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In a typical hadron mass calculation the long-range (confining) part of the interaction between quarks (q)
is assumed to be spin-independent. Any spin dependence is then attributed to short-range one-gluon

exchange. This procedure tends to give an excessively small mass difference between pseudoscalar (P) and

vector (V) mesons, at least if the quark-gluon coupling is fixed by other properties of the hadron spectrum.
In the present paper we introduce an approach in which a large P-V mass difference arises naturally. A
confining interaction does not have to be assumed a priori. The spectrum is generated by imposing duality

on an infinite sum of ladder graphs without crossed quark lines; this "planar bootstrap" corresponds to the
limit N„,„„~00(in quantum chromodynamics we would have to take N„,,~00 at the same time). By
making a certain simple dynamical approximation we then derive an explicit infinitely rising exchange-

degenerate leading Regge . trajectory a(t) = S, + S, + Z(v, ) for any given equal-mass-channel

hadron + hadron~hadron + hadron process; S, and S, are external spins, g(v, ) —0.5 + 2a'v„and
v., = s, + (t —Xm,. )/2, where the m; are the external masses and ~s, is the mass of an exchanged cluster

a. By requiring the s, to be as low as possible and i~posing simultaneous consistency for complete sets of
meson + meson —+meson + meson processes, we are able to calculate the entire natural- and unnatural-

parity low-energy leading-trajectory qq mass spectrum in terms of m~ and m~. alone. We obtain

m &m~, a. universal Regge slope a' = (m ' —m ') '/2, and the usual mass formulas
= m~. ' —m~' = m&' —m„'= m„,' —m~', m„=m~. In the case of q„=(uu + dd)/Q2,

however, we obtain m„'= 1/3(m~' + 2m '), which gives m„=-0.462 GeV.

I. INTRODUCTION

In a quark-gluon field theory, such as quantum
chromodynamics (QCD), the hadrons are treated
as bound states of quarks (q). The short-range
part of the interquark interaction is given by one-
gluon exchange. The long-range part has not, as
yet, been reliably calculated from the basic QCD
Lagrangian, but is believed to be dominated by in-
frared singularities which lead to quark confine-
ment. In practice, phenomenological potentials
or bag boundary conditions are therefore simply
assumed a Priori. These are usually taken to be
spin-independent, which by itself would lead to
pseudoscalar-vector mass degeneracy. The

t

breaking of this degeneracy is assumed to arise
entirely from the short-range color-magnetic spin-
spin part of one-gluon exchange. '

Calculations based on the above picture have
generally been quite successful with states lying
on natural-parity qq Regge trajectories, such as
the vector (V) mesons. On the other hand, they
have always had difficulties accounting for the pa-
rameters of the pseudoscalar (P) mesons. The
smallness of the pion mass, for example, is dif-
ficult to account for with a quark-gluon coupling
which is also consistent with other properties of
the hadron spectrum. In this paper we take the
point of view that these difficulties are due to the
oversimplified assumption that the long-range

part of the interaction is spin independent. We
present an approach in which this assumption does
not have to be made and which gives good predic-
tions for the low-energy I'-V mass differences.

In Sec. II we discuss the planar bootstrap, which
is, in effect, a way of dealing with the long-range
part of the interaction. ' Only a subset of quark-
loop diagrams are retained and a self-consistent
calculation of the corresponding amplitude is
made. ' ' In general this is an extremely difficult
problem. In S cs. III and IV, however, we present
an approach based on a simple dynamical approxi-
mation which leads to an explicit infinitely rising
leading Regge trajectory a.

In Sec. V we interpret our result in terms of an
effective interquark potential. If we take this po-
tential to be energy-independent, we find that it
must be of the confining type.

In Sec. VI we apply our trajectory formula to
entire sets of meson+ meson —meson+ meson
processes in the absence of strangeness. By im-
posing consistency and making certain reasonable
assumptions we obtain a unique solution for a,
and &, corresponding to m, '«m, '. In Sec. VII
we generalize our scheme to include strangeness.
We obtain a solution where we reproduce the usual
additive quark-model results for the p, K*, w, fII),

n', K, and p', but not for the g. Finally in Sec.
VIII we describe techniques for computing relative
partial widths and triple-Regge couplings within
our approach.
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FIG. 1. The generation of the qq Hegge trajectory by
an infinite sum of @CD gra, phs.

FIG. 3. Rearrangement of Fig. 1 as the Born expan-
sion of a Bethe-Salpeter equation. The potential p is it-
self the sum of an infinite set of graphs.

II. BASIC DYNAMICS

One way of generating the hadron mass spectrum
in a field theory such as QCD is to sum an infinite
set of graphs. The usual qq mesons (M), for ex-
ample, would be given by Fig. i. This is very
similar to the procedure one follows in quantum
electrodynamics (QED) where, in first approxima-
tion, the positronium spectrum. is given by the in-
finite ladder sum of Fig. 2, which is itself the
Born expansion of a Bethe-Salpeter equation with

a one-photon exchange potential. By solving this
equation in the usual way we can then explicitly
calculate the mass spectrum. The same idea
underlies the quark-potential approach.

A. Quark-potential model

In a quark-potential model, Fig. 1 is rearranged
as in Fig. 3, which is again the Born expansion of
a Bethe-Salpeter (or SchrMinger) equation, whose
solution gives the spectrum. ' At very short dis--
tances the potential V is dominated by the one-
gluon exchange graph of Fig. 1(a) (asymptotic
freedom), similar to the one-photon exchange of
Fig. 2(a). At larger distances V is much more
complicated but is believed to be dominated by in-
frared singularities which give V- ~ as r- ~.
This gives quark confinement and infinitely rising
Regge trajectories, a characteristic feature of the
hadron mass spectrum.

In practice, the long-range part of the potential
is rarely calculated a priori. Instead, simple
spin-independent phenomenological forms are as-
sumed, with one or more parameters which are
simply adjusted to reproduce the experimental
spectrum.

In the bag model, ' instead of using a potential V,
one sets up a Lagrangian which explicitly includes
the short-range q-q-gluon interaction and repre-
sents the confining long-range part of the interac-
tion by means of a phenomenological boundary
condition.

B. Planar bootstrap

The planar bootstrap is, in effect, an explicit
way of 'dealing with the 'long-range part of the in-
teraction. Instead of using Fig. 3, one goes back
to Fig. 1 and, in lowest order, retains only the
"planar" graphs of Fig. 4, which have no crossed
quark lines', we have also added in the quark lines
p and x at the ends of each of the graphs of Fig. 1

a procedure which does not affect the output mass
spectrum. The evaluation of Fig. 4 entails a self-
consistency problem (planar bootstrap), and leads
to an exchange-degenerate amplitude.

