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Multiquark structure functions for the proton have been formulated assuming a statistical distribution of
sea partons as in the Kuti-Weisskopf model. An alternative form for the recombination function has been
obtained by imposing a cutoff on the rapidity gap of combining quarks. These multiquark structure functions
and the recombination function have been used, within the framework of the recombination model of Das
and Hwa, to discuss single-meson inclusive distributions, in the fragmentation region of the proton, in p-p
collisions.

I. INTRODUCTION

The inclus'ive production, in hadron collisions,
of fast mesons with small transverse momentum,

P~, has aroused considerable experimental' '
and theoretical' " interest in recent years. It has
been observed by Ochs4 that the longitudinal
momentum distribution of 7t', for example, pro-
duced in the fragmentation region by P-P col-
lisions is quite similar to the valence u-quark
distribution in a proton. The fragmentation of the
leading quark gives a pion distribution that is
steeper than that of the valence quark and con-
tributes only a few percent to pion production. '
This led Das and Hwa' to propose the recombina-
tion model for single-meson production within
the framework of the quark-parton model. In
this framework a fast meson with small P ~ is
formed in P-P collisions by a two-step process
[see Fig. 1(a)j; a process by which a quark-anti-
quark pair is picked out from a proton followed
by the recombination of this pair to form the pro-
duced meson. The inclusive distribution of w',
for example, is therefore given by

ud 1&x2 + xi& x2yx ~idx» 1
CT z CR

where x„x„xare the fractions of the proton
momentum carried by the u, d', and w', re-
spectively. f„,(x„x,) is the two--quark structure
function, i.e., the probability density of finding
simultaneously within the proton two partons
u, d with momentum fractions x, andx„re-
spectively. We incorporate momentum conserva-

tion for the process by writing the recombination
function as

(2)

Here, R(x„x,) is the recombination probability
for the u and d quarks to form the m'. In Eq. (2)
we have ignored the possibility of many-body re-
combination. In order to exclude the contribution
from wee partons, "which mainly produce pions
in the central region, we impose the conditions
R(x„,0) =R (0, x,) = 0. Equation (1) involves two
unknown functions, viz. f„—„(x„x2)and R(x„x,).

In this paper we propose a form of the recom-
bination function based on a point of view different
from the one adopted by Das and Hwa. ' Our choice
is based on the assumption that the recombination
probability falls off sharply when the rapidity gap
between the combining quarks is greater than a
preassigned value. This view is advantageous
particularly for the consideration of recombina-
tion of more than two quarks, to form, for in-
stance, a baryon. We use the Kuti-'Neisskopf
method" "to formulate the multiquark structure
functions that appear in Eq. (1). This formalism
has distinct advantages when more corhplicated
processes such as multimeson production, baryon
production, etc. , are considered.

%'e consider single-meson inclusive production
as an input to determine the nature of the re-
combination function and of the multiquark struc-
ture functions. However, the fit is nontrivial in
the sense that it is not a Pro~i obvious that our
prescription would reproduce the experimental
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p

(a) tons. The combination of these with other quarks
mostly gives rise to mesons in the pionization
region and so does not contribute to. the produc-
tion of mesons with x~ 0.5. Also, R(x„x2) being
the probability for two quarks to form a meson
satisfies R(x„x2) ~ 1.

Das and Hwa (DH)' have proposed the following
form for the recombination function:

p DH X QX2Jt (x„x,) —4n„2, a„-

p (b)

Xj

Xp

p

FIG. 1. The quark recombination mechanism rvhen
the recombining quarks are from (a) the same hadron,
(b) different hadrons.

II. THE RECOMBINATION FUNCTION

In the absence of any viable theoretical model
for the recombination function, it may be of
interest to formulate the same from a point of
view different from the one adopted by Das and
Hwa. '

In general, the two-body recombination function
should satisfy the conditions A(x„0)=A(0, x,) = 0,
so as to exclude the contribution from wee par-

data. We use the results obtained here for the
calculation of other processes in a forthcoming
paper.

In Sec. II we suggest an alternative form for
the recombination function. The modified Kuti-
Weisskopf" model used for calculating the multi-
quark structure functions is discussed in detail
in Sec. III. The details of the calculation are
relegated to the Appendix. The parameters that
appear in the structure functions have been chosen
so as to reproduce the inclusive deep-inelastic
eP and en scattering data. Single-meson inclusive .

production is discussed in Sec. IV. Concluding
remarks are presented in Sec. V.

