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Manifestly conformally covariant description of spinning and charged particles
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It is shown that relativistic particles may be described in terms of conformal O(2,4)-symmetric actions and
that this is the maximal O(m, n) symmetry. The position is given as a six-component object where two are
made fictitious by the introduction of two additional local invariances to the conventional reparametrization
invariance. Spinning particles are obtained through the superspace technique, and interaction with an
external electromagnetic field is obtained through minimal coupling in the case of massless particles.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as
paper I, it was shown that a free massive relativ-
istic particle may be embedded in a reparame-
trization and scale-invariant description with a
global de Sitter symmetry. The particle was
described by five coordinates y'(v), &= 0,1,2,3,5,
where v and y5 are unobservable, owing to the
reparametrization and scale invariance, respec-
tively. It was described by the Lagrangian

duced by means of a generalized minimal coup-
ling (Sec. V).

II. THE MASSIVE RELATIVISTIC PARTICLE IN
TERMS OF A MANIFESTLY CONFORMALLY

INVARIANT ACTION

%e shall show in this section that a free mas-
sive relativistic particle may be described by the
Lagrangian (c = 1)

I.(T) = (y+. wy)',
2V

1.,(r) = (y+ Wy-)-'+ -,'VDy', (2.1)

where the indices are contracted with the diagonal
metric tensor with signature (+----). V is the
einbein variable and 8' the one-dimensional vec-
tor "field" which is responsible for the local
scale invariance.

The equations of a massive relativistic particle
follow from (1.1) after the gauge choices V= I/m,
W=O, and y'=1. An interesting feature of (1.1),
which was explored in paper I, is that another
gauge choice yields a massless particle in a de
Sitter space, namely V=1/m, W=O, and I' =2

where the constant I, is the radius of the de Sitter
space ~

In paper I it was also shown that the supersym-
metrized version of (1.1) obtained by means of
the superspace technique yielded the same results
for the classical spinning particle. Upon quanti-
zation one either gets the ordinary massive Dirac
equation or the generalized massless one in the
de Sitter space.

The purpose of the present paper is threefold:
First, to show that the results of paper I follow
more neatly from a theory with a further local
invariance together with a global Q(2, 4) conformal
symmetry (Secs. II and III). In particular in the
spinning case we get a manifestly conformally in-
variant constraint algebra; second, to explore
further equivalences (Sec. IV); third, to show that
interaction with an external field can be intro-

where y", A = 0, 1,2,3,5,6 is a six-component ob-
ject with dimensions of length, and where the in-
dices are contracted by means of the diagonal
metric tensor g„e with signature (+----+). V,
8', and D are to be treated as dynamical variables.
The action S0= I dT Lo(7) is invariant under the
parameter transformation

5y = ey, 5V = eV+ eV,

58'= eS'+ eS", 5D = eD,

and under the scale transformation

5y" =fy", 5V=2f V,

5W= f, 5D= 4fD,--
and under the additional transformation

(2.2)

(2.3)

tV k5W=-AV, OD=2k ———,
V V '

(2.4)

where e(T), f(r), and h(r) are infinitesimal func-
tions. As we shall see, these invariances will
make 7, y5, and y' unobservable.

The Lagrangian (2.1) yields the equations of
motion [cf. (2.7) in paper I)

~ 0+ 0
~ 2 0 '2

0 ~ 0 (2.5)

after the gauge choices V= Voc0, O'=D=O. The
further choices y =1 and y =0 yield then the
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Pv' = Pw
——PD = 0,

P =P y=y =0.
(2.6a)

(2.6b)

These constraints satisfy a closed Poisson alge-
bra and they generate gauge transformations.
They are so-called first-class constraints. 3 The
Hamiltonian theory is determined by these con-
straints together with the total Hamiltonian (cf.
paper I)

equations for a free massive particle, while y'= L
yields the equations for a massless particle in
a de Sitter space.