By replacing quarks by antiquarks, Fig. 4 can
also be used to calculate the baryon and baryonium
spectrum.

It has been conjectured that Fig. 4 (with gluon
lines added in) represents the N„„,—~, N„,

„„

—~ limit of QCD, with N.,i„/Ng„„finite. ' In

a purely S-matrix theory, it represents the + fl y„
—~ limit of all quark-duality graphs; once we
know the solution of the planar bootstrap the effect
of nonplanar graphs (with crossed quark lines)
can be brought in in a systematic way through a
1/N fh„„expansion.'

In practice, the sum of Fig. 4 can be rewritten
as the infinite ladder sum of Fig. 5, which gen-
erates" the Regge trajectory o'. (t) and in which we
have the following:

(1) The requirement that there be no double
counting impliesthat the a, b, c, . . . cluster masses
are bounded. They are therefore dominated by
bound states and resonances and will be approxi-
mated by single narrow peaks.

(2) The wavy lines in Figs. 5(b), 5(c), ... are
usually approximated by Regge exchanges. In
principle, however, they should themselves be
infinite ladder sums of the form of the entire sum
of Fig. 5.

Figure 4 implies duality, "so that we must have
the finite-energy sum-rule constraint of Fig. 6.

p r+ p ~+p r

~ ~ ~

FIG. 2. The generation of the positronium spectrum
by an infinite sum of photon-exchange ladder graphs.

+ ~ .~ ~ a(t)
FIG. 4. The sum of planar quark-loop graphs for a

meson+ meson meson+ meson process. In @CD, we
must also add in gluon lines.
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FIG. 5. The generation of the Hegge trajectory e by
an infinite sum of ladder graphs corresponding to the
topological structure of Fig. 4. We will represent this.
by &2(a) 34—o. if 1 and 2 are particles and by &~&2(a)34

e if they are Heggeons.

where A is the s -channel absorptive part, nor-
malized so A= Im T for t &0, while q& and qz are
the initial and final three-momenta and 6}, is the
scattering angle in the t-channel c.m. system. In

general T& has kinematic threshold singularities,
which can be removed by using T&

——(q&q&)
~

T&

instead of T& itself. Now
s

1 (m, ' —m, ') ( m3' —m, ')cos6, =2 v+
2Q'] g~ ~ 2t

where v = —,'(s -u), which can also be written as

The external lines of Figs. 5 and 6 could them-
selves be Reggeons.

In what follows we will represent the process of
Fig. 5 by

v=s + — t — m) (3. 1)

If we therefore make the usual expansion of z~"
Q~(z) in powers of z ' and expand in powers of 1/t,
we obtain

12(a) 34- n

if 1 and 2 are particles, and by

a, n, (a) 34- o.

(2. 1)

(2.2)

T~(t) = C)2)t(j)
0=0 A=O

(q,qt)' A, .,~„(t), (3.2)
if they are members of the Regge families n, and

In the latter case their spins are given by

8, = &, (m, '), i=1,2, (2. 3)

where S, and m, are the spin and mass of particle

where

A, (t)= I d A( st) s''.s
0

(3.3)

III. SUM OF LADDER GRAPHS

In what follows we will deal with the "ordered"
planar amplitude T(s, t), which only has s -t
crossing. ' The full planar amplitude is then a
linear combination of T(st t)2 T(stu)2 and T(t, u),
where s, t, u are the usual Mandelstam variables.
We shall define our amplitudes so that they have a
Regge behavior s "'. In the case of lower-helicity
amplitudes this may mean that we have to multiply
them by appropriate polynomials in s (for an ex-
plicit example see Appendix C).

A. A representation for the projected absorptive part

We can achieve a partial diagonalization of the
t-channel planar unitarity satisfied by the sum of
Fig. 5 by using the usual Froissart-Gribov partial-
wave projection"

Tt (t)= (2sstst)' f ds At)t (toss, ),

= f(
FIG. 6. Average duality relation between cluster a and

Heggeon n(t). A, (t)= q)a,")(t)+q)'a,~)(t)+ q)'a)(3)(t)+ (3.4)

This Q&( cos8, ) expansion is known to converge
quite rapidly for

~

cos &,
~

& 1. Of course, Equation
(3.3) becomes meaningless if t is such that we can
have v= 0 within its integral.

In most cases, especially when we are only cal-
culating leading trajectories, we can approximate
&& by the first term in the double sum (3.2). When

my + m, or m, 4 m4, however, q&q& is infinite and the
higher terms in Eq. (3.2) have infinite coefficients
at I=0. This difficulty is related to the need for
j= n —1, n —2, . .. daughter poles at t = 0 for such
processes. " One way of dealing with it is to use
A&(t) instead of T&(t) in our calculations. How-

ever, A&(t) does not have the desirable partial
diagonalization of planar unitarity property that

T&(t) or T&(t) have.
Because of the above complication we shall re-

strict ourselves to equal-mass channels with m,
=m» m, =m4. In this case only the k=0 terms
of Eq. (3.2) contribute and the remaining A&,

A&,» A&, 4, .. . terms have finite coefficients. We
can therefore safely make the approximation

T, (t ) = coo (j )A, (t),

which permits us to use the Mellin transform (3.3)
as our basic projection from now on.

If we associate a coupling-strength para, meter y
with each of the clusters a, b, c, . .. , the sum of
Fig. 5 now has the form
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If we assume that the cluster a can be a,pproxi-
mated by a single narrow peak of mass v s„Fig.
5 (a) gives a contribution to A(v, t) of

ya")(v, t)=r(t)5(s -s,). (s. 5)

Taking the Mellin transform (3.3) we then obtain

ya,")(t)= r(t)v, ' ',
where

4

~a=so+

(s. 6)

(3.7)

(3.8)

where

(2) fa (3) a (2)

This p expansion generally converges much more
rapidly than the original series (3.4). (See, for
example, the factorizable model below. ) If we use
Eq. (3.3) we find, order by order, that Eq. (3.9)
has the structure

with k= a. The remaining terms in Fig. 5 involve
difficult loop integrals. An approximate way of
dealing with them will be presented in Sec. IV.

We can rewrite Eq. (3.4) in the form

(a) (b)
FIG. 7. Duality replacement of cluster exchange (a) by

Hegge behavior with an upper cutoff in s or with a modi-
fied propagator.

Af cpp Tf
Factorizable models of the type given by Eq.

(3.13) arise quite naturally if we have average
duality (Fig. 6). Crudely speaking, this permits
us to replace cluster exchange by Regge behavior
with an upper cutoff in s (Ref. 11) (Fig. 7). A

more refined version" is to use what a.mounts to
a modified Regge propagator in Fig. 7(b). In
either case, Fig. 7(b) then has a factorized form
which permits us to replace Fig. 5 by Fig. 8
which, in turn, gives us Eq. (3. 13), if we make
the usual kinematic approximations.