+ (X11X2) +N & 2 2%1/2 / 2+ 2)1/2- +1 ++T 2 T

/
x exp (-—,(y, —y2)' (4)

Here, x~ is the transverse quark mass measured
as a fraction of the proton momentum. The factor
within the square brackets may be regarded as a
correction to the longitudinal approximation for
the phase space. Again, n„~ 1.

Consideration of the quark rapidity gap as a
measure of recombination probability leads to two
distinct processes for meson formation, viz. , (a)
the recombination of two quarks from the same
hadron [see Fig. 1(a)], and (b) the recombination
of two quarks, one from each hadron [see Fig.
1(b)] to form the meson. Only the first of these

~ 5processes has been considered by Das and Hwa.
For the process (a) the rapidity gap can be written
in terms. of the Feynman variable as

This satisfies all the conditions mentioned above.
Equation (3) may be justified by using the quark-
counting rule for the valence quarks in the pro-
duced meson.

Here, we propose an alternative form for
A(x„x2). It is reasonable to suppose that the re-
combination probability for any pair of quarks
falls off when they have very different longitudinal
rapidities. (We recall that longitudinal rapidity
is the variable that weighs the longitudinal phase
space uniformly. ) We realize this rapidity cutoff
by choosing for the recombination. function a
Gaussian distribution in the rapidity gap, y, —y„
of combining quarks. We expect this distribution
to have a width of order unity. However, this
criterion does not eliminate recombination between
a wee and a nonwee parton since the use of the
rapidity variable weighs the whole of the phase
space uniformly. The elimination of wee quarks
from the recombinati. on process can be achieved
most naturally if we recognize that although we
have assumed a longitudinal approximation, there
is, in practice, a small transverse momentum,

P~, carried by the partons. We therefore
parametrize the recombination function as
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A= a„exp ——,ln—'
~X2j

( t. )2t
= a„exp ——,i in —'

~
(6)

This form of the recombination function, with
the momentum conservation condition $, + (,= 1,
h3,s been shown in Fig. 2 for several values of A.
It is interesting to observe that the form in Eq.
(6) with ~ = 2 is very nearly th'e same as A D" over
the domain that excludes the boundary of $,. The
approach to zero of the recombination function at
the boundary governs the details of the manner
in which the wee partons~re excluded from the
recombination process.

For the process (b) the rapidity gap is written
as

x + (x 2+ x 2) i/2-
1 1 T

yl y2 x ~ (x 2+x 2)1/2

It is worth noting that the recombination function
obtained using Eq. (5) depends only on the scaled
value $; =x;/x in the limit xr- 0. In this limit,
we obtain

combination of quarks from different protons to
be considerably suppressed.

III. MULTIQUARK STRUCTURE FUNCTIONS IN THE
KUTI-WEISSKOPF MODEL

A. Formalism

1
C=Z dx,dx,dx,4'"(x„x„x,)4 (x,+x,+x,).

0
(8)

We assume that

For the sake of definiteness, we consider a
proton with its three valence quarks u, u, d to-
gether with sea quarks and gluons. Following Kuti
and Weisskopf" the sea quarks and gluons, which
are collectively referred to as sea partons, are
considered indistinguishable, and are assumed
to be distributed statistically. The partition func-
tion for the parton distribution within a proton
is, therefore, written as

I y. —yal
= »4f lxil+ (xi'+xr')"'1

x $ /x, f+ (x,'+x, ')'/']/x, '). (7)
4 r (x„x„x,) =v„(x,)v„,(x,)v, (x,) . (9)

The recombination probability for this process
depends on both b and x~ besides the overall
normalization o.„.. From Eq. (4) and Eq. (7) we
observe that the recombination probability for
this process vanishes in the limit x~-0. In
general, the term 1/xr' in Eq. (7) causes the re-

Since the sea partons are statistically distributed,
we have

l.0
x5 1-x — z',

08

—0.6
C4

'~ 0.4

0;2

0.0 0.2 04 0.6 0.8 I.O

FIG. 2. The recombination function A ((&, g2) with

(&+$2 =1 for various values of A. The dashed curve
is the recombination function used in Bef. 5 (R "=4( ~$2).

where a runs over the flavors of the sea partons,
i.e., a=u, d, s, u, d, s, g. v, (S,) is the probability
for finding a valence quark of type i (a sea quark
labeled by index a) inside the proton in tbe absence
of any correlation. These will be referred to as
the primitive density functions. The explicit in-
clusion of the 5 function in Eq. (10) takes into ac-
count the momentum conservation for all kine-
matic configurations and introduces a correlation
among quarks and gluons. In writing Eq. (9) we
have assumed that there are no other correlations
amongst the valence quarks. We have also ig-
nored the contributions from the charm and other
quark seas. These can be incorporated without
any difficulty.

