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Nucleon-nucleon scattering at large momentum transfer is analyzed within the framework of quantum-
chromodynamic quark and gluon interactions. The spin dependence of the hadronic amplitude is found to
be particularly sensitive to the underlying dynamical mechanisms, Detailed discussions of the quark-
interchange and Landshoff pinch-singularity contributions are given for large-angle pp, np, and pp elastic
scattering. A possible explanation is given for the large spin-spin correlations measured by Crabb et al. We
also define a new SU(2) symmetry group, H spin, which generalizes conventional helicity, and is an exact
symmetry of the quark-interchange process.

I. INTRODUCTION and (1.2)

One of the most interesting areas of possible
application of quantum chromodynamics (QCD)
and asymptotic freedom is the domain of exclusive
processes at large momentum transfer, such as
hadron scattering at large t and g, and elastic form
factors at large t. Those applications are interest-
ing because the form of the hadronic amplitude in
this region depends in detail on the interactions of
the quark and gluon constituents at short distances
as well as the properties of the bound-state wave
function which allow the final-state hadrons to be
reformed at large momentum transfer.

Part of the motivation for this work has come
from the striking spin correlation in pp scattering
recently measured at Argonne by Crabb et al. ' for
polarized protons (p„5= 11.75 GeV) scattering on

a polarized target. A remarkable result is that at
the largest momentum transfer (P rz = 5.09 GeV',
8, =90'), one finds that it is -4 times more
likely for protons to scatter when their spins are
both parallel and normal to the scattering plane
than when they are antiparallel:

d(r/dt(0 0) (1.1)
do'/dt(& t)

This result is particularly interesting since it oc-
curs in the same momentum-transfer regime where
the dimensional-counting scaling law for fixed-
angle scattering appears to describe the data. For
example, the recent measurements of Stone et al. '
show that at 90'

dO'
(np np) 00 s-10.4040. 34

dt

—(A+ B-C+ D) = „9f(t/s),
d0' 1 (1.3)

where n=n~+n~+n~+nD is the total number of
initial and final constituent fields (n= 12 here) An.
overall fit to all available Pp data for [Ii, ~u ~& 2.3
GeV' gives s '""f(8, ). Equation (1.3) is a
consequence of scale invariance of the underlying
constituent interactions, and is not inconsistent
with the whole range of exclusive scattering mea-
surements, including meson-baryon scattering,
meson photoproduction, and elastic form factors.
In QCD, the dimensional-counting rules hold
asymptotically for Feynman diagrams involving the
minimum number of off-shell quark and gluon ex-
changes. Logarithmic corrections can arise from
the running coupling. constant and higher-order
gluon-exchange diagrams. ' In addition, as first
discussed by Landshoff, ' there are potentially
important "pinch- singularity diagrams" contribut-
ing to elastic hadron-hadron scattering which in-
volve succession of nearly-on-shell quark-quark
scattering amplitudes. The "Sudakov" form factors
associated with these amplitudes in fact lead to an
asymptotic damping of such contributions al-
though, as we shall discuss iri Sec. III, they may be
playing an important phenomenological role in the
subasymptotic region.

The consistency of the data with the predicted

do'
(PP PP) 0- S 9.8140.05

dt

for 10(s(22.4 GeV'. This is good agreement with
the counting rule'
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s "f(8, ) behavior implies that a description of
the spin dependence of pp scattering at large mo-
mentum transfer should be possible at the quark
and gluon level. Moreover, asymptotic freedom
implies that the basic subprocesses responsible
for the large momentum transfer can be calculated
in terms of perturbative diagrams.

As we shall show in this paper, it is difficult to
find any single simple quark-gluon mechanism
which can give a spin correlation larger than 2 for
doldt(tt)ldoldt(t t). However, it is possible that
the interference between two competing amplitudes
may well describe the data. In addition to the
fixed-8, power-law behavior and spin dependence
there are other phenomenological parameters of
exclusive scattering that can discriminate between
different dynamical mechanisms:

(a) the form of the angular dependence of f(tls)
in (1.3},

(b) the flavor, isospin, and crossing dependence
of the amplitude, as obtained from ratios such as
do'Id t(np -np) /do/dt( pp -pp) and do/dt( pp -pp)'I

The spin dependence of nucleon-nucleon scatter-
ing is particularly sensitive to the detailed form of
the theory since it depends on the way that spin
information is transferred fromm the nucleon to its
constituents as well as the spin couplings at the
quark and gluon level. In this paper we shall ex-
plore the implications of these phenomenological
constraints of fixed-angle scatte'ring for perturba-
tive QCD.

II. SPIN EFFECTS IN NUCLEON-NUCLEON SCATTERING

It is interesting to observe that, independent of
dynamics, there are always significant spin corre-
lations in the elastic scattering of two identical
fermions at 8, = 90'. It is well known that time-
reversal and parity invariance only allow five
independent proton-proton spin amplitudes. For the
90' scattering of identical particles, all amplitudes
involving a single hei ic ity flip [e.g. , M (++,+ —)j
vanish. As we show in the Appendix this implies
a sum rule for the polarization asymmetries:

A„„-A„-A„=1.
By definition

(2.1)

The outline of this paper is as follows. In the
next section we make some remarks concerning
a sum rule for the polarization asymmetries in
proton-proton scattering and the sensitivity of
elastic scattering to spin-dependent effects. In
Sec. III we review the general features of specific
QCD mechanisms for exclusive scattering: gluon
exchange, quar/ exchange (or interchange), ' and
the Landshoff triple-qq-scattering pinch contribu-
tion. Specific predictions for spin correlations are
given and compared with the data, and predictions
for np and pp scattering are also given. Section IV
is devoted to the quark-exchange model and the
idea of H spin. The latter is a generalization of
helicity and is an exact symmetry group for the
quark- interchange amplitude.