These properties can also be explained in terms
of the Hamiltonian formulation of (2.1) (cf. paper
I). We have the constraints

III. MANIFESTLY CONFORMALLY INVARIANT

DESCRIPTION OF THE SPINNING PARTICLE

The generalization to D space-time dimensions
of the Lagrangian (2.1) is given by

Z(z) =-,'det(V"„)[V'„(8,+ W, )y

x v„"(8„+w„)4&r)""+Dp'], (3.1)

where the notation is in accordance with Eg. (2.1)
in paper I. D is a scalar field and the indices of
the field object Q are suppressed.

The supersymmetric generalization of the par-
ticle theory (2.1) follows from the general repre-
sentation (3.1) and the superspace technique. '
We get the action

Htpt H + VP~ + WP~ + DPD (2.7) S= ——,'i d7 d8 det 0"„ fg
' „" 9„+8„" z

=& ay (2.6)

where &" = -& " are infinitesimal constants.
The generator is I" = —,'q»J" where

H = ~ VP —WP .y —
~ VDy,

where V, W, and D are to be treated as parame-
ter functions of the phase-space variables. 3

The local gauge symmetry of (2.1) is determined
by the constraints (2.6b). The gauge group is
easily seen to be SO(2, 1) by setting J,p z(P +y ),
elf 3 Q (P —p ), and J&3

——zP & . The L&r~gi~
(2.1) is also invariant under an infinitesimal global
conformal O(2, 4) rotation

x(h )z(8„+W~)zq+z+ Dz ],
(3.2)

where 8 is an anticommuting space coordinate, an
odd element of a Grassmann algebra. h"„are
zweibein fields, M= 1,2 is the index of the curvi-
linear coordinates, and A, = 1,2 that of the flat
tangent space, where 1 corresponds to r and 2 to
8. h", W„, D, and z depend on both 7 and 8.
is chosen such that S is scalar in the flat tangent
space. Notice that the indices of z are suppres-
sed [cf. Eq. (3.1) in paper I].

Evaluating the determinant of the zweibein field,
the action (3.2) simplifies to [d=(h ')~, y=(h ')'„
b=jgI, z=—8z/8r, and z'=8z/Bej

JA B PAy B PByA

which is conserved and gauge invariant.
When we now eliminate PD=O and y'=0 by

means of the gauge choice

(2.9)

S= d7 d8g 7,8,

Z(~, e) = --,'f[dy(z+ Wz)'
(3.3)

D=0, P6 ——0, (2.10) +d (z+ Wiz) ~ (z'+ Wgz) + bdDz j,

b'»8] = 2ys.

We have

(2.11)

we get exactly the theory (1.1) which was consid-
ered in paper I. Notice that P, =0 is a good
gauge choice provided y'g0, since

from which we obtain the equations of motion

r =z'=0,
z'=z -z=z'=z. z'=0,

where we have imposed the gauge choice

(3 4)

~6 +( ye~ )1/2

where y', g=0, 1,2,3,5 are the first five compon-
ents of y". Hence y'g0 is equivalent to y'y, g0
which we had to impose in the spinning case in
paper I. Since y'=0 is a quadratic constraint
we get two possible solutions for y which here
are completely equivalent, however. From here
on the analysis of paper I applies.

d=R ' y=i8R '

D= S( ——W~
——0.

(3.6)

g is a constant with dimension length (correspon-
ding to V, in the previous section) ~ Notice that
we measure all dimensions in length, and with the
usual choice Dim(r) = 1, Dim(z) = 1, Dim(8) = z,
we get Dim(y) = 0, Dim(d) = -~, Dim(W) = -1,
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Dim (W,) =-z', Dim(b) =1, and Dim(D) = —3. The
last equations in (3.4) are constraint equations
coming from the variations of d, y, 5, W„W~,
and D.

