3) +E«[l + ~R «(1 —R)]s)4

-Kv(1 -K»)(s(4 —2s34+ Qls44) R» z(2s$3+ys43) 1

Vz& =K«[1 + —,Rv(1 -R)]sa&,

V3&
——(1 +K v) vs~ +R v[2+ rK v(3 -R)]ss~+K»(l +R v)(assai + s34} ~

Vgg —0, V34 R»[1+,Kv(l -R)]s34,

V4j R v(1 +K«)v43+R»(1 -K»)(s3$ s43)

V4~
——(1+K»)U4~ +K„(1+K«)(v3p + v44+ seg) +K«(1 -Kv)s44+ 2R v (zs3$ + s34)

V4g
——(1+K«)v4g +K«[1+ ~K«(l —R)js43,

V44 ——(1-K» )+44+K«(1+K«)zv4g+ pR» (3-R)s44+Kv(1 -Kv)(s34+zs43) .

(A5)



2378 W. %. BUCK AND FRANZ GROSS 20

In these formulas, R~ is the tensor coupling par-
ameter given in Table I, R is defined below, and

2EPf„x=4—

(A6)

MdZ„
2M

The primitive matrix v;,. is

v„=2M,

v„=2Mb- [a+-,(1 —b)] -- Z,b,
M„' 2Md

M M

2D

Eq. (69)], and R:

/2EI, —M, 2E, —M, k
& =&(ya) =

I( ~ '
Qo(ya) —

2M
' —Q((ya),

d d

k
b = b(ya) =—Q&(ya),

p

RE„-M,k

d P

pT 2Xa )

C =C(ya) =~Q~(ya)
p

D =D(ya) =
2

[Q~(ya) -Qoba)l

ft(y )
Pb ya

M
$4

v2g
——4M b,

V22 ——2Mb .
v)~ ——2M(C —2b),

2Md~ 2MdE,
vp4 =-

M [8+ a(b -C)] — 'C,

(A7)

where ya represents any of the variables Xa/2Pk,
Xa /2Pk, or ya /2Pk as required in Eq. (Al), and

' d.p, ( )
Qi ya =z

( y~ —z
(A 9)

Finally, we record the formula for the q's used
in Eq. ("l):

V3( ——0,
v32 =Nb,

V33 = V34 —V41 —0 p

V42 ——2Mb,

v43 ———2M[ J3+ —,'(b —C )],
~a D(~n ~ ~a+i ~ ~N+2)

2
'

~21
~n D (~a s ~a+1 & ~K+2)

(A10)

v44 ——-Mb .
These equations can all be compounded quite quick-
ly on a computer.

In all of these equations, G~ was defined in part
IIC, and the dependence of the k,', "s on Xa/2pk,
etc. is contained in-the factors a, b, B, C, D
[which are integrated versions of those given in

~N+1 I (~N 1 ~n 1 ~N+2)
2.

822= 2-
~ n D(~a & ~N+t s ~a+2)

~N+2 D(~E& ~a+1 y ~n)
2

823 = 2
~n +(~as~a+1&~N+2)

where the A. 's were defined in Eq. (6) and

D(a, b, c) =a'(b' —c')+b'(c' —a')+c'(a' —b') .
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