Another way in which we can obtain Eqs. (3.8)
and (3.14), even when we do not have a factoriz-
able model, is to write down the [1,1] Pade ap-
proximant of the series (3.4). '~" Such a, diagonal
approximant wil1. have t-channel unita, rity as long
as Ag —

cpp

IV. DUALITY AND AN EXPLICIT REGGE TRAJECTORY

+ Vp/Vg
dyy ' 'G(y),

b,b, = -q a."'/K'( n) . (3. 12)

where vp is related to the threshold s =s, of Fig.
5(b) through Eq. (3.7}with s~=s, .

From Eq. (3.8), A&(t) has a j pole at j= u if

K(o) =1.
The corresponding residue (see Fig. 5) is

We will now combine the expressions of Sec. III
with the finite-energy sum rule of Fig. 6. This
sort of duality constraint on sums of ladder graphs
was first used a number of years ago in a pion
exchange model" and has more recently been used
extensively in dual-unita, rization calculations. "
If we then make a certain simple dynamical ap-
proximation and impose uniqueness, we obtain an
explicit algebraic expression' for the Regge tra-
jectory a'(t).

B. A factorizable-model example

In the case of a factorizable model we have

(z)
Jag —Qg v) ~

2 (2)
cp ag —Qg kg vg ~

3 (3)y a~
——u~ k] k) v~, etc. ,

and Eq. (3.9) reduces to

(3. 13)

K(j) t +a (3)/a())

Thus the series (3.9) not only converges rapidly,
but actually truncates after the first term. From
Eqs. (3.3), (3.6), and (3.14) we see directly that
K(j) has the structure (3. 10) with

G( v/v, ) = y' a"v(v, t))/r(t) .
Finally, we have t-channel unitarity as long a,s

A. Finite-energy sum rules

With the normalization of Eq. (3. 12), A(v, t) has
the Regge behavior b,b,v for large s, and Fig. 6
corresponds to the finite-energy sum rule"

ds[pa")(v, t) b,b, v~ ")]v-'—(- "=0

(4. 1)

for the highest -helicity amplitude. Our labeling

g g
I + ' I 4 +

u v u k v u k - k v

FIG. 8. Reduction of Fig. 5 to a factorizable form,
using Fig. 7.
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A isa (I)

s s

FIG. 9. Hegge-resonance duality for the absorptive
part A.

Sy + S2 Sy + S2 n, n = integer & 0 ~ (4. 3}

We shall not consider these in the present paper.
In most applications s is taken approximately

midway between s, and the next peak above it
(See Fig. 9). Equations (4. 1) and (3.5) would then
give

a+1 —S, —S v,
(4.4}

where v=8+ —,'(t -pm&'). If, on the other hand,
we assume an even more local version of duality
and take v = v, (or s =s, ), we must only include a
fraction f ' =—', of the pa'" peak of Fig. 9 when we

evaluate the integral of Eq. (4. 1). Using the ap-
proximation (3.5) we then have

JSt3

ds ya'"v 8 a=f 'I'v,
0

and so Eq. (4. 1) gives

b i(t)b.(t)v.""
n(t)+1 —S, —S,

(4. 5)

If we combine this with Eqs. (3.6), (3.10), (3.11),
and (3. 12), we obtain

f vot v dyy G(y)
a(t)= S, + S, —1+f

(4. 6)

in Fig. 6 is such that the spin sum

S~+ S2» S3+ S~. (4. 2)
/

(See Appendix C for a more detailed treatment in
the simple case of &&- vv„) Similar rules apply
for lower-helicity amplitudes, where we have to
make the replacement

So S

FIG. 10. Plot ofy I G(y} vs s (solid curve) where y
= v/v, . For a factorizable model, G is given by Eq.
(3.15}. The dashed curve is a plot of the approximate
form (4.10}.

for moderately large v, the factorizable model of
Eqs. (3. 13) and (3.15) gives

G (y ) ~ v ~ c u +r-t (4. 8)

lny =in(v, /v, ) (4.9)

within the denominator integral of Eq. (4. 6). We
then obtain an explicit algebraic expression for
o.'(t) independent of the specific form of G(y).
This was the expression used in Refs. 14-16. Its
main defect is that it ignores the large-v tail in
Fig. 10. It is also incapable of accounting for the
p-w mass difference, as we shall see.

An improved approximation, which we shall use
from now on and which does include the effect of a
large-v tail in Fig. 10, is to take

We have neglected lnv factors, whose effect can
be approximately absorbed into the constant y. If
we replace the wavy lines of Fig. 5(b) by infinite
ladder sums, Eq. (4. 7) is no longer a good de-
scription in the limit v —~ because of the usual
Mandelstam cut-cancellation arguments. ' How-
ever, we might still expect Eq. (4. 7) to hold for
moderate values of v, which is in fact the only
region which is relevant for our considerations.

Since Fig. 5(c), ... are also two-Reggeon-ex-
change graphs, Eq. (4. 8) should continue to be
valid even if we do not have a factorizable model
as long as the series (3.9) converges for j& a, + y.

For o! ~ n, + y, Eq. (4. 8) corresponds to a rapid
falloff for large s and hence to a peaking of
y 'G(y) near its threshold (see Fig. 10). This
permits us to make the rather crude approxima-
tion

where y = v/v, .
vx

va
(4. 10)

B. Dynamical approximations

The function y 'G(y) typically has the form
shown in Fig. 10 for &» &„where &, is the usual
branch point in j associated with two-Reggeon ex-
change. For example, since Fig. 5(b) gives

where 6 is the usual step function, v, is given by
Eq. (3.7) with k= 1, and s, is a point slightly above
the threshold s, (see Fig. 10). Equation (4. 6) then
gives

I

[&(t)+ 1 —S, —S ] ln — — =f.
va

~2g(2) ~ Ve ~+1 (4. 7) (4. 11)
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Equation (4. 10), of course, amounts to using the
asymptotic two-Reggeon-exchange form (4. 8)
down to an effective threshold at s =sy so that

p= a, +y.
Equations (4.4), (4. 5), (4. 11), and (4. 12) give -6 -4 -2 +0 2 4 6 8

a,nd

n(t) —n, (t) —y = —ln ——ln —'
f V~, V~

(4. 14)

FIG. 11. Plot of Beo, (t) as given by Eqs. (4.14) and
(4.15) (solid line) and (4.14), (4.19), and (4.20) (dashed
line) for 7jz scattering with m, =0, f™=1.147, s =m and

s~ adjusted so n(s, ) =1.

where L(1) and L'(~) are exactly reproduced T.his gives

(4. 15)

and f= lnf. Note that Eqs. (4. 14) and (4. 15) give
exactly the same functional form for n(t) as the
threshold-peak approximation of Eqs. (4. 9) and
(4. 6) but with f replaced by f.

