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On-shell counterterms and nonlinear invariances
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For theories with nonlinear invariances it is not sufficient to restrict one’s attention to on-shell invariants in
order to discuss the infinities of the S matrix. We give examples of models in which S-matrix divergences
cannot be absorbed by invariant on-shell counterterms, and describe the general situation. We point out the
possible relevance of the nonclosure of the algebra of symmetry transformations.

In the analysis of quantum divergences the back-
ground-field method, and the invariance of the
background-field functional under the symmetries
of the classical action, plays an important role.!

In particular, in the presence of local gauge sym-
metries this method is more convenient than the
conventional Feynman-diagram calculations of
individual graphs, which do not manifestly main-
tain the symmetries.

The background-field functional for a field theory
described by a Lagrangian £(¢) with corresponding
action S[¢] =[dx £(¢(x)) is defined by a functional
integral:

[¢] =f[dx]exz){iﬁ'1(8[¢> +X] =5[] =S, [dXe)} -

)

In this definition ¢ stands for the set of back-
ground fields ¢,, and x for the corresponding set
of quantum fields. The index % labels both space-
time points and type of fields, while S ,[¢] denotes
the variational derivative of the action with re-
spect to ¢,. In the one-loop approximation, ©[¢]
generates precisely all the one-particle irreduc-
ible vertices; in higher orders this correspon-
dence is not so direct.

The original action S[¢] is assumed to be in-
variant under transformations

o—0¢'=g(¢), (2)

and this implies certain properties of the back-
ground field functional Q[¢]. To describe the
effect of the transformations (2) on Q[¢] it is con-
venient to introduce separate background-field and
quantum-field transformations:

o—0'=g(d), (3a)

X=X =g(¢ +x) -2(9). (3b)
Except for the last term in Eq. (1) proportional to
the classical field equations S,k[‘i’ ], the functional

20

Q[¢] is manifestly invariant under (3). The term
S, #[® X, is in general not invariant, in particular
because the quantum-field transformation (3b) is
usually no longer covariant. Of course, in the
case that the transformation (2) is at most linear
in the fields, so that (3b) is linear and homoge-
neous in the quantum fields, the term proportional
to the field equation preserves the invariance (3).
The functional 2[¢] is then invariant off-shell,
i.e., without need for imposing the classical field
equations S ,[¢]=0.2

IfS ,[¢]X, is not invariant under (3) we recover
the invariance of Q[¢] only after the field equa-
tions are imposed. It is then tempting to assume
that Q[¢ ] can be written as the sum of an invari-
ant functional and terms proportional to the field
equations

Qe]=1[p]+X*[9]S 4[¢]- 4)

When studying the (one-loop) quantum divergences,
the divergent part of I[¢ ] will define the required
on-shell counterterm, whereas the divergences in
the remaining term can be absorbed into field re-
definitions. Therefore, the existence of invari-
ants I[¢ ] which are not already contained in the
original action is an indication that the S matrix
of the theory is infinite. Conversely, the absence
of such invariants has been given as an argument
for the finiteness of scattering amplitudes.
However, Eq. (4) does not represent the general
situation: The decomposition of Q[¢] can also
contain additional noninvariant terms, denoted by
H[¢], which do not vanish on-shell, although their
variations do. In this note we will exhibit local
quantities of this type in the framework of two
specific models. It is important to realize that
some of these quantities are required as actual
counterterms to absorb one-loop divergences. We
will then discuss the general circumstances under
which such terms can occur. In order to estab-
lish the finiteness of the S matrix under these cir-
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cumstances, it is not sufficient to prove that no
local on-shell invariants can be constructed. We
argue that this situation is particularly relevant
for theories where the algebra of infinitesimal
symmetry transformations only closes upon use of
the field equations.