The structure function for m valence (m ~ 3)
and n sea partons can be written in terms of the
functional derivative as
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fa '''c s s (x))' ')xm)e)i''')en)
m 1 n

pm+ n@

( ) . 5, ( )5S,(,) ~ ~ 5S„(„)' (ll

where the q s and the s, 's denote the valence
quarks and sea partons. (The flavor index on the
sea parton has been suppressed for simplicity. )

The actual computation of the multiquark struc-
ture functions is complicated by the presence of,
correlations between the partons introduced due

to momentum conservation. The calculation is
most conveniently carried out in terms of the
Fourier representation since the 6 function is
factorizable therein. We then obtain

54G„(1-y)-=(
)Q1

d(el K(1»v v esZ
2' g2 d

54
G.(1-y) =-

5v&(y J

cthe'"' "v„v„e'Z
211' ~ 1 2

(14b)

(14c)

with

d e'~8„8„8„e
$2@

((II( y yl y2) 5 ( )5 ( )

and

s= Ps,
a

dge'~&)»v e~

$2C
G"(1-y= 1 -y, -y.) -=

&v„,(y,)5v, (y,)

(14d)

v, (() = f e "*v,(x)m,
0

(13a) a e'"'-'v e'
Q2 (14e)

S.(()=f e "*S.(x)~.
0

(13b) $3@,
((d( y y). y2 y3) 5v ( )5v ( )5 ( )

It is clear from the form of the partition func-
tion that the structure function consists of a
product of primitive density functions (which
would be the structure function in the absence of
correlations) times a correlation function G(e),
where z is the fraction of the momentum left over
after picking up the specified partons, i.e., z
=1-x, where x is the total momentum carried
by the partons that have been designated within
the structure function. Since the specification of
any number of sea partons does not alter their
original Poisson distribution, the functional form
of G(e) depends only on the particular group of
valence quarks that is picked out. Corresponding
to the six groups that can.be formed from the
valence quarks in the proton, we have six cor-
relation functions given by

d e'".' 'e'. &4f

The structure functions are then obtained by
multiplying the primitive structure functions by
the appropriate correlation function.

The general form of any structure function is
thus given by

f, . . ., , . . ., (x„.. . ,x,z„.. . , z„)1 m 1 n

=v„(x,) . v, (x )S,(z,) ~ ~ S„(z„)G . . ., (Y),

with

Y= 1 —(x,+ ~ +x +z, + ~ +z„) and m &3.

I

The overall normalization is fixed by imposing
momentum conservation, i.e.,

G,(1-y) =— 1

u X+s + dX+ s X (16)

dge'ci' »v v v e~
2' (14a)

In the original Kuti-Weisskopf model where the
function C~ is assumed to be factorizable, Eq.
(16) is equivalent to requiring that the total proba-
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bility is normalized to unity. However, it is of
interest to note that this equivalence is indepen-
dent of the factorizable nature of the valence
function.

f„(x)~ (1-x)'2 ',
f,(x) ~ (1-x)",
f (x)~ (1-x)'3'"' '

(20a)

(20b)

(20c)

B. Parametrization of structure functions

We recall that the correlation effect discussed
earlier is due to the reduction of momentum
available to the remaining partons when one or
more quarks with a specified momentum are
designated within a proton. This is a direct con-
sequence of momentum conservation. If, how-
ever, the momentum fraction of the designated
quarks is very small, the remaining partons can
be distributed over almost the whole momentum
space and, hence, are essentially uncorrelated
with the small momentum quarks that have been
picked out. Thus, the single-particle structure
functions approach the primitive structure func-
tions when the momentum fraction, x, of the

, designated parton approaches zero. The pheno-
menological choices of structure functions availa-
ble in the literature" thus serve as a guide for
our choice of primitive structure functions. Also,
the observation, vW;"(x = 1)/v&;~(x = 1)= 0.25
suggests that v, (x)/v„(x)-0 as x- 1. We pa-
rametrize our structure functions as

where 6„=g+n(1 —n), g=2(g„+g„+g,)+g~. The
correlation functions do not, in general, obey the
simple proportionality as indicated by Eq. (19).
More generally, they are modified by a multi-
plicative power series H(1 -x, 6) the form of
which has been shown in Fig. 3. For further de-
tails, we refer the reader to the Appendix, Eqs.
(A13)—(A20) .