Equations (4. 14) and (4. 15) give an n(t) which is
approximately linear in t (see below). This, in
turn, implies an approximately linea. r n, (t), and
so

n,'(t)/n'(t) =
$ = constant.

If the Regge trajectories exchanged in Figs. 5(b),
5(c), . . . 'have the same slope as the output n(t),
as will be true in all the cases considered below,
then $ = 2.

Equations (4. 13) and (4. 16) are consistent with

Eqs. (4. 14) and (4. 15) only if

s =s, , lnf=f=f —(1 —g) '.

(4; 20)

Figure 11 gives a plot (solid line) of the trajec-
tory given by Eqs. (4. 14) and (4. 15) for vv scat-
tering with m, ' = 0, f= 1.147, s, = m, ' and s, ad-
justed so n(s, ) = 1. This is compared with the
linear approximation (dashed line) given by Eqs.
(4. 14), (4. 19), and (4.20). We find that the reso-
nance masses are the same to within 1% of their
values.

We shall see below tha, t consistency between dif-
ferent processes is best achieved by using the
linear form (4. 19), rather than the nonlinear form
given by Eq. (4. 15). (Actually the latter can also
be made exactly linear by giving s, a very slight
x dependerice. ) We shall therefore use the linear
form (4. 19) from now on, and assume that it can
be extrapolated to the region v, ~ 0.

V. SIMPLE EQUIVALENT-POTENTIAL PICTURE
AND "EFFECTIVE CONFINEMENT"

The first result is physically reasonable if we at-
tribute the generation of the Regge behavior in
Eq. (4. 1) to Figs. 5(b), 5(c), .. . . If f = —,, the
second result gives

f=3.147, f =1.147. (4. 18)

C. Trajectory properties

From Eqs. (4. 14) and (4. 15) we see that n(t)
has singularities at v, =0 and v, =0, which can be
joined by a cut. Our use of the Mellin transform
is invalid for v= v, ~0, however, as we saw in
Sec. III. The n(t) singularities thus occur in a re-
gion where our model is expected to fail anyway.

Equations (4. 14) and (4. 15) give an approximate-
ly linear n(t) in the entire range v, &0. We shall
therefore make the linear approximation

L(x)= c+yx,
where c and y are pure numbers a.djusted so that

For simplicity let us consider a, process where
all of the external masses m, in Fig. 5 are equal.
Equation (3.7) then gives v, =s, + 2q,

' and so,
from Eq. (4. 19),

L, — =c+ 2 ~'s, + 4a'q»va ~ I I

S~ —Sg j (5. 1)

where q, is the relativistic c.m. three-momentum
in the t channel. Since n=7 in Eq. (4. 14) we now
see a Posteriori that I- plays the role of an orbital
angula. r momentum which can be reproduced by an
effective Schrodinger equation

-V'g+ 2m Vg =q, 'p, (5.2)

with an equivalent energy-dependent potential
V= V(r, q, )

Instead of considering hadron-hadron scattering,
suppose we next consider effective qq "scattering, "
as in Figs. 1 and 3. At the planar level this would
be given by Fig. 4 with the qua. rk lines P and z re-
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moved. This does not, of course, change &(f),
which can therefore again be reproduced by the ef-
fective Schrodinger equation (5.2). In this case,
however, we shall follow the usual practice of
taking the (interquark) potential V to be energy in-
dependent (static), so V= V(r). If we assume that
this is in fact the case, the linear form (5. 1) is
then reproduced by the effective harmonic-oscil-
lator potentia, l

V(&) = 8-, (-'+ c+ 2 u'sf+1
p V

Bm a' 16m~ (5.3)

which is a. confining potential. This result depends
critically on our using a, static potential, an as-
sumption which we have not really justified.

It is straightforward to generalize the above re-
sults to the case where the external masses m&

are not a.ll equal, although the resulting effective
potentials may be more complicated in this ca,se.
Instead of Eq. (5.2) we could also use an effective
Bethe-Salpeter equation, or a Lagrangian with a
relativistic boundary condition' (bag model). The
qualitative conclusions are the same.

VI. MESON MASS SPECTRUM IN THE ABSENCE OF
STRANGENESS

If we combine Eqs. (3.7), (4. 14), (4. 19), and
(4.20) we obtain

4

a(t)= + s+cs+ (2 !s+t !—!I I,'), (6. ))
fml

with

n'= -', f(s, -s, ) '. (6.2)

Now &(i) must be independent of the particular
process we consider. This is not automatically true
of Eq. (6. 1). If, however, weimpose this re-
quirement, we obtain powerful self-consistency
conditions on the para, meters of the model. " Sup-
pose, for example, we take a= p in Fig. 5 for both
mn —mn and pp pp, an a,ssumption which we shall
justify below. Now 8, = 0 and S,= 1 and so we must
have m,

' —m, '= (2c.") ' if Eq. (6. 1) is to generate
the same & = &, for both processes.

We can obtain simultaneous consistency for en-
tire sets of meson+ meson —meson+ meson pro-
cesses if we make the following reasonable as-
sumptions:

(a) The lowest members of leading Regge fami-
lies are the same as in conventional quark models.
This is not really an additiona, l assumption if we
think of our model as being itself a type of quark
model, in the sense discussed in Secs. II and V.

(b) The mass Ws, of the cluster a in Fig. 5
should be as low as possible consistent with other
channels. The suppression of higher masses is a

In the absence of strangeness the lowest qq
states are V= (p, v) and P = (v, )7„),where q„=(uu
+ dd)/)i 2. These lie on the trajectories c(~ and c(~.
For the time being we will assume the usual quark-
model result that m~ = m, = m„and m„=m„=m, .

Using the notation of Eq. (2. 1) the only equal-
mass-channel processes involving P and V and
generating n„are

P P(a, )P P- n

V V(u, )P P-n„
Vv(a, ) VV- nv.

(e. 3)

(e.4)

(e. 5)

Now t" parity excludes any P contribution to the a,
cluster. If we impose the requirement (b) that the
masses of a» a„and a, be as low as possible,
Eq. (6. 1) and consistency requires us to take

2 2 2s =my ~
s =mp s =my02 P 03

Note that it is consistent to exclude contributions
to the clusters from higher states such as V", the
j=2 Regge recurrence of V. If we did include
them, we would be double-counting when we add
Figs. 5(a) and 5(b), since Eq. (6. 2) gives s, -s,

', f nv
' which is sm-aller than the trajectory

spacing n ' if f is given by Eq. (4. 18) (see Fig.
10).

Using Eqs. (6. 1) and (6. 6), consistency between
Eqs. (6.3) and (6.4) gives an o.'~= a, = n„with

&,' = (1+c)m, ',
n, (0) = —c,
m, '=m, ' —(2n,') '.