(do/dt)(t t) + (do/dt) (t t) —(do/dt) (t t) —(do/dt) (t t)
(do/dt)(t t) + (do/dt)(t t) + (doldt)(t t) + (d&/dt)(t t) (2.2)

(2 3)A —-A„- -Affg»
i.e. , doldt(tt)ldoldt(tt) =2 for spins normal to the
plane. Thus particle identity induces a significant

where doldt(tt) is the elastic cross section with
initial spins both polarized along the beam (z) di-
rection, $,' = $~ =+ ~. Similarly, the spin asymmetry
A„„refers to initial spins polariz|. d along the nor-
mal (n= x) to the scattering plane, and A„refers
to spins polarized (sideways) in the plane (parallel
to y). In each case, the final spins are summed
over. (Notice that A„would have an overall minus

sign if we had used c.m. helicities instead of S,.}
The sum rule implies that for 90 pp scattering,

we cannot have simultaneously A„„=A„=A„=0;
i.e., there must always be some spin. asymmetry.
In a model where the basic interactions are inde-
pendent of the spin direction such as the constituent
interchange model, we have

A„„=-A„(all angles},

and the sum rule becomes

2 A„„-A „=1 (8, = 90') .

(2.4}

(2.5)

It is thus very important that measurements of
A„„and A» both be made at 90 at the same energy;
any deviation from 2A„„-A» —1 = 0 would imply a
significant contribution from the double-helicity-
flip amplitude and would tend to rule out a simple
perturbative explanation of the data. For refer-
ence, in the case of 90 electron-electron scatter-
ing [QED in Born approximation (m,'/s-0)], one
has A&& A+ ~ and A» 9 ~

spin asymmetry.
In a perturbative QCD model one generally ex-

pects that the double helicity-flip amplitude
I(++,—-) is negligible at high energies. If we as-
sume this is the case then
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Because of coherence and particle identity,
large-angle pp scattering is a sensitive test of
spin effects. In contrast, in typical inclusive re-
actions, any spin correlation which is important
at the quark-gluon level quickly becomes diluted
when the hadronic wave function is taken into ac-
count; the net polarization of quark in a nucleon
with a valence wave function ~n)=~q&q&q4) is —,'.

For. example, consider the simplest QCD model
where the nucleon-nucleon inclusive cross sec-
tion for the production of large-p, jets can be com-
puted from an incoherent sum of quark-quark
cross sections. The spin asymmetry of the n-n
cross section is then given by

t
1 pl

A(N, , N, ) = ' dx, ' dx, Q &6, („,(x,)
&o o at y

x &G, („,(x,)A(q, qa),

(2.6)

where A(q, , q~} is the qua, rk-quark spin asymmetry
at s=x x s, t=x, t, u=x, u, and

III. LARGE-ANGLE SCATTERING MECHANISMS
AND SPIN

The spin-dependence observed by Crabb et al.'
is so striking that a new look at the possible mech-
anisms of large-angle scattering is certainly re-
quired. In this chapter we shall review some
basic mechanisms and discuss their consequences
for spin correlations.

A. Quark-quark scattering

At first sight, the most obvious mechanism
which can transfer large amounts of momentum
between colliding hadrons is the qq- qq scatter-
ing in impulse approximation. That is, one quark
from one hadron scatters from another quark in
another hadron, after which the quarks must
share the transferred momentum with the other
quarks in their respective hadrons if the hadrons
are not to break up. It is easy to see that

do' d0'
(pp- pp—) = C (qq-qq—)F '(t)

dt dt
~c, ,„(x)= (q. o/iv&) — (q. w/ivw) (2.7) + (u-channel exchange), (3.1)

gives the net number of quarks of flavor n and
light-cone fraction x aligned with the nucleon spin.
In the case of the proton, the quark valence wave
function is completely determined by isospin and
color symmetry, and one has for a spin-up pro-
ton

where F~(t} is the form factor and C ~ 81 is a fac-
tor which counts the number of coherent diagrams.
For the experiment of Crabb et al. , pyg 11 ?5
GeV, 8, =90' (s=23.8 GeV', t=-10.1 GeV'),

dt
(pp-pp}=-1x10' G,V

gf
—

3 P cv+~ —3 & zv~~ 3 p C'tg~ —3 ~ (2.8) thus we need

Thus, averaging over x, and x„
(2.9)

(2.10)

~A„(pp)~- 0.036. (2.11)

The above estimate is clearly quite crude, and
can be circumvented if the distributions for spin-
up and spin-down quarks do not have the same x
dependence. For example, it has been suggested
that a quark with x-1 will have the same spin as
the parent nucleon. ' Calculations have been done
with selected quark distributions which do give
spin asymmetries in inelastic scattering several
times larger than those estimated above. '

~(p, p) =A,.„(-.",)+A,.„(--:,),
where we have distinguished the cases of equal-
and unequal-flavor quark-quark scattering. For
gluon exchange in QCD the longitudinal spin asym-
metry (averaged over color) is maximal at 90

do—(qq-qq) ~ 100 mb/GeV'.
dt (3.2)

This is many orders of magnitude too large to be
understood in QCD; e.g. , single-gluon exchange
(t channel) gives

dO' 2, 4m—(qq-qq) = —n '(t) —=10 ' mb/GeV'.
dt 9 s

(3.3)
/

/

In fact, this is an overestimate since single-gluon
exchange between singlets vanishes. Even if this
estimate could be circumvented, the angular dis-
tribution predicted by (3.1) is incompatible with
the data; in particular, vector gluon exchange im-
plies that the Hegge behavior will stay close to
n,«(t) -1 for all t, whereas the data indicate that
n,«(t)& -1 at large t."