The parameters have been chosen to reproduce
the low q.', deep-inelastic inclusive e-p and e-n
scattering data. We have chosen g =0.5, this
being the intercept of the p trajectory. Also, for
simplicity, we have chosen n, =n, =n, =0. This
choice does not necessarily give the best fit to
the data, even within our present parametrization.
We find-that the structure functions are rather

I.O

0.8

v„P)=v„,(x) =x "(1+Px),

v~(x) =x "(1-x)(1.+yx),

S,(x) =g,x '(1-x)"',
We also choose

(17a)

(17b)

(17c)

(17d)

0.6
CI

0,4

0.2

f„(x)= 2x-"(1+Px)G„(1-x), (18a)

(18b)

(18c)

f,(x) =x (1-x)(1+yx)G„(1-x),
f, (x) =g,x "(1-x)"'G,(l -x),

The tail of these functions, when x approaches 1,
is largely governed by the leading behaviors of
the functions G„, Gg 'Gp in the same limit. %e
find from Eqs. (A14)-(A16) that when x- 1,

The muliiquark structure functions are calculated
using Eqs. (14), (15), and (17). Details of the
calculation are relegated to the Appendix. The
single-quark structure functions are explicitly
shown below.

0,0
I.O

0.8

0.6
CI

+ 0.4-

0.2-

G„(1-x)~ (1-x)" '

G, (1 -x)~ (1-x)'2 ',

G,(1 -x) ~ (1-x)"-',

which yields for the quark structure functions

(19a)

(19b)

(19c)

0.0 I I

0.2 0.4 0.6i-Y 0.8 I.O

FIG. 3. The function B(y, 4) defined in Eqs. (A11) and
(A13). The parameters used are n„=3, nz ——n =n~ =0
for various values of 6 andg„. In this case, H(y, + is
independent of gz, g~, g~. (The case when n„=n~ =3,
n, =n =(} is effectively identical to the cases shown for
appropriate values of g„and g~ .)
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FIG. 4. (a) The valence structure functions as fixed
from the deep-inelastic inclusive data. The dashed
curves are the functions used by Field and Feynman
(Ref. 15). (b) The valence functions after the enhance-
ment of the quark sea. (See text. )

0.2-

0.0 I I i I I

0,2 0,4 0,6 0,8 l.o

insensitive to the specific values of P and y. Our
choice of parameters is shown below.

FIG. 5. (a) Our fit to ~ W& with the values of param-
eters given in the text. (b) The. fit for w W~" /v W& ~.
Shown as dashed curves are the fits obtained by Field
and Feynman (Ref. 15).

+=0.5, P =3.5, y= 5.0,

gg =gg = 0 .i~ p g~ = 0 09
p gg = ~.84,

n„=3, n„=n, =n =0.
We thus have 6, =4.5, 5,=5.0, g=3.5.

In Fig. 4 we show our valence quark structure
functions. In Fig. 5, we display the results of our
calculation of the deep-inelastic processes. These
have been compared with those of Field and
Feynman. " We obtain a good fit to v+",~. Although
our fit to the ratio, iW;"/vW;~, for x- 0.2 is.
rather unsatisfactory, we are able to fit the data
very well for intermediate and large values of x.

IV. FAST-MESON PRODUCTION IN HADRON COLLISIONS

The interaction between hadrons, in the plateau
region of the rapidity axis, within the framework
of the parton model, is due to exchange of wee
partons. " The momentum distribution of partons
is, in general, not expected to remain unaltered
during the course of hadron collisions. In par-
ticular, the quark sea is expected to be enhanced

f„,,(x„x,) = 2v„(x,)S,(x,)G„(1-x,-x,) . (21a)

This may be compared and contrasted with the
form used by Das and Hwa, ' which is