(e. 7)

(e. 8)

(e. 9)

Equations (4.18) and (4.20) give c =—0.5 and so
Eqs. (6.7) (6.9) give

n,'=-,'m, '=0. 83 GeV ', a,(0) =0.5, m, '=0,
(6. 10)

property of more specific models of this type and
is consistent with property (1) of Sec. IIB. We
also find (a posteriori) that it is needed to guaran-
tee that s be approximately halfway between two
actual resonances, as required by semilocal dual-
ity.

(c) As many channels should couple to a given
trajectory as possible; in other words, we will not
take allowed couplings= 0 unless we are forced to
do so by consistency. As discussed in Sec. III,
however, we wil1. restrict ourselves to equal-mass
channels with m, =m„m,= m4, since we were un-
able to find a reliable expression for n(i) in the
case where m, am, or m, ssm4. [A somewhat dif-
ferent set of assumptions was used in Ref. 16 in
the case of exact SU(3) symmetry. ]

A. V trajectory
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in good agreement with experiment. The small-
ness of m, ' depends critically on our value of c,
which could not have been obtained if we had used
the approximation (4.9), as in Refs. 14-16.

Equations (4.20), (6.7), and (6.2) give

1 2 1
8, =8, + —,

' ' —1 =2.13m '.
ln2

This means that the clusters b and c in Fig. 5

must include a substantial P contribution, since
we would otherwise have s, &s,=4m, ', which
would then be the threshold of Fig. 5(b) (see Fig.
10).

B. & trajectory

If we use Eq (6..1) and the results (6.6)—(6.9)
we find tha. t

nv nr (a2)PP n v

nrnv(a, )VV- nv

(6. ii)
(6. 12)

are automatically satisfied. On the other hand, if
we apply Eq. (6. 1) to

n~ n~(a, )PP —n v, (6. 12)

n, (t)= n, (t) --,', (6. 15)

in good agreement with experiment. At t =0 it
also agrees with the result obtained by imposing
the Adler-zero condition on either the Lovelaee-
Veneziano model" or a, class of multiperipheral
models. "

The only equal-mass-channel process generating
&p which is consistent with the quantum numbers
involved is now

nv nv(a4) VV —np . (6. 16)

Using Eq. (6. 1) consistency with Eq. (6. 15) gives

we find that we must have an up = n, = n„with

(6. 14)

which, when combined with Eq. (6.9), gives

VII. MESON MASS SPECTRUM IN THE PRESENCE
OF STRANGENESS

In the limit of exact SU(3) with degenerate V
= (p, K*,~, P ) and P = (w, K, q„,q, =ss ), all of the
results of the preceding section continue to apply;
here K stands for (K, K) and K* for (K*,K*). In
this sec/ion we shall see that a solution satisfying
the assumptions (a)-(c) of Sec. VI can also be
found when the symmetry is broken and m, and
mz* are required to have different masses.

A. Processes with otv outputs

The equal -mass -channel processes correspond-
ing to Eq. (6. 13) are now

nr nr (a») 1f1T nr,

nrnr(a )KK—n

nrn „(a»)KK-n„,
n, nr(a, 4)vv -n„

(7. ia)

(7. ib)

(7. 1c)

(7. id)

V"", . . . , the j=2, 3, ... Regge recurrences of V.
On the other hand, if we do insist on s, = m~' in
Eq. (6. 18), the leading output trajectory will be
n = n~ —2. This means that the coupling V"V"n~
= 0, which, in turn implies that V"V"V= 0, a, re-
sult which is not consistent with taking s, = m~ in
the first place. Similar considerations apply to
Eq. (6. 19) and to processes in which we replace
PP by P"P", P"'P"", etc. , in Eqs. (6. 11) and
(6. iS).

Our model was based on the assumption that A
= b,b, v on the average. Since v~ cose, when m,
=m, or m, =m4, this means that, when Q. =integer,
we not only have a leading-trajectory state with
angular momentum J= m, but also daughters with
J= n -2, n -4, .. . . Of course, to actually veri-
fy the A = b,.b, v assumption a Priori, we have to
go to a much more detailed model than the one
considered here.

(6. 17)

This does not correspond to any single state but is
rather on average of the P and V, both of which ean
contribute to a4.

C. Additional processes and trajectories

In addition to the processes corresponding to
Eq. (6. 12) we can also have, subject to the con-
straint (4.2),

n~n~(a„)KK- n ',
and those corresponding to Eq. (6. 11) are

n, n, (a»)nm- n, ,

nr+nr+(a32)KK nr

nr*nr+(a»)KK- n„,
nr+ n r+(a24) 3'll nr r

nr+nr+(a»)KK- n

(7. 1e)

(7.2a)

(7.2b)

(7.2c)

(7.2d)

(7.2e)

n~nr(a", ) V"V" —n„,
(arsr) Vrr Vrr

(6. ie)

(6. 19)

where a,", a",", . . . have the same masses as V",

If we require these processes to simultaneously
satisfy Eq. (6. 1) and the requirement (b) of Sec.
VI that the cluster masses be as low a.s possible,
we find tha.t, with m~*& m„we have
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2S —mp
2S Sa —m

&3

s =m, +e, a~0
t2i5

s, =m~+'-, (7. 3)

(v. 4)

&s+ &sw(a45)K+K+ oq

&s + &s+(a«)K*K*—n„,
(7.13e)

(7.13f)
2s =.m, 2S =Sg =. mr)~22» s

s, =m,2+a, e~ 0.
25

We then have

s, = m»' (V. 6)

(v. 6)

(v. 7)

If we require these processes to simultaneously
satisfy Eq. (6. 1) and the requirement (b) of Sec.
VI that the cluster masses be as low as possible,
we find that, with the parameters obtained in the
previous subsection, we must have

and the familiar mass formulas
2 2 2 2 2 2 2 2g+ =my* —

p
—— E — = m„—m~

(v. 6)

mba mp ~ (7.9)

Equations (6.7)—(6. 10) are also reproduced.
The quantum-number requirement that e ~ 0 for

all of the processes represented by Eqs. (V. le)
and (7.2e) forces us to take o.~

~ &s. If, in addi-
tion, we require that the mass of a» stays bounded
for all of these processes we must have

—m ~ —&E.g2 2 p 1
p, ) (v. io)

~p~p(as')pp op i

a +*o.s*(a»)K*K*—n, ,

Q~e o'se(as~)K+K+ Q~ ~

~r*~r"(as4) pp ~p i

(v. iia)
(V. lib)

(v. iic)
(v. iid)

o.„+n+(a„)K*K*-c.