Although it is possible that the qq-qq hard-
scattering subprocess could be important in high-

p~ jet production experiments, it is unlikely-that
it plays. any significant role in elastic scattering.
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+ permutotioni

FIG. 2. Some examples of graphs that can contribute
to quark interchange. Each graph is the lowest order
that will allow quark interchange and equal sharing of
momentum among the quarks in each nucleon. Many
more such graphs could be drawn.

FIG. 1. Generit."diagram for the constituent-interchange
model.

B. Quark interchange

In addition to quark scattering via gluon-ex-
change processes, QCD also predicts that hadrons
can scatter at large momentum transfer by quark
exchange or interchange. ' This is the leading QCD
contribution to large-angle Compton scattering.
Although single-gluon exchange is forbidden in
lowest order, quark interchange is not, and one
can easily see that quark interchange always oc-
curs in leading order. Witten" has shown that
for N„„,- with Nn, fixed, quark interchange is
rigorously the leading dynamical mechanism in
baryon-baryon scattering.

The cross section of the singlet quark-inter-
change amplitude has the characteristic form7

—(&&—C&) = —(&q —Cq) E '(t)
do' do'

dt BD.

+ (permutations) . (s.4)

where (do/dt)(Aq- Cq) is the amplitude for q-had-
'

ron scattering at the reduced kinematics (see Fig.
1). For pp-pp scattering we take

quark-interchange diagrams are sufficiently large
as to account for the observed cross sections, al-
though a reliable calculation of the normalization
has not been given. Equation (3.6) gives at large
s and fixed 8,

do 1

l cos'e—)
'

(3.7}

(do/dt)(np - np) l'+ (-'„')'+ (—'„')'
(doldt)(pp -pp) 2'+ l'+ i2 (3.6)

The best power-law fit to the pp —pp data4 gives
s '""over a large range of angles and energies
and s ' ' for gp np. ' The angula, r dependence
predicted by (3.V} is compatible with the data for
(t~, ~u[& 4 GeV'. Equation (3.6) predicts asymp-
totic Regge behavior M~~~~-u "'P(t), with n(t)- -2 at t- -~, and P(t) -E(t) -c/t', which is
compatible" with the data. Thus the quark-inter-
change amplitude appears to be the dominant QCD .

mechanism, and is roughly compatible with the
features of large-angle pp data.

As shown in Sec. IV, the amplitudes for quark
interchange can be readily calculated in terms of
their spin and isospin properties (see Table I). We
have at 90

do' 1
d, (Pq -Pq)" —,.F,'(n), (s.6)

which has the correct power dependence predicted
by QCD, and corresponds to j=0 behavior in the
(diquark) u channel. Thus

(3.6)

&..(Pp-Pp) =l,

A„„(np-np) = -0.439.

The first result can be compared with the mea-
surement of Stone eg al.2 at 90',

where C counts the number of coherent diagrams,
spin states etc. Although the amplitude is reduced
by —,

' for color, there are an enormous number of
distinct coherent QCD diagrams which contribute
to the quark-interchange amplitude (see Fig. 2},
where we include diagrams where gluons are ex-
changed between hadrons, as well as different
flavor exchanges. Thus it is conceivable that the

(do/dt)(np -np)
(«/«)(PP -PP) (s.iO)

for 10&s&25 GeV'. At the highest energy mea-
sured, the ratio is 0.50+0.22, so the prediction
0.594 is not ruled out as a high-energy limit. The
pp/pp cross-section ratio at large angles is also
consistent with crossing the interchange ampli-
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TABLE I. Helicity amplitudes M(~,X&, X,A7, ) for nucleon-
nucleon scattering in the constituent-interchange model.

C. The Landshoff contribution: Triple-gluon exchange

pp-pp
M(++ ++)=

9
[31f(s,t)+ 31f(s,u)]

M(+ —+-)= 9[14f(s,t)+ 17f(s,u)]

(-+,+-)= —[17f(s,t)+ 14f(s,u)]

np np

(++,++ ) =
9 [14f(s, t)+ 17f(s,u)]

M (+-,+—) = -,
' [22f(s, t)+ 25f(s, u)]

M(-+, +—) = T[- Sf(s, t) —8f(s, u)]

c. pp-pp
M(+-,+-)=- [31f(u, t)+ 31f(u, s)]

M(++, ++) = Y[17f(u, t)+ 14f(u, s)]

M(-+, +-)= -'[14f(u, t)+ 17f(u, s)]

D. Predictions for asymmetries at 90' (u = t —zs)

Ann{pp)= A„(pp)= A„{pp)=-,'

Ann(RP ) = -A77 QP) = — ss(nP) = —0.439

»-(+)'x'
nn s 1+ ( )x (s.ii)

where

f(8) f(v -8)-
f(8)+f(~ 8)'-

Thus A„„ is predicted to be within 2% of —, even
when y= 1 [y=0 for the form in Eq. (3.6)]. The
data clearly indicate that Ann is not a constant
near-

Our expectation, then, is that there is an addi-
tional amplitude which strongly interferes with the
quark-interchange contributions at Argonne ener-
gies; most plausibly, the quark-interchange con-
tribution is dominant at asymptotic t and u, and the
interfering amplitude is most important at low f,

and u. As we shall discuss below, the behavior of
A 7 7 and A„ in the inte rfe rene e region can p lay an
important role in sorting out the possible sub-
asymptotic contributions.

