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Analytic contributions to the g factor of the electron in sixth order
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We compute a precise value for three more graphs contributing to the g factor of the electron in sixth
order. After comparing with other numerical and analytic evaluations, we give an updated "best" theoretical
estimate of the g factor, and compare it to the experimental value.

I. INTRODUCTION

By combining the hyperspherical' and disper-
sive' techniques for Feynman-graph evaluation,
we have computed the contributions of three more
graphs to the g-factor anomaly of the electron in
sixth order: a,' '. These graphs are shown in Fig.
1. Recent high-precision experimental results'
necessitate this continuing effort to improve the
theoretical value fora,' '. Our results are given in
Table I. In Sec. II and in the Appendices we pres-
ent details of the techniques used in this evalua-
tion. In Sec. III we compare our results with pre-
vious, lower-precision, numerical results for
these graphs. and compare the overall theoretical
results with recent high-precision experimental
results for a, .

II. TECHNIQUE

These results were obtained by a hybrid tech-
nique combining the hyperspherical approach used
previously by two of the authors (M.l. , R.R.) with
the dispersion-theory methods already used by the
third author (E.R.). Briefly, suitable subgraphs
have been reduced to a dispersive representation.
This representation is (a) relatively easily de-
rived, (b) reduces the order of integration internal
to the subgraph, and (c) is well suited to the re-
maining integrations needed to complete the eval-
uation. These remaining integrations are done by
hyperspherical techniques. Below, we describe
generally those techniques used in this field and,
in particular, the combination used in this calcula-
tion.

The contribution of a given Feynman graph to
the anomaly is usually first written in a form in-
volving integrations over the virtual four momenta
of the internal lines. In sixth-order QED this in-
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I'IG. 1. Graphs evaluated in this paper. This is set
F of Ref. 5. The numbering follows Ref. 4.

volves 3 four-fold integrations or 12 integrations.
By introducing scalar "Feynman parameters" it is
possible to reduce the order of integration from
12 to 7 or less. This is the technique used in the
"numerical" work. ' ' There the reduction to
quadratures was done analytically.

The hyperspherical approach utilizes the fact
that after performing the Wick rotation and in-
troducing four -dimensional hyperspherical coor-
dinates, it is often possible to do many or all of
the angular integrations rather simply. These
angular integrations are easy for some sixth-order
graphs and become extremely difficult for other
topologies. In the worst cases, we do not know
how to apply this scheme at all. If the angular i.n-
tegrations can be done, then there remain the
three "radial" integrals. These are of varying
complexity. In simple cases, such as the ladder
graph, ' we encounter multiple simple rational
functions which lead to logarithms and Spence
functions after one or two integrations, respective-
ly. In more complicated cases, we encounter
higher-order generalized Spence or Nielsen' func-
tions and the expressions involve square roots of
rationals. A fuller discussion of these techniques
can be found in Refs. 1 and 8.

Alternatively, one can work from dispersion-re-
lation representations of the graphs. Following
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TABLE I. Quasianalytic expressions for the contribution to a~ of the graphs in Fig. 1.The infrared pieces propor-
tional to ink. and ln2& are omitted. The values for graphs 4 and 14 have been doubled to include their mirror images.
The numerical value is given as the sum of two parts: (1) an expression in the usual transcendental numbers and (2) a
residual one-dimensionl integral.

'I

Graph p.+ 2~929 + 43i 7t'2 53 z4 + 2 (ln2)4 + Q' (3) + i6A ii 7t'2 ln2 + i6 &2 (In2)2 + 689' (5) 383 &2g (3)

i
+ db Nl = -22.9896 ' ' ' + 