Using Eq. (6. 1), consistency with the processes
(V. 1) and (7.2) now gives

(v. iie)

S =Sa ) i ~)2) ~ ~ ~ ) 5 ~~st

Processes of the type discussed in Sec. VIC also
continue to be valid in this case.

(v. i2)

B. Processes with n& outputs

The equal-mass-channel processes corresponding
to Eq. (6. 16) are now

a, a„(a4i)(up- a, ,

n, n, (a«)pp- n„,
n„n„(a4,)(j(o a„
&s+ (x+(a«)K+K+ Q

(V.i3a)

(V.13b)

(7.13c)

(7.13d)

In other words, in order to have symmetry break-
ing with mE+) m„a»and a» must have slight ad-
mixtures of higher states in addition to the p and
m', respectively. Presumably such admixtures
could even come from nonplanar effects, which
would then be the mechanism for inducing our sym-
metry breaking.

Finally the equal-mass-channel processes cor-
responding to Eq. (6. 12) are now

Sg
42

s
044

S~
45

2
a —mn

43 Q

m„+-,'(m, ' m, '),

(V.14a)

(7.14b)

(7.14c)

(7.14d)

s = m, '+ e') e'& 0.
We then have

(7.14e)

(7.16)

VIII. COUPLINGS

There are two kinds of couplings which can be
calculated within our approach —relative partial
widths and triple-Regge couplings. For simplicity
we shall only consider mm scattering here, but it is
straightforward to generalize our approach to other
processes.

A. Partial widths

Once we know a(t) from Eq. (6. 1) we can use
Eq. (4. 5) to calculate the ratio b, b,/I'. In parti-
cular if we have a model for the t dependence of
I'(t), this gives us the t dependence of b,b, (see
Fig. 6). If we now make a t-channel partial-wave
projection of b,b2v, we find in the usual way that
we obtain a resonance of spin j at t = t& if

(6. i)n(t~) =j.
With m, '= 0, the corresponding partial width in
the energy (Rt) variable is then given by

2'(j +1)(j.')' ti '" 2f I"(4)
(2j+ l)(2j)! 2s, + tz cna' t&'i''

which gives m,„=0.462 GeV.
The quantum-number requirement that e'& 0 for

all of the processes represented by Eq. (7.13f)
forces us to take a„') &&*. If, in addition, we

S
require that the mass of a4, stays bounded for all
of these processes we must have

e'= (mr' —m, ')+ —', (m,
' —m, '), n„' = c's+.

(v.16)

We conclude that, except for Eqs. (7.13b) and
(7.13c), every one of the processes with &~ as
output must have an admixture of higher states in
addition to the lowest one in its cluster a4&.
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Equation (8.2) applies to the "ordered' planar
amplitude T(s, t) which only has s -t crossing.
For &n scattering, the full planar amplitude for
the t-channel isospin I,=0, 1 states is"

T'= —,
' [T(t,s) + T(t, u) j ——,

' T(s, u),
T'= T(t, s) —T(t, u) .

(8.3a)

(8. 3b)

full partial width =. 3@~, I, =0,
=2y), I, =a.

(8. 4a)

(8, 4b)

We will assume that the cluster a in Fig. 6(a)
is dominated by a j= 1 (p) resonance together with
a small spinless contribution (E). With m, '=0,
we then have

(8. 5)

3y, = 0.144+ 0.016, 2y, = 0.043+ 0.007 GeV.

We should keep in mind, however, that the f may
be strongly modified by nonplanar cylinder correc-
tions.

B. Triple-Regge coupling

The above procedure only gives coupling ratios.
The condition (3.11), on the other hand, gives us
information on the overa1. 1 magnitudes of couplings.
En general, extracting this information can be quite
difficult, " Things simplify considerably if K( j)
is given by Eq. (3.14). If a&"' is given by Fig.
8(b), for instance, and a&"' by Fig. 8(a), we see
that b,b, cancels out in the ratio (3.14). Equation
(3.11) then gives a condition on the triple-Regge
coupling g of Fig. 8(b).

In practice we could assume that the dependence
of g on the momentum variables coming into the
loop integral of Fig. 8(b) is given by a dual-tree
model. ' Equation (3.11) then determines the
overall magnitude of g at each value of t. Appen-
dix D presents an explicit calculation of g at t = 0.
The result is in reasonable agreement with inclu-
sive cross-section data.

If we adjust l, so as to reproduce the experimental
p partial width (2z,) of 0. 155 GeV, Eq. (8.2) gives

3y, =0.122, 2y, =0.041 GeV, if E=O (8. 6a)

3y, =0.111, 2y, =0.036 GeV, if E=0.54.

(8. 6b)

The latter value of E is the one required if our
model is to be crossing-symmetric at the p mass
(see Appendix B). Equation (8.6) should be com-
pared with the experimental f and g partial widths

IX. CONCLUSION

We have considered a planar bootstrap model
for the hadron spectrum in which simple finite-en-
ergy sum rules are combined with infinite sums of
ladder graphs. By making a certain simple dy-
namical approximation we obtain the simple linear
form (6. 1) for the leading Regge trajectory o'. (t) in
any given equal-mass-channel hadron + hadron
—hadron + hadron process.

If we impose the requirement that a'(t) be inde-
pendent of the particular process we consider, we
obtain powerful self-consistency conditions which
we can use to determine the parameters describ-
ing the qq meson spectrum. These parameters
are highly overdetermined in our scheme. The
fact that, in spite of this, our conditions are con-
sistent with each other suggests that a more gen-
eral derivation of Eq. (6. 1) than the one presented
here probably exists.

We find that we recover most of the usual results
of the additive quark model. But we also obtain,
without any additional arbitrary parameters, the
correct Regge slopes and vector-pseudoscalar
mass differences. The latter result is consistent
with a quark model in which we add an effective
spin-spin term to the long-range interaction (see
Appendix A). However, although our results are
consistent with such a suitably modified quark
model, we can obtain them in terms of a smaller
number of a Priori parameters. Indeed we only
have two such parameters, one of which merely
fixes the energy scale.

We obtain the usual quark-model result m&,
'

=2mE' —m, ' for the mass of the g„buta higher
value m~„'——', (m, '+ 2m, ') for the mass of the q„.
The resulting masses m&,

——0.687 GeV and m~„
= 0.462 GeV are still much lower than the masses
of the experimental q' and q. However, cylinder
corrections, which go beyond the planar level of
our model, are expected to be important in both
cases. "

We actually derive an infinitely rising Regge tra-
jectory in our model. If we assume a static inter-
quark interaction this is equivalent to deriving ef-
fective confinement. Our model only gives the
leading trajectory, which is correlated mainly with
the long-range part of this interaction. Et might be
interesting to study what would happen if we added
in a short-range interaction given by one-gluon
exchange. This would presumably lead to fine-
structure effects for the masses of the particles
lying on the lower-lying trajectories. These might
be particular important for the charmonium spec-
trum, which is currently being investigated.