&„0",„(x„x,) =f„(x,)f~,(x,)(1 -x, -x,) .
Usi.ng Eq. (1) we obtain

(21b)

due to the conversion of gluons to q-q pairs.
Ochs's observation, ' however, suggests that the
distribution of the fast valence quarks is relatively
unaltered by the hadronic interaction. We thus
assume that the structure functions for the valence
quarks are the same as the ones determined by
the low-q', deep-inelastic e-P and e-n scattering
data. (We recall that the photon probes the in-
stantaneous parton distribution within the proton. )

It is of interest to see how Ochs's phenomeno-
logical observation can be realized in the Kuti-
Weisskopf model. For definiteness, we consider
m' production. The relevant two-quark structure
function is given by
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dQ dOx—= Z, dPz. (23)

It is rather misleading to compare the single-
particle w', K' data at some fixed value of P~
since the p~ dependence is different for each in-
clusive reaction. In fact, the Fermilab-Illinois
Collaboration' has obtained the following fits for
the P ~ distributions:

7I+

=2G„(1-x) v„(x,)S,(x,)R(x„x„x)dx,dx, ,
0'z

(22)

The integral on the right-hand side of Eq. (22) is
a rather slow varying function of,x, so that the
shape of the 7t' spectrum is essentially governed
by the function G„(1-x). We thus see that the w'

spectrum has approximately the same shape as
.the correlation function G„(l -x) and, hence, to
leading order in (1-x), the same shape as the
valence u-quark distribution in the proton. We
thus see that the correlation between the partons
introduced by momentum conservation leads to a
natural explanation of Ochs's observation, which
isnotas obviously understood using the form Eq.
(21b) for the two-quark structure function.

It is clear from Eq. (1) that the data that should
be compared with the predictions of the recom-
bination model is the data that has been integrated
over the transverse momentum, i.e., with

1.0 10

and o.„=1/4. 2 for the ISR data. The difference
reflects the fact that the meson production magni-
tude is not pinned down accurately by present ex-
periments.

For the formation of 7I' and K', the contribu-
tions from both the valence-sea and the sea-sea
recombination have been considered, whereas
only the latter contributes to K production. We
note that the correlation function G(1-x) has
different asymptotic forms, (1 —x)3' and (1-x)',
for the valence-sea and the sea-s'ea structure
functions, respectively. This is different from
the approach used by Duke and Taylor' who as-
sumed the factorizable form with the same phase-
space factor (1 —x) for both the valence-sea and
the sea-sea structure functions as in Eq. (21b).

Our predictions are compared with the above-
mentioned data in Fig. 6 and Fig. 7.

The following comments are in order:
(i) The contribution of the process shown iri

Fig. 1(b) turns out to be negligible (~0.2%) for
x~=0.01 for x ~ 0.4. For larger values of
xz, (xr =0.05) the maximum contribution of this
process increases to about 2k and for xr = 0.1

g.(p )=&.(I+p '/s. ') ',
with

(24) .0 1.0

a + =0.66+0.1, a„'=0.74+0.01

ag+ =0.64+0.03,

a~' = 0.41a 0.02,

a& '=0.9+0.1,
a~ = 1.2+ 0.3.

10 IO

The above data yield" (Pr)„„,„„=0.2 GeV and

(pr)„,= 0.35 GeV. It is interesting to note that
the sea quarks carry, on an average, a larger
transverse momentum than the valence quark.
This is consistent with the enhancement of the
sea, possibly by conversion of gluons.

The Fermilab-Illinois' and the CERN ISR data'
have been analyzed and the P~-integrated, single-
meson inclusive distributions have been extracted
therefrom by Roberts, Hwa, and Matsuda. " We
use the results of their analysis to compare our
calculation with the data. We make the following
choice of parameters: (a) The same values of the
valence parameters, a, P, y as obtained from the
e-P, e-n scattering data are used (see Sec. III).
(b) n„=n, = 3, n, =0, g„=0.486, g, =0.608, g,
= 0.048, g, = 1.216, (c) b, = 1.7. The overall
magnitude has been adjusted to fit the m' data.
We find that a&=3 for the Fermilab-Qlinois data

b
O

~b to

10 10

IO
0.2 0.4 0.6 0.8

IO4

FIG. 6. The, x distribution of (x/Oz) (do/dx) for the
processPP Mx with I=&, K . The solid curve is
our calculation. The shaded area represents the ex-
perimentally allowed domain as analyzed from the
Fermilab-Illinois collaboration (Ref. 1) data (see Ref.
17). The magnitude has been fitted by choosing u~= 3.
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FIG. 7. The same as Fig. 6, except the comparison
is with the CHLM Collaboration data (Ref. 2). ~~ has
been chosen to be 1/4.2.

larger value of n, would yield an improved fit
for the K' spectrum.