We now discuss two explicit examples. The mod-
els we consider are invariant under supersymme-
try transformations and contain a scalar, a pseu-
doscalar, and a Majorana spinor field, denoted by
A, B, and x, respectively. The first model, due
to Wess and Zumino, is of the renormalizable
type, and its Lagrangian is given by>*

£, == 3(8 ,A)? — 50, B)* - 3Ppp — 3m*(A* +B?)
- zmyy - 38%(A* +B?)? —gmA(A® +B?)
-gY(A —iy,B)p. )
The corresponding action is invariant under trans-

formations characterized by a constant anticom-
muting Majorana spinorial parameter €:

6A =€y,
6B =iy ), (6)
6y =#(A +iy;B)e —m(A +iy;B)e - g(A +iy;B)%.

The second Lagrangian, which has been discussed
by Lang and Wess,*® contains a dimensional cou-

pling constant, and is not renormalizable by power
counting:

£,=-3(0,4) - 2(8,,B) - 2By — 3m*(A® +B?)
— 3mdp = xm(A* —=BY) — 1X2(AZ% +B2)3
- S\)(A - iy, B)%. (M

This theory is invariant under a set of similar
transformations:

BA =€y,
OB =icyg), ) ' (8)
8 =g (A +iy,B)e —m(A +iy,B)e — M(A +iy,B)%€ .

In both models the transformations are nonlinear.

In the first model the following quantity, which
depends on an arbitrary parameter 7, does not
vanish on-shell:

H[9]= [ dx[- e, 47 - 36, BY - 14y
+3mA(L - 27)(A? +B7) — smTHy
+gm(l - T)A(A? +B?) + 38%(A% +B?)?].

&)

It is straightforward'to verify that this quantity is
not invariant under the transformations (6). Its
variation is given by

6H1[¢]=fdx'€[m(1 —7)(A +iy,B)

+g(A +ivsB)?]8S/63 (10)

which does vanish on-shell by virtue of the
P-field equation:
6S/60=F +mp +2g(A — iy, B). (11)

The situation is similar in the second model.
The quantity H?[¢] given by

#[8]= [ ax{(A? +B)[m*(A% +B%) - (0,A)° - (o, B)* - T54]

+20m (A% +B2)(A* - BY) +)2(A% +B2)* +m (A% +B2)Y — 2m ABiy,)
+M(A* =By - 2XAB(A® +B?)iys +iAB BYy, v +5(00)%} (12)

does not vanish on-shell, but its variation does:

SH[¢ ] = f dx€{2(A? +B?) [m(A +iy, B)+ M (A? - 3B2)+idy, B(3A2 - B2)| +T(A +iy,B) +Prsd(A +iv; B)y,}0S/6%.

In this case the y-field equation is given by

6S/69 =g +myp +3X(A +iy, B)%. (14)

Clearly, the on-shell invariance of the back-
ground-field functionals does not exclude contri-
butions proportional to H! or H2. In fact H' (with
7=0) and H? turn out to represent precisely the
quantum divergences of these models in the one-
loop approximation. Hence, the S matrix is infi-
nite in both models, although in the first one the

13)

M :
divergences can be absorbed by standard renor-
malization procedures. This is not the case in
the second model, which is truly unrenormaliz-
able. Thus, these examples show that to analyze
the possible absence of infinities of the S matrix,
it is not sufficient to argue that invariant (on-
shell) counterterms cannot be constructed. For
instance, using this type of argument would lead
to the erroneous conclusion that the second model
is on-shell finite (after a possible coupling-con-
stant renormalization).
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The occurrence of terms such as H! and H? is
somewhat troublesome. Unlike the case of true
invariants, which can usually be constructed in a
systematic way be using some form of tensor cal-
culus, there is no general construction available
for noninvariant quantities with vanishing on-shell
variations. The following argument shows that
these quantities exist in many field theories: As-
sume that the action S[¢] is invariant under some
group of transformations, with corresponding
field variations 6¢. Hence, we may write

S u[9166,=0. (15)

The first-order derivatives of the action with re-
spect to the various parameters contained in this
action (masses and coupling constants) are then in
general no longer invariant (at least not for non-
linear transformations). However, their varia-
tions under the symmetry transformations are
proportional to the field equations, as follows
directly from differentiating Eq. (15) with respect
to such parameters. ,

Although this argument shows that quantities
such as (9) and (12) do exist in general, it only al-
lows the construction of those quantities that are
already generically present in the classical action.
As mentioned above, a systematic procedure for
generally constructing these noninvariant terms is
lacking. At any rate, it is of more importance to
understand under which circumstances such terms
will actually contribute to the background-field
functional (1), and in particular to its divergent
part. Clearly, the nonlinearity of the transforma-
tions is important. As mentioned above, the stan-
dard invariance arguments are valid in the case of
linear transformations, since the background-field
functional is manifestly invariant, even off-shell.