One of the consequences of the presence of an
effective long-range spin-spin interquark interac-
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tion in our model is that we no longer have &, —n,
—1 when t —~, as would be predicted by a, qua, rk
model which did not have such an interaction. It
is sometimes argued that the experimental result
m&

' =m~' & m, ' —m, ' suggests that &, —1 —&, for
la,rge t. This argument, however, is based on ex-
act p-A, and m-8 exchange degeneracy. An equally
plausible explanation of the mass inequality is to
attribute it to the breaking of &,-&~ degeneracy due
to nonplanar corrections (see, . e.g. , Chap. 5 of
Ref. 10). These corrections would be somewhat
larger tha, n the corresponding ones for Q.', and Q.&,2'
but smaller than the ones for baryon trajectories.

We obtain an q„which has a different mass from
the m in our scheme. This is because the quan-
tum numbers of the g„aredifferentfromthose of the

m, causing it to couple differently to other parti-
cles. Our result contradicts the usual expectation
of p„-Nmass degeneracy, which is assumed in
most calculations. " However, this expectation,
while it does not lead to any inconsistencies in
most schemes, has never been actua, lly proved
from dua, lity in the same general sense that it has
for the cu and p', one a,lways has to rely on more
specific models. The usual dual-resonance-model
proof, for example, assumes an amplitude struc-
ture which was abstra, cted from a cia,ss of models
which were incapable of incorporating the usual
vector trajectories along with the'assumed pseudo-
scalar tra, jectories. "

Future ca,lculations using this mod'el might also
include '.

(i) A study of baryon masses. This would involve
a study of.baryon-antiba, ryon scattering, which
should give the baryonium spectrum at the same
time. "

(ii) Calculations which do not use assumption (b)
of Sec. VI. This assumption is not needed if we
take the average of all the clusters consistent
with the no-double-counting requirement (1) of
Sec. II. Such a. calculation requires a knowledge
of relative cluster-particle couplings, which would
have to be evaluated at the same time —using, per-
haps, the methods of Sec. VIII.

(iii) Our simple scheme could be used as a
zeroth-order approximation in a, more detailed
planar-bootstrap calculatiop. This could, in turn,
be used as the input for evaluating higher-order
terms in the topological expansion.
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APPENDIX A: APPLICATIONS TO qq ~ qq

Strictly speaking, our derivation of Eq. (6.1) is
only valid for hadron+ hadron —hadron+ hadron
processes. It would be valid for qq scattering
only if quarks were themselves unconfined physical
particles. In this appendix, however, we shall
simply assume that it continues to apply even when

they are confined and have unequal masses. We
then find from, say, ud scattering that we can
generate o.', (t) with the parameters of Sec. VI if we

take

a
—2mu (A1)

where m„is the mass of the u (d) quark. In par-
ticular if we take the cluster a to be a massless
gluon we see that we must have m„'=0.

Suppose we next include strangeness and assume
that the interaction between quarks is flavor inde-
pendent. This means that the cluster a and output
&~ must be the sa,me for ud, us, a,nd ss scatter-
ing. From Eq. (6.1) we then obtain the usual ad-
ditive-quark-model result

t~ -t»*= t»* —t, = 2(m, ' —m„'), m„=m, , (A2)

which agrees with Eqs. (7.8) and (7.9).
In Sec. V we noted that the quantity L in Eq.

(4. 14) can be interpreted as an orbital angular mo-
mentum. Suppose we then take the usual quark-
model prescription that j=L + 1 for vector mesons
a,nd j=L for pseudosca, lar mesons, The latter is
equivalent to making the replacement Sy+ $2 Sy

+S, —1 in Eq. (6.1) [see Eq. (4.3)]. If we again
assume Eq. (A1), flavor independence immediately
gives P- V mass degeneracy with t, =t„„=t„t~
=t~+, and t&, —t .

The simplest way of breaking P-V degeneracy is
to drop Eq. (A1) for the pseudoscalar mesons and
to take, instead,

s, = 2m„'+P(-,' -S, S,), (A3)

where P is a positive constant. This reduces to
Eq. (Al) for the vector mesons but gives a higher
s, (and hence lower masses) for the pseudoscalars.
With a flavor-'independent intera, ction between the
quarks we then have the additive quark-model re-
sult

t„-t» t» —t, = 2(m, ' —m„——'), m„„=m, . (A4)

From Eqs. (5.3) and (AS) we also see that, if we
use the equivalent-potential description of Sec. V,
we must have an extra, constant S, 'S, term in the
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Bishari, and Professor C. Rosenzweig for valuable
comments. This work was supported in part by
the U. S. Department of Energy.
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effective long-range interaction. However, unless
we consider meson-meson processes, we have no
way of calculating P or generating an q„-m mass
difference.

APPENDIX C: NN ~ wm' EXAMPLE

The t-channel N~- n'm amplitude can be described
in the usual way by the n& amplitude'

APPENDIX B: CROSSING FOR n'x SCATTERING &=u(q, )[6+-',y (q, +q, )$]u(q, ), (Cl)

( )
1 ",A(v', t)
71'

p V —V
(B1)

where A is the s channel absorptive part, we have

r(s, t) = —[A,(t)+ vA, (t)+ ],1
(B2)

where A& is given by Eq. (3.3). If, furthermore,
we have, as before, the Regge behavior A(v, t)
=b,b, v for large s, Eq. (3.3) gives

A (t
b, (4)b, (t )

~'(t, )(t, -t)
near t = t&, where t& is given by Eq. (8. 1). The
'A, (t) term in Eq.. (B2) then gives

(B3)

Suppose we expand our original "ordered' planar
amplitude & in powers of v for fixed t. Since
&(s, t) satisfies a fixed-t dispersion relation

2%v
1 —t/4M

(C2)

where M is the nucleon mass. and ~' are free
of kinematic singularities and satisfy fixed-t dis-
persion relations. Their s-channel absorptive
parts B and 4' have the Regge behavior'

B=gv
&'= x~,

so we have the finite-energy sum rules

J
S

ds(B'-qv )v '=0,
p

(C3)

(C4)

(C5)

where 9, u, and q„q,are the wave functions and
four-momenta of the nucleons involved, and 8 andI are the invariant a,mplitudes. Instead of 8 and
it is usually more convenient to deal with and

( )
1 I"(s)
& tx-t

near t=t, =~„where

(B4) J S

ds(A' —)(v )v'=0,
p

where

a'= va.