(v) The amount of K production relative to the
K' is a crucial factor in the determination of the
magnitude of the u-quark sea. We found a rather
modest enhancement of the quark sea (the en-
hanced quark sea and the gluons carry 29% and
26/o of the proton momentum respectively in our
model) yields the best fit to the data. On the con-
trary, Duke and Taylor, ' using a factorizable
form of two-quark structure functions as in Eq.
(2lb), require a greater enhancement of the quark
sea (corresponding to almost complete conversion
of gluons to quark pairs) to fit the K' and K
data. In the Kuti-Weisskopf model, full saturation
yields flatter distributions for the meson spectra
which are in disagreement with the m' and K '
data.

(vi) In the extended Kuti-Weisskopf model, the
enhancement of the quark sea causes an alteration
in the distribution of the valence quarks. The
origin of this is obviously the correlation that has
been introduced by momentum conservation. The
valence structure functions prior to, and after
the enhancement of the sea have been shown in
Fig. 4 for the same values of u, P, and y. It is
clear that the change in the valence structure func-
tions is small (&10/q). This is completely con-
sistent with our intuitive expectations.

to about 6/o for x ~ 0.4.
(ii) The shape of the meson spectrum is rela-

tively insensitive to the specific choice of the
cutoff, 6, used in the recombination function for
1 & 6 ~ 2.5. A choice of 5 in this domain repro-
duces the data reasonably well. Variation of 6,
of course, gives a sizeable effect on the magni-
tude of the single-meson spectrum. The condition
o.~ ~ 1 implies a lower limit (b,~ = 0.5) on a. The
actual value of b, is, however, expected to be
larger than the naive lower limit since the prob-
ability to form a pseudoscalar meson by recom-
bination is considerably less than one due to both
the color suppression effect' and the formation
of other mesons.

(iii) The contribution to pseudoscalar-meson
production from the cascade decays of vector
mesons'" is no more than 25/o for x ~ 0.5. The
process of Fig. 1(a) is thus the dominant con-
tributi'. :)n and is plotted in Figs. 6 and 7.

(iv) For x & 0.6, the Fermilab-Illinois data
show that the w' and n spectra have almost the
same shape. The K' spectrum is significantly
flatter than the m' spectra. This suggests ~,
&n„=n„. We found that the choice n„=n, = 3 and

e, = 0 reproduces the data adequately. A little

V. CONCLUDING REMARKS

In this paper, we have analyzed the recombina-
tion model for fast-meson production with a view
to study the multiquark structure functions and
the recombination function. We have given a
general prescription for obtaining multiquark
structure functions using an extension of the Kuti-
Weisskopf procedure. In contrast to the original
Kuti-Weisskopf model, we chose'an asymmetric
sea with (1-x) powers that are arbitrarily dif-
ferent from those of the valence quarks. The
valence-quark distributions are fixed so as to
reproduce the deep-inelastic, low-q' eP and en
scattering data. We have proposed an alternative
form for the recombination function, essentially
by imposing a cutoff, ~, on the rapidity gap be-
tween the quarks that combine to form the meson.
Our form is very similar to the one used by Das
and Hwa for 6 = 2. Also, it can be readily ex-
tended to include multiquark recombination pro-
cesses such as baryon production.

With our choice of multiquark structure functions
and the recombination function, we are able to
reproduce the single-meson inclusive spectra in

p-P scattering reasonably well. Analysis of other
processes such as baryon production, multimeson
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production, single-meson production with a Drell-
Yan trigger, etc. would serve as further tests
for the model and also as ways of pinning down

the parameters more closely. The formalism
can also be used to study meson production in
lepton-hadron collisions with a view to obtaining
more information about the quark fragmentation
function.

It is extremely instructive to use the model to
calculate some of the processes mentioned above
for )i-P and K-P scattering at small Pz, . This is
of interest since it would provide an explicit way
of determining the valence-quark structure func-
tions in the w and K mesons. These can then be
compared with those obtained from high-P2 pro-
cesses.

We address these questions in forthcoming
papers.