These results for the quark-interchange model
have also been obtained by Farrar, Gottlieb,
Sivers, and Thomas, "who also consider the pos-
sibility that nonperturbative effects (quark-quark
scattering via instantons) can explain the data.

tude. '"
The biggest failure of the interchange mechanism

is in the spin correlation. For all angles we pre-
dict from Table I

As Landshoff has discussed, ' there are potentially
large contributions to nucleon-nucleon scattering
which can arise from three successive nearly on-
shell quark-quark scatterings, each through the
angle 8= 8, . The Landshoff amplitude has the
form

M —
~ M

PP (St@$2)&t&) ~c (s.i2)

2(Q +L)2
(2Q-L)" 2(Q- —'. L)' (s.is)

Thus if L-2Q, one can obtain a maximal spin
correlation A„„-1, r„„—= dg/dt(t t)/do/dt(t t)
The Landshoff contribution alone gives A„„(90}
=0.22, r„„=1.56. We also note that if we choose
L/Q = 1.491 to give A„„(pp)=0.6 to agree with the
Argonne data at p„,= 11.t5 GeV/c, then one pre-

where p,
' is a hadronic scale size, and the factor

i arises from integration in the Glauber-type
nearly real intermediate states. A very complete
calculation of the Landshoff amplitude for triple-
gluon exchange in QCD has been given by Fa,rrar
and Wu. ' (See also Ref. 6}

The most crucial prediction of the three- gluon-ex-
change mechanism is the angular distribution. Be-
cause of the vector exchange, the eff ective Regge be-
havior is again fixed at n (t}=—1, in contradiction to the
large- angle data. It may be, following Donnachie
and Landshoff, ' that these contributions play an

important role for very large s, where the CERN
ISR cross section is reasonably consistent with the
predicted form dc/dt- c/t' (s»

~
t ~). If we fit the

Landshoff cross section ta the final ISR cross sec-
tion (s&800 GeV', 4&)t~&12 GeV'), then this vec-
tor-exchange contribution extrapolates to a cross
section at least 10' times smaller than the s =40
GeV' cross section near 90', in addition to having
an incompatible angular distribution. We also
note that there. is an additional suppression of the
qq-qq near-on-shell amplitude due to gluon cor-
rections to the qqg vertices not included in the
Born approximation estimate. ' Asymptotically
these "quark-form-factor" corrections yield an asy-
mptotic power behavior in QCD which fails faster at
fixed angle than the quark- interchange contribution.
For completeness we give the prediction of the
Landshoff three- gluon-exchange contribution in
Table II for the np -yzp and pp -pp spin ampli-
tudes. As an illustration of the types of inter-
ference patterns possible, if the Landshoff ampli-
tude is L(8, ) and the quark interchange ampli-
tude is Q(8, }, then at 90' the pp-pp spin corre-
lation is
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TABLE II. Helicity amplitudes resulting from applying
the Landshoff mechanism to triple gluon exchange and

triple 4 = O', I= 0 meson exchange. Results for gluon
exchange at all angles are in Farrar and Wu, Ref. 5.
P (z) is defined in the text.

A. Triple gluon exchange at 90'
{ ) pp-pp

M(++,++)=L,

M(+-, +—) = 'I.
8

M(-+, +-)= ', I,

(b) np-np

M(++, ++) = —' I„

M(+ —,+-)= -'L
8

M(—+,+—)=0

(c) Predictions for asymmetries at 90'

A„„(pp) = A„{pp)= 0.22 A„(pp) = 0.56

nn(np) = ss{np) = 0 Atr {np) =—

B. Triple 0 exchange {any angle)
(» pp-pp

M(—,++)=P (~)+P (-~)

M(—+,+—) =P(z)

However, the Landshoff three-gluon-exchange
mechanism suggests another possibility. In the
Landshoff amplitude, each qq-qq amplitude
transfers —,

' of the exchanged momentum, i.e.,
t=ll&t, s=1/8s. Evenfor It~-10GeV', f isstill
reasonably small, and only relatively low-energy

qq -qq kinematics are involved. Thus, rather than
perturbative QCD, we should consider a more con-
ventional description of the qq - qq amplitude as
far as the Landshoff contributions are concerned.

It is clear from dispersion theory, that the qq
-qq amplitude receives contribution from t-chan-
nel meson exchange, p, o., p, w, A, etc..„ in addi-
tion to more complicated cut contributions. The
complete analysis of the Landshoff diagram, which
requires three M„„amplitudes, is thus very
complex. We know from our previous analysis that
the contribution of three elementary vector ex-
changes gives o.',«(t) =—1, and an angular dependence
which is difficult to reconcile with the observed
large-angle data.