(C6)

(cv)

&(s, t) = r(t, s),
and so Eq. (B4) also implies that

T(s, t)=— I"(t)
tp -S

(B6)

(B7)

near s=t, . From Eq. (B1) this, in turn, corre-
sponds to a contribution to A(v, t) given by Eq.
(3.5), with s, = t, and the function I' given by Eq.
(B5). But I'(t) is also given by the finite-energy
sum rule (4. 5). If we therefore equate Eq. (B5)
evaluated at s = t, with Eq. (4. 5) evaluated at t = t,
we find that we can satisfy crossing at s =t =t,
with

(3m —4m

(B8)

Using Eqs. (4. 18) and (6.8) this gives E = 0.54,
which is in fa,ct a small positive number and shows
that I is dominated by the p resonance.

(B5)

We have added an extra, positive constant E to take
into account any possible j= 0 (e) bunip at t = t, .

Since 7" is crossing-symmetric,

APPENDIX D: EXPLICIT TRIPLE-REGGE COUPLING
CALCULATION

As discussed in Sec. VOIB, we will assume that
K(j) is given by Eq. (3.14). Now for wv scattering
at t=0, with m, '=0 and 5= c, Fig. 5(b) gives'

t~
y'a"'(v 0)= dt'y (t') ~W(t') '

y6
' @go't„

x (a'v')' "''8(s -4s,),

where

X(t) = e '~ "'/sine+(t),

[s T. (s. —4s ) ]
v'=s + ', (t' -2s,) . -

(»)
(D3)

(D4)

To simplify our problem further we will assume

Since S, + S,= 1 for this process, Eq. (C5) corre-
sponds to Eq. (4. 1), while Eq. (C6) entails making
the replacement S, +S,-S,+S, —1, as in Eq. (4.3).
The amplitudes involved in the two equations are
different, although both B' and A. ' are proportional
to v for large s.
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C
FMSR

From Eqs. (D6) —(D9) we then have

g(t', t', 0)y„,(0)
n(0) + 1 —2 n(t ')

FIG. 12. Finite-mass sum rule FMSR for vt~ vtX re-
lating cluster production and triple-Regge regions.

that we can replace t, by their asymptotic forms
for s & 4s, . Equation (D1) then reduces to

0
+2+(2)(v 0) '(t') x(t') '

16ms

x {n'v')' "' ' 8(s -4s,) .
(D5)

If we take the Mellin transform (3.3}of Eq. (D4)
we obtain

+ tg+1 0

~ OO

x [ l(n3g + Ltl)]200 ) g-) (D6)

To relate the dimensionless coupling y„to a
triple-Regge coupling we will use the usual finite-
mass sum rule (FMSR) for the inclusive process
mm- mX in the limit s —,

J
NO2 d+ G(tI) g 2a ((' )

0 dt'dÃ' s' M'

(Dv)

)( (niM 2)a (0)+1-2a () )'
o~ (D12)

If we now combine Eqs. (3.11}, (3.14), (3.6),
(4. 5), (D6), and (D12) at t = 0, and use the fact
that b,b, = y„~'&' "', we obtain the condition

n(O)+1 ', H(t')
16' „n(0)+ 1 —2 n(t') n'

where

g'(t', t', o) Ix(t') I'

[n(0) + 1-2n(t')]'
~&~ 4 'I e (0)+1-20t (t')

3s, + t'i—
We will assume that g is given by a dual-tree mod-
el of the Neveu-Schwartz type, which has no tachy-
on on the p-f trajectory. This gives

g'(t, t, o) X(t) '=&g'I"(n(0)) F,( (0)+1 2 (t)),
I"(1 —n(t))

(D14)

where & is the number of quarks and g is a re-
duced coupling.

Equation (D13) involves a nonelementary inte-
gral. However, the integrand falls off fairly ra-
pidly with t' and so we will approximate H(t') by
an exponential

where H(t') = H(0)e'"' (D15)

G(t') =16 r„.'(t') ~x(t') ' g(t', t', o)y„.(o),

(D8)

with c adjusted so that H'(0) is exa,ct. Equation
(D13) then reduces to

H(o)
exp [1 —n(0)] —,E, [1 —n(0)] —,

d(r f d(x

dt'dM' )(dt' (D9)

where {do/dt'), is the usual differential cross sec-
tion for mm'-mc, which is given by

M =M2-t'-m, ', M is the missing mass, and g is
the dimensionless nnn triple-Regge coupling (see
Fig. 12). We will assume that the low-M' region
is dominated by c production, so that, in the nar-
row-resonance approximation

n(0}+1 t (D16)

where E, is the usual exponential integral. If we
take so to be the natural threshold of Fig. 5(c}, we
have s0=4s, . From Eq. (6.9) we then have s,
=

2 m, '. With the trajectory parameters given by
Eq. (6.8) and f given by Eq. {4.18), Eq. (D16) then
gives

&g'/16)(= 0.94 . (Div)
2tI ~t1 2

2(tI)(nlrb)2n(t ) (D10)

This is quite close to the value extracted from ex-
periment in Refs. 5 and 11.

M =s +-'n
0 c (D11}

Since the spacing between resonances lying on
n(t) is n' ', we will take the separation point Mo'

to be

APPENDIX E: UNEQUAL-MASS-CHANNEL PROCESSES

We have argued in Sec. III that our approach
may not be reliable when m, + m2 or m34 m4. In
this a,ppendix, however, we shall investigate
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npnv(a, )P V nv,

npnv(a )VP- nv,

n, n, (a,)VP- n, ,

npnv(a~)PP nv,

(El)

(E2)

(E3)

(E4)

These processes are consistent with Eq. (6.1) and
the results of Sec. VI provided we take

2s =s =mv,a5 a6

s, =s, = mp'+ —,'(m~' —mp') .
(E6)

(E6)

whether Eq. (6. 1) continues to apply for such
processes anyway, given the results derived from
equal-mass-channel processes.

For simplicity we shall restrict ourselves to the
. simple case considered in Sec. VI with degenerate

V and P multiplets. In addition to Eqs. (6. 11)-
(6. 13) we can now have the following processes
generating v:

v(ao)VP- n (E7)

where the cluster a9 must contain P and, perhaps,
its j= 1 Regge recurrence P". The process (E7)
is consistent with Eq. (6.1) provided we take

s, =-,'(3mp'+m .'). (E6)

But G parity would exclude any I' contributions to
a, in Eq. (E4). This means that we must have s,C8
~ mv', which contradicts Eq. (E6), since mp (mv.
We conclude that either Eq. (6. 1) simply does not
apply to Eq. (E4) or the coupling V-P nv -must

vanish at the level of approximation being con-
sidered here; it may of course be nonzero when we
include higher-order corrections.

With V-P-n~=0, Eqs. (E1)-(E4) drop out and
the only processes we are left with are Eq. (6. 11)—
(6. 13). In the case of processes generating np,
Eq. (6. 16) also drops out, but we can now have
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