Note added. It has been poj.nted out by L. Van
Hove [CERN report No. TH-2580 (unpublished)]

. that the or that appears in Eq. (1) should be the
inelastic cross section with diffraction dissocia-
tion excluded. The relevant cross section, e
= 28 mb, for p-p collisions requires that &~ be
increased by a factor of about 1.4.
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S, =g, ln —,+ g (-1) ' I'(k)g' ~
(A6)

(A7)S =S
9

where $' = $e' "/', C is a constant and a =u, d, s,
Q~ d p sag»

The multiquark structure functions are calcu-
lated using the six correlation functions G,(y),
G„(y), G, (y), G„„(y), G„,(y), G„„,(y) defined by
Eqs. (14a)-(14f). These, in turn, are calculated
from Eqs. (17), (A4)-(A7). exp(S) has been
written as

exp(S) = (C( ')' ex'p g (- l) a, )'()»(' ), (A8)

where

N = max(n, ),

g= Qga ~

a

(A9)

(A10)

n, '}
a) = Qg» k'] (All)

with the definition, (", ) = 0 if I & n
The integrations involved in Eq. (15) are easily

performed by expanding the exponential in (A8)
and using (A2). As an illustration, we explicitly
write out G„„,(y)

G„„,(y) = ZC"y"-'H (y, 5,)jl (5,), (A12)

where 5„=g+n(1 —o), as defined in Sec. IIIB, and

r —i K»x 8 I y+ 1)e-(i((/2} K(8+i}

.0
(A1)

00 -jLxdx», /, -In(2)/&xr)+const, asxz, -0,e
2+ 2)1/2

(A2)

(A3)

The i/,. "nd S, defined in Eq. (13) are calculated
using Eqs. (17), (Al), and (A2). We obtain

8„,= v„=I (1 —(}))$' ( }[1+t}(l— )$' '], (A4)

i/, =I'(1 —o.)&' ' "'[1+(r—1)(l- o.)&' '

r(1 —~)(2 ——~})&' '), (A5)

APPENDIX

Here we present the details of the calculation
of the multiquark structure functions based on the
partition function defined in Eqs. (8)-(10). In
the calculation, frequent use has been made of the
formulas (Al) -(A3).

00 N

H(y, a)=1++—, Q I'(6)II, ,a), ,l (k, )
@=i P' ill'. ' i)P=l P(g ~~pl k )

y

(A13)

where x =5, , k, . The function H (y, b.), as de-
fined by (A13), looks rather complicated. It is
analytic for y in (-~,~). Moreover, the series
(A13) is absolutely convergent. Numerical
methods have been used for its evaluation.

The other correlation functions are calculated
in an identical manner. The overall normalization
is fixed by the condition [Eq. (16)] of momentum
conservation. We obtain

G ( )
[I'( —~)] .,—.gC Hb» 3+ ) i (A14)oy N y i Z(5 +I) y

3

G ( )
[I"(1 —&)] ()2-i g C» (y)i a+I) i (A15)»y ~ y' i I.(5 I)

( )
[I'(1 —u)]', , ~,, H(y, 5,+I)
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1 (1 —u) .. .~,„„H(y, 5,+ l)
(A17)

C0= 1,
C, = (2P+ y —1)(1—o.),
C, = IP'+ 2P (y —1) —y(2 —a)/(1 —n)] (1 —o,)',

s, , H(X, &.)
1-(n )0

(A19)

where

( )
( ) 6]-1 Q Cud (yi 1,l (A18)gd 3 ~ y l 1 (f +l),'

1

(A21)
C, = IP'(y —1) —2Py(2 —o.)/(1 —~)](1 —n)',

C. = P'—y(2 —n)(1 —n)',

C",=1,
C", = (P+ y —1)(1—o.),
C", = P(y —1) —y(2 —o.)/(1 —a)] (1 —u)', (A22)

C"3 = Py—(' —n) (1 —n)',
4

, Hl, 5, f
(A20)

This leads to G,(1) = 1 which is equivalent to the
condition of momentum conservation.

The coefficients C„C"„C'„C",",C"," are just the
coefficients of the lth power. of $' ' in the ex-
pansion of the polynomials, v„v„v„A, v„v~4-',

= I'(1 —n)$.'-" ''. They have been tabulated be-
low.

C"=1
0

C~ = 2P(1 —n),
C'. =P'(1- )',
CQQ 10

. C","=(y-1)(1- ),
Ca" = —y(2 —n)(1 —n),
C""-10

C", =P(1 —o.) .

(A23)

(A24)

(A25)
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