We thus turn our attention to the scalar- and
pseudoscalar-meson-exchange contribution [or
alternatively, Reggeon exchange with n,«(t) -Oj.
The coupling of a z or a o to a quark can be nor-
malized if we assume impulse approximation

M(+-,+-)=P (-~)

(b) p- p

M(—,++)=P (z)

M(-+,+-)=P( )

g N4 qy Tq N4 =g,~gugy57uN

We then find

2 3't2 2
grus

~

gvNN

4w 5] 4v

(3.16)

(3.17)

diets

(do/dt) (np np)-
(«/«)(Pp -PP) (3.14)

D. Mesonwxchange contributions

Even though the coupling constant of a pion to a
nucleon is large (g'/4~-=14), the contribution of
single-pion exchange to large-angle scattering is
small in the fixed-angle region:

=10 "mb/Gev', (3.1s)

compared to the data =10 ' mb/GeV', at s= 24
GeV', t —-10.4 GeV'.

which is incompatible with the Stone et al.' result.
Given the above difficulties, especially the problem
with the angular shape, we conclude that the three-
gluon-exchange Landshoff contribution is not play-
ing an important role in the fixed-angle scattering
data.

M„(-—,++)~, g'(t)t-m. (3.18)

for massless quarks, where g'(t) represents the

i.e., a reasonably large coupling constant. The
same remarks can be made for the 0. We have not
attempted to normalize absolutely the Landshoff
contribution from these contributions, but because
of the. small momentum transfer involved, it is
possible that multiple-meson-exchange contribu-
tions can make a significant contribution to the
large-angle amplitude, at least for moderate val-
ues of t.

The most striking characteristic of the multiple
g- or o-exchange contribution is the presence of
the spin-flip amplitude M(- —,++). This implies
A„„W -A„and the breakdown of the 90 identity
A„=2A„„—1. Thus we re-emphasize the impor-
tance of measurements of A„and A„„at the same
large-angle pp —pp kinematics.

At intermediate ranges, cr exchange will domi-
nate p exchange because of its larger coupling. The
contribution to quark-quark scattering from 0 ex-
change has the form
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M = (1 —t/9M') '= P(z), —
sou

(3.19)

where k is a constant and z=cos6I, . Note that
the intermediate states include & and N* excita-
tions. It is straightforward to compute all of the
helicity amplitudes for the three-pion exchange.
If we consider this contribution, together with the
quark-interchange amplitudes, then for pp -pp,

M(++, ++) = Q(z)+ Q(-.),
M(, ++) =P(z)+P( z),

M(+ —,+-) = —",, Q(z)++,' Q(-z)+P(-z),

M( +,+ ) =+'q(z)++'q( z)+P(z),

(3.20)

where P(z) is given by (3.19) and we shall take
Q(z) = Q(-z}~ E(t)E(u) = (1 —t/0. 71 GeV') '(1 —u/0. 71
GeV'} ' for the quark-interchange contribution.
We then have

4Q(P+ P)+2(q+P)(q+ P)
4q'+ (p+p)'+ (q+ p)'+(q+ p}

(3.21a)

b b

"SS ="Ii

0.5
0 2

p~ (Gev&)

FIG. 3. Spin ratios for the illustrative model, which
has triple-& exchange amplitudes interfering with quark
interchange amplitudes. The data are &„„from Ref. 1.
For this model, A$f Agg.

corrections to the vertices. We shall assume a
monopole form, g'(t) =g,'/(1 —t/M') with M'=0.47
GeV',"or 9M'= 4 GeV as a typical illustration.
We are using the 0 to approximate the forces in the
scalar-isoscalar channel and experience here'~
seems to indicate that a low mass, m, =400 MeV,
is best. This is roughly the same size as the
constituent quark mass, or the kinetic energy of the '

quark within its confined state, and we will be con-
sistent if we neglect it.

Then, using Landshoff forinula (3.12), the t-
channel contribution is

&~i(pp- pp} ="..(pp- pp)

-2(q —P)(q —P)
4Q'+ (p+ p)+ (q+ p)'+(q+ p)' '

(3.21b)

where P =P( z). —The triple-o-exchange or quark-
interchange contributions alone each give (at 90 )
A„„=—,

' and A~g 3 but together they can interfere
to produce a, striking polarization correlation (see
Fig. 3). The relative magnitude of P/Q=4. 11 at
s = 23.9 GeV', 8, = 90 was chosen to give A„„
= 0.69, r„„=5.45. The corresponding prediction
for A« is also given in Fig. 3. At the above kine-
matics, A„=-0.56. The particular model that we
have here gives A»=A„at all angles.

We can also predict the parameters of the np
-np cross section, although this aspect of the
model is less reliable since the contributions of
g in addition to o exchange will lead to a compli-
cated isospin structure. However, the triple cr

exchange does give o'(np)/o'(pp) = —,', in agreement
with Stone et al.'

The above model is, of course, oversimplified
and is given for illustrative purposes. One easy
change to make is to modify the energy dependence
of the 0-exchange amplitudes by treating the ex-
changed particles as Regge poles. This would in-
troduce a factor [1+exp[iwn(t)]] into each of the
three exchanges. The energy dependence is then
quite different. For example, if we have a tra-
jectory which passes through zero near the value
of t that is correct for 90 scattering at p„b= 11.75
GeV/c, and if the trajectory has unit slope, then
n(t) changes by 0.36 unit when we drop to p„„=8
GeV/c (s=17 GeV'), and the real part of the
(1+exp[iwa(t)])' factor has only 40/o of its maxi-
mum value, thus reducing the interference with
the real quark-interchange amplitude.