The Hamiltonian formulation of (3.2) is given in
terms of the constraints

be seen in the next section. Consider therefore
again the Hamiltonian formulation of the system
(2.1). After the gauge choice V= 1/m, W=D=0,
it reduces to (the canonical momenta to y" are
here denoted by II")

P =P —Pq —Pq,
——Pq, —P~ —0,d Y 1 2

P"=P ' z(e) = z'(e) = 0,
(3 6)

(3.7)

K= II~II~ = 0,
2m

II&y =y =O.A, 2

(4 1)

(4 2)

z"(2., 8) =y" (7) + icy"(r)z"',
and set P„'=P„, we are left with the reduced
theory

(3.8)

and the Hamiltonian is a generalization of (2.7).
When we eliminate the constraints (3.6) by means
of the gauge choice (3.5), and when we expand
z(r, 8) in 6,

(4 3)

or equivalently

%e shall here show that one may perform a point
transformation which linearizes the constraints
(4.2). The new set of coordinates x obtained in
this way is related to y" in the following fashion:

yPx'= R x'=y'-y' x'=y-R'

K=-,'RP',
(3.9)

x x~e &

P' »)=(y» )=0

{y & B) B~

, |j' )=ig

(3.10)

P =P y =y =P ~ g=y g/)=0

One may easily check that these constraints satisfy
a closed Poisson algebra [a graded So(2,1) alge-
bra] in terms of the following Poisson brackets:

x"x" ( x
y =zx l-n. . „2 -I+2 5&,) x

(4.4)

cg~s( ) =,~ y ( ),+ yc(x ) , (4.5)

and becomes explicitly

where R is a constant with dimensions of length
and where x g0 is required. The new metric
tensor g„z(x) is given by the relation

PA=0. (3.11)

Again there are two possible solutions for y,
namely

%hen we choose

y' = -(-y'y. )"',
we obtain exactly the theory given in paper I, e.g.,
the remaining constraints satisfy the closed alge-
bra (3.35) of paper I. There we showed that the
massive gauge choice P, = -m upon quantization
with the operators P represented by 8x8 ma-
trices yields the ordinary Dirac equation, and
that the de Sitter gauge y'y, = —L yields the gen-
eralized massless one in de Sitter space.

IV. FURTHER EQUIVALENCES

There is a choice of coordinates other than that
of Sec. II which seems to be more relevant here,
in particular when interaction is included as will

Now we break the manifestly conformally covar-
iant description and eliminate the constraint y'
=0 by means of the gauge choice x' R

g55(x) I 5 2 ~& g55(x) 5(x) 2x

g„,(x) =g.,(x) =g„(x)=0.

(4.6)

x 56 xg"( ) =4—,g"( ) =2 —,R' R'
g"'(x) =g"'(x) =g"(x)=0.

(4.7)

The conjugate momenta P„ to x are related to
II„ through the formula

8II„= ~ y„(x)g (x)Pc. (4.8)

Explicitly we find

x' ' x'
P 2 fxJ px P6)

x~P~ x x"x" x'

The inverse g z(x) defined by g" (x)gee(x) = 5z
becomes then

g'"(x)= ~]l 2)"",
x'l' „„
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I x' x"x" x'-
II6 —P5 5

+ 1 9QV Q
+ 5 P6x R R x

1 x'
lj=i q""P„P„=O,

2m R) (4.10)

By means of these relations it is easily shown
that (4.1) and (4.2) become

V. MANIFESTLY CONFORMALLY COVARIANT
DESCRIPTION OF A RELATIVISTIC CHARGE

PARTICLE IN INTERACTION WITH AN EXTERNAL
FIELD

In this section we shall show that a relativistic
charged particle in interaction with an external
field may be described by the Lagrangian (we
set the charge e=1)

P, =O, x =o,6 (4.11)
L(7) =Lo(7)+j As(y), (5.1)

x' = Rg(x"), (4.12)

where P is any nonsingular function of x . The
system (4.10) and (4.11) becomes then

which is the promised linearized form. Since the
system is independent of P6, x6 is trivially elim-
inated. P, is eliminated by means of a gauge
choice on x'. The class of meaningful choices
are parametrized as

ysAs(y) = 0,
y'ssAc(y) = -Ac(y) .

After the gauge choice

(5.2)

(5 3)

where Lo(r) is given by (2.1) As(y) is a six-com-
ponent external vector field which satisfies the
subsidiary conditions'

H= Q (x)q "P„P„=O,1
2m

(4.13)
S'= D= 0

the equations of motion reduce to

(5.4)

which describes a "massless" particle in a space
which is conformal to the compactified Minkowski
space. In particular for &f& = 1 we have a mass-
less particle in Minkowski space itself and for

1""'-1-x.x y4L

~y" =y&P"'(y),
~2 ~ 2

where

P"'(y) = 8"A'- 8'A" .