- In addition to nonlinearity, the transformations
(6) and (8) exhibit a second property which might
have some relevance to this matter, namely the
nonclosure of the algebra of (infinitesimal) sym-
metry transformations: The commutator of two
supersymmetry transformations, 6, and §,, yields
a translation 6, plus further field-dependent trans-
formations &' , such that 8’¢ is proportional to the
field equations. These transformations still leave
the action invariant, without need to impose the
field equations. Moreover, by considering repeat-
ed commutators, we are in general able to gener-
ate a large set of new field-dependent transforma-
tions, which all vanish on-shell, and still leave
the action invariant off-shell. Because this whole
set is constructed from the original symmetry
transformations, every true invariant of the the-
ory must be invariant under these new transforma-
tions as well. This severely restricts the possi-

bility of having invariants other than the action in
nontrivial theories.” Thus, in cases that the sym-
metry algebra fails to close, most of the contribu-
tions to the background-field functional (1) cannot
be decomposed according to Eq. (4). Instead, they
are generated by terms such as (9) and (12), which
are not invariant for general background-field
configurations, but only for those that satisfy the
field equations. Therefore, in formulations with
an open symmetry algebra, it is in principle not
meaningful to discuss the finiteness of the S ma-
trices within the context of invariants.

For the models discussed above, both the non-
linearity and the nonclosure of the transforma-
tions can be eliminated by introducing so-called
auxiliary fields. The background-field functional,
which then depends on the auxiliary fields as well,
is manifestly invariant in that case, so that the
quantum divergences can be fully discussed in the
context of invariant counterterms.*® However,
there are theories with nonlinear symmetry trans-

~ formations that have a closed algebra. In such

cases we know of no arguments to determine in
advance whether terms such as (9) and (12) will
actually occur to represent the quantum diver-
gences of the theory.

In the nonlinear o model, where the nonlinear
symmetry transformations close, the on-shell
part of the one-loop divergences turns out to be a
true invariant.® In supergravity theories where
auxiliary-field formulations with a close algebra
exist,® but where the transformations are still
nonlinear, the actual situation is not known, and
merits further investigation. The original dis-
cussion of the one-, two-, and three-loop counter-
terms’® was not in the context of an auxiliary-field
formulation and was mainly devoted to finding true
invariants, although some attention was paid to the
possibility that noninvariant on-shell counterterms
of the type discussed above could exist. However,
the linearized counterterms are not expected to
lead to true invariants when completed to all
orders in the gravitational coupling constant be-
cause of the nonclosure of the gauge algebra. This
seems to suggest that the analysis presented with-
out auxiliary fields is not complete.

In conclusion, as our examples have demon-
strated, a discussion of the background-field func-
tional based on the decomposition (4) may be mis-
leading, and in particular arguments for the fi-
niteness of the S matrix purely based on the ab-
sence of true (on-shell) invariants are incomplete.
This is especially relevant in supergravity, where
conventional methods to investigate the finiteness
of the S matrix are difficult to apply. No actual
indications that these complications will occur are
known in low orders of perturbation theory, and up
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to the two-loop approximation independent argu-
ments based on S-matrix invariance,'’»!? as well
as explicit calculations,'*+!? have indeed demon-
strated the finiteness of certain scattering ampli-
tudes. Of course, the existence of auxiliary-field
formulations and a corresponding tensor calculus
makes the analysis of quantum divergences much
more transparent. Nonetheless, the nonlinearity
of the supersymmetry transformations remains,
so that the situation at the one- and two-loop level

needs further clarification.
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