Although the above calculation of quark inter-
change plus triple 0 exchange is too simple, it
possesses the general features which seem to be
required to understand the data. The dominant
feature of the model is the presence of two inter-
fering amplitudes which are roughly equal at s = 20
to 30 GeV', with different energy dependences and
roughly similar broad angular dependency at large
scales. The likely candidate for the amplitude
which is dominant at high energies is the quark-
interchange contribution. There is much more
uncertainty about the dominant low-energy contri-
bution, but triple-meson exchange seems to be a
reasonable possibility. A more ambitious calcula-
tion will require consideration of a general com-
bination of spin exchanges, phases, and absolute
normalization, but the presence of scalar or
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FIG. 5. Generic quark-interchange graph with momenta
and helicities labeled.
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FIG. 4. Proton-proton scattering cross section at 90'
multiplied by s . From Sivers et aE. {Ref. 7) and Ref. 15.
The units are mb Geva.

pseudoscalar exchanges predicts a large M (- —,++)
amplitude; comparisons of the A«and A„„spin
correlations will clearly be central for unraveling
this question.

We should remark that while the spin-averaged
pp elastic cross section does show the s "behavior
predicted by the constituent-interchange model
there are oscillations about this behavior. " A

plot of s'o do/dt(90') versus s shows maxima a,

factor of 2-3 above the minima is shown in Fig. 4.
One minimum is at s = 19 GeV' and the following
maximum is at s = 26 GeV'. The experiment'
which prompted this investigation is at s = 23.8
GeV'. We might guess that the peak of the oscilla-
tion is connected to the same interfering process
which gives the large asymmetry. Then the asym-
metry will rise further with a small increase in

' energy; the results of asymmetry measurements
at p„,= 12.75 GeV/c (s = 25.7 GeV') will be c[uite
interesting.

IV. THE CONSTITUENT-INTERCHANGE MODEL
AND H SPIN

We have concluded that quark exchange, or quark
interchange, is the dominant process for nucleon-
nucleon elastic scattering at high energies and
large angles. In this section, we will draw out the
predictions of this model for the scattering of
polarized nucleons. Figure 5 gives a picture of
the process, with the momenta and helicities
labeled.

There are two ways that we shall obtain our re-
sults. The first is by straightforward counting of
the ways and probabilities of exchanging quarks
of a given flavor and helicity. The second method
is more elegant and canbe used to derive additional
results, and relies upon a symmetry of quark ex-
change which is an SU(2) based on helicity rather
than ordinary spin. It is called H spin and is de-
fined in detail below.

At the outset, it is useful to remember that the
nucleon consists of three valence qua, rks, whose
wave functions are completely symmetric in space,
and antisymmetric in color. The spin-flavor (or
spin-isospin} part of the wave function is sym-
metric and for a proton is given by"

&18pi ——
2uf used~)+ 2ufd~)u~)+ 2d)u/u)

—Q ~Q ~d~ —'R ~d ~Q ~
—d~B ~Q ~

u~uidi ——u~tf Jut —diu~~ui (4.1)

(4.2}

where f(s, t) comes from the color and space part
of the wave functions, and N„. is the number of up
quarks with positive helicity in a positive-helicity

The arrows refer to spin up or down along a stated
direction. We can get the neutron wave function by
changing d-u and w --d, and we can get the oppo-
site spin or helicity states by appropriately chang-
ing the spins or helicities of each quark. The
elastic scattering amplitudes will of course con-
tain factors due to color and to recombining the
quarks into the proper spatial wave function. But
since these factors do not depend on either the
flavor or helicity of the nucleons we shall ignore
thexn. We shall also ignore exchanges of non-
valence quarks: Their contribution to the scatter-
ing amplitude falls by a higher power' of s than the
contribution due to valence quarks, and will be
small at high energy.

Let us begin by scattering two positive helicity
protons upon each other. Since the elementary
process in QCD is gluon exchange, none of the
quarks can flip helicity, and the final protons
must both have positive helicity. Note also that.
the two exchanged quarks must have identical
flavor and helicity. Then by considering the over-
lap of the exchanged quark state with the final
protons, one can see that the amplitude is
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proton etc. , and
~+ A

H =K= —, o n.X
(4.7b)

Nu+

Thus,

2N„= 3. (4.3)
The third or "sideways" component of H spin is
then uniquely defined by the commutation rules to
give

(4.4)
H =K, =~cr P&n. (4.7c)

(+-i Ti+-&=(2N„,N, +2N~, N~ )f(s, t)

=—', x 14 x f(s, t) . (4.5)

Qn the other hand, if the upper and lower protons
each flip helicity (A.,A.,= —+), then the interchanged
quarks still must have identical flavor, and the
quark that flows from proton a to proton d must
have positive helicity, while the other exchanged
quark must have negative helicity. One gets, ex-
plicitly,

(4.6)

After including the interchange c—d for identical
protons, we obtain the results in Table I. Similar
results were obtained independently in Ref. 12.

Since the quarks cannot flip their helicity, the
remaining two independent amplitudes, M(-+, ++)
and M(- —,++) are both zero.

Having gained experience with the protons, the
case of np elastic scattering is straightforward,
with the results given in Table I.

B. H spin

In certain scattering problems it is convenient to
generalize the concept of helicity to include a full
SU(2) group with helicity-flip operators in addition
to the conventional helicity. We call this SU(2}
algebra H spin, and we define it as follows: The
z component or longitudinal component of H spin
for a particle is its helicity.

For proton-proton scattering, one must add the
amplitude obtained when (p„X,) and (p~, X~) are
interchanged in Fig. 5, and after so doing we have
given the result in Table I.