(5.5)

(5.6)

(5.7)

we have a massless particle in a de Sitter space
with radius 1..

We end this section by stating the transforma-
tion properties of x", P„under conformal trans-
formations generated by (2.9) [cf. (2.8)]. For
x we have

6x" = c"„xv+px~+ &'

H = [II —A(y)]' = 0, (5.8)

(5 9)

The corresponding Hamiltonian formulation of
(5.1) after the gauge choice (5.4) is given by

-C„ex"—2C"q,„Hx",

5x'=-px'+4x'C, x", 5x =0,

(4.14)

(4.15)

where II„ is the conjugate momentum to y". No-
tice that Ii„y"= 0 is equivalent to (P —A)„y"= 0
owing to Eq. (5.2). The constraints (5.8) and (5.9)
form a closed Poisson algebra since, e.g.,

where p —=e„„e'=—,'R(e" + z'"), and C'=(I/4R)
x (z'" —c'"). x' is set equal to zero. We conclude
that J „, J6„J, +J6, and J6 —J,„generate
Lorentz, scale, translation, and special confor-
mal transformations, respectively. Notice that
x is Poincare invariant. P„ transforms as fol-
lows (P5

——x =0):
5P~ f~ Pv pP~ + 2Cv+P~ + 4C ~HP~

+ (2C„x"q.,x'+ 4C, r)„,x"x')~

(4.16)

5P =0, 5P =2R
x j

([11—A(y)]', ll y}=-211'+211.A
-2(11—A)»"8„A&= 2(11

(5.10)

owing to (5.3). Hence, the conditions. (5.2) and
(5.3) are necessary in order to make the minimal
coupling possible.

The reduction to Minkowski space is here ra-
ther nontrivial, however. One obvious difficulty
is that As(y) depend on too many coordinates
which may not be reduced by means of gauge
choices. On the other hand, owing to the condi-
tion (5.3), we may define new fields which effec-
tively depend on only four coordinates after y'
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= 0 is imposed. They are given by

Ra, (x) = (y'- y')A, -y. (A, + A,),

Ra5(x) =(y —y )A5 —y A„+ b 5 (A&+AS),
2(y -y

which describes a massless charged particle in
interaction with an external electromagnetic
field in a space-time which is conformal to the
Minkowski space (the gauge condition x' =R
yields the Minkowski space itself).

Ra6(x) = (y —y )A6+ y A„—,6 5 (Ag + Ag),

(5.11)

where x~ = (y' —y') 'y"R, y2= 0, and R is a con-
stant with dimensions of length. The inverse
relations are in terms of the coordinates x in
(4 8)

A„(y) = — a„+q,„(a,+ a,)

&5 -1 - &a~ &v

A, (y) = — a6 —q, „2 2 (ag+a6) ——a„

The condition (5.2) becomes

a, (x) = a, (x) . (5.13)

These relations obviously suggest the point trans-
formation of Sec. IV. The system (5.8) and (5.9)
becomes in terms of x, P„

A, (y)= R) a, +q, „2R2 (a5+a, )+ R
'a, , (5.12)

VI. CONCLUDING REMARKS

We have shown that the description of relativis-
tic particles is possible to embed in a manifestly
conformal formalism. In the case of massless
particles interaction with an electromagnetic
field is introduced through the trivial generaliza-
tion of the conventional minimal coupling, which
is also known to be possible in the pure field
theory case.

In paper I we showed that one may add a fifth
component to.the particle position when local
scale invariance is included and in the present
paper we have shown that also a sixth component
can be included together with a further local in-
variance. One may ask if it is possible to add
even further components to the position. How-
ever, one easily realizes that there are no fur-
ther local invariances which can make these com-
ponents unobservable. [The constraints (2.6b)
are the only manifestly invariant ones one may
construct out of P„and y".] Hence conformal in-
variance is the maximal invariance we can have
[O(2,4) is the maximal global O(m, n) symmetry
of an action describing particles].

2m R

P) ——0, g =0,

(5.14)

(5.15)
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