I et us also consider explicitly the case where
one proton has positive and one proton has nega-
tive helicity; X„X,=+, —.When the upper and low-
er protons in I ig. 5 maintain their helicity (&„A~
=+, -), then the interchanged quarks must again
have identical flavor and helicity, and one can
obtain

- The x component of H spin is seen to be identical
to the corresponding component of ordinary spin.
However, the y and z components are different,
since the direction of the axis depends upon the
momentum of the particle and is different for
different particles and for the initial and final
states of the same particle. Furthermore, for
both H, and H„ the configuration described as
"parallel" or "antiparallel" spin for a pair of
particles moving in opposite directions in the cen-
ter-of-mass system are reversed from the case
of ordinary spin. Thus for these components,
parallel ordinary spin means antiparallel H spin
and vice versa.

I et us observe that the constituent-interchange
model is H-spin invariant. In a model with quark-
interchange and quark helicity conservation, the
transition amplitude from initial hadron states A,.
and B,. to final hadron states A& and Bz can be writ-
ten as

T = ~ g g [1,.1,.+ o,. ~ o,]f(s, t}, .
g~A jcB

(4.10)

&&f(qt qg [&,&&&f (q'gq. I&,&f(s, t), (4 6)
at, B

where f(s, t) is independent of spin and flavor quan-
tum numbers, q~ and q denote the creation and
destruction operators for a quark with quantum
numbers n, and n includes flavor and helicity.
The K-spin conservation can be made manifest
by writing out just the helicity sum,

(q', q,),(q",q3, + (q'. q ),(q'q.),
+(q'q, )„(q',q ),+(q'q )„(q'q ), ,

(4.9)

and noting that it contains only terms which are
products of two H-spin scalars or scalar products
of two H-spin vectors, (o }„~(o }s. In terms of
operators acting on the helicity indices of the
quarks, we could write T as

A
H =Hq= q

0' p. (4.7a) and if we restore the sum on flavor (isospin),
To define the helicity-flip operators unambiguously
there must be a preferred direction normal to the
momenta of the particles-. In two-body scattering
problems this direction is just the normal to the
scattering plane, denoted by the unit vector n.
Thus we define

T= 4 Q Q [1.If+1 ( '~f][l)if+ 6 ~ ~ of]f(s~ t) ~

i+A j&B

(4.11)
The operators act on quark i in nucleon A and
quark j in nucleon B; the unit operators will give
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the number of quarks. There is thus a full SU(4)„
= SU(2)„x SU(2)~ symmetry in this case. This
symmetry property leads to the following theorem:
All predictions of the model are identical in the
three commonly used bases which correspond to
H„H„, and H, diagonal, respectively. This fol-
lows because the three bases are obtained from
one another by 90' H-spin rotations which leave
the amplitude invariant. However, one must be
careful in using the H, and H„bases because of the
way the direction of H spin is defined.

I et us apply the theorem to the quantities A„„,
A„, and A for the asymmetries in the total
elastic cross sections,

A, , = [a(t0) —a(00)]/[o(04)+ o(00)],

where o(&4) and o(04) denote the cross sections for
parallel and antiparallel spins andi is either n, l,
or s. Then because of the reversal of parallel and
antiparallel for H, and H„our symmetry argument
immediately gives the result

(4.13}

&P P.
i
& iP.P &=-&p-i o-ip. &&p.

i
a.ip-& f(s, t)

= [(N„,—N„) + (N~, —N~ ) ]f(s, t),

(4.17)

where a acts on the quark constituents, o, = (o„y to )/
v2, and a sum on flavor is implied in the middle
steps.

The neutron can also be included by purely al-
gebraic techniques by noting that the transition am-
plitude is also isospin invariant, so that we have a
SU(2)I x SU(2)„symmetry. [In fact, the bilinear
products q~ q~ generates a full SU(4)„symmetry
which can be exploited to make predictions for 4
production. ] If there is no flavor interchange be-
tween the nucleons, we have

&n,P,
i
T

i
n, P, &

= [2N„,N~, + 2N„N~ ]f(s, t)

= '9' f(s, t), (4.18a.)

At 90, where the absence of the double-flip ampli-
tude leads to the sum rule,

(n,P i1i n, P&=[2N„,N, +2N„N, ,]f(s, t)

+' f(s, t), (4.18b)

we obtain the result

(4.14)
&n P, i

Tin, P &=2(N„.-N„)(N4. -Ng )f(s, t)

= ——', f(s, t). (4.18c)
A„„(90 ) = —A„(90') = -A„(90')= 3 . (4.15)

This general result follows only from the H-spin
invariance of the amplitude of the constituent-ex-
change model. It is independent of the wave func-
tions used for the proton. In particular, there is
no assumption of SU(6) for the proton spin-isospin
wavefunction. Thus if there is disagreement with
experiment at 90, then the constituent-exchange
model with helicity conservation is in trouble, and
it cannot be saved by SU(6) breaking in the wave
functions. Some other mechanism must be present
which violates H-spin conservation in the ampli-
tudes.

The proton-proton matrix elements can be fairly
easily calculated using the H-spin formalism. If
there is no helicity exchange, then only the first
and last terms of Eq. (4.9}, summed over flavor,
contribute and we can write down directly,

(p,n. itin, p. &=-.' &p,i, n. &&n, ir ip, &f(s, t)

=&p,
i .ip, &&p.

i .ip, &f&s, t)

= [(N„.-N .)'+ (N„N)'] f(s, t)—
f(s, t), (4.19a)

and similarly,

&p, n-l Tin, p &= 2(N„, —N~,)(N„—N~ )-f(s, t)

Thus, all matrix elements are reduced to linear
combinations of expectation values of matrix ele-
ments of number operators for the four quark
states, u+, u-, d+, and d-. All the number
operators above are for a positive-helicity proton;
we use isospin symmetry to relate them to the
neutron number operators.

When there is flavor exchange between the nu-
cleons, then

', f(s, t), — (4.19b)
&p,p,

i
Tip,p, &= [N„,'+N„'+Ng+'+Ny ']f(s t)

(4.16a)

&p.p ihip, p &=[2N„.N„+2N, .N, ]f(s, t).

(4.16b)
Where there is a helicity flip at each vertex, we
use the signer-Eckart theorem,

&P n,
i
Tin.P &=(N„, N„Ng. +N, )'f(s-, t)-

=~9' f(s, t). (4.19c)

The results given above in terms of the number
operators depend only on being able to factor the
spin-isospin wave function of the nucleon from
the color and space wave functions, while the nu-
merical results depend on the specific form of the
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wave function given earlier.
We might remark that the'scattering operator

can be recast into a form where the matrices
operate directly on the nucleons rather than on the
quarks as in Eq. (4.11). It is

7= [d + d 0'~ ' g2+ 4'r~'T2+ dK(T~'027~ T2']i (4,20)

where K= (N„, —N„—Nd, +Nd )' and for the case of
SU(6) symmetry K= —",.

Note added in proof. The value A„„(np-np)
——0.2, reported by D. G. Crabb et af. , [Phys. Rev.
Lett. 43, 983 (1979)] at 6 GeV/c and P~'= 1 (GeV/c)'
is in qualitative agreement with the constituent-
interchange-model (CIM) prediction, Eq. (3.9), of
-0.439 for 90' and higher momenta. The sign is
particularly significant, since positive and nega-
tive signs for A„„(pp-pp) and A„„(np-np), re-
spectively, are characteristic of the CIM at any
scattering angle, as can be seen from Table I.
Exchange of quarks with the same flavor and par-
allel spins gives the dominant contribution, and the
probability of finding two quarks of the same fla-
vor with parallel spins is greater for parallel nu-
cleon spins in the pp system and for antiparallel
spins in the nP system.

ACKNOWLEDGMENTS

Carl E. Carlson wishes to thank SLAC and the
Niels Bohr Institute for their warm hospitality,
and S. J. Brodsky wishes to extend the same
thanks to the Weizmann Institute. We also thank
Y. Frishman for helpful conversations. This re-
search was supported in part by the Department
of Energy under Contract No. DE-AC03-76SF00515.
In addition C.E.C. was supported in part by the
National Science Foundation and the A. P. Sloan
Foundation and H. L. was supported in part by the
Israel Commission for Basic Research and the
United States-Israel Binational Science Founda-
tion.

APPENDIX A: NN SCATTERING AMPLITUDES

J+ g g g g g e ( $d g
J

(A2)

where A. = A., —A., and p, = X, —A.„. We will choose
jb = w/2 (scattering in the y-z plane) so that the
pairs of amplitudes related by parity are related
with positive sign.

Parity alone is sufficient to show that all the
single-flip spin amplitudes are zero. "

Time-reversal invariance will reduce the num-
ber of independent amplitudes to six, using

M(y X„Z,~,)(8, y) =M(X,X„X,X,)(8, w- y). (A3)

Finally, if we have identical particles, then there
is one more independent relation,

M(++, + -) =M(++, —+) (A4)

so that there are only five independent helicity
amplitudes. Also, for identical particles scatter-
ing at 90', the last-named amplitude must be zero.
We choose our independent amplitudes to be

M(++, ++),

M(+, + ),
M(—+, + —),
M(++, + ),
M(, ++).

(A5)

If the elementary interactions conserve quark
helicity, then the last two listed amplitudes are
zero at all angles.

The asymmetries defined in the text can be ex-
pressed in terms of the helicity amplitudes by

D x A„„=2 Re M *(++,+ +)M (- —,++)

in general, where q,. is the intrinsic parity and s,.
the spin of particle i. The P dependence may be
removed by choosing a particular value and using"

M (~,X„Z,X,)(8, y)

We define the scattering amplitudes using the
Jacob-Wick" phase conventions. Without using
parity, time reversal, or identical-particle sym-
metry, there are sixteen independent helicity
amplitudes, M(X,A„X,X,)(8, P). Parity cuts this
number in half,

M(-A.„-Xd, -X„-X„)(8,P)

= qM (Z,X„X,X„)(8,~ y), (Al)

+2 ReM*(+ —,+ -)M(—+, + -)
+4[M(++, + —) l',

D x A„= IM(++ '++) I' IM(——++) I'

+ [M (+ —,+ -) l'+ [M (—+,+ ) [',

D x A„= 2 ReM *(++,++)M(- —,++)

—2ReM*(+-, +-)M(-+, + ),

(A6)

where g is unity for nucleons, and is
D=IM(++ ++)I +IM(-- ++) I+[M(+- +-)

I

+ [M(-+, + -) l'+4[M(++, + -) [2.
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For scattering of identical particles at 90', we
may use M (+ —,+ -) =M(—+, + -) to show that

(A7)

We shall also quote a relation for the "analyzing
power, "A. This is defined for scattering an un-
polarized beam on a target polarized normal to the
scattering plane.

do(4) —do(4) 2A=
(~) ( )

= —ReM*(++, + )

x )~(++ ++) +l(s (——~++)

+M(+-, + —)+M(-+, + -)y. (A8)

The above formula is valid ai all angles, and shows
that if the underlying process is helicity conserv-
ing, then the analyzing power is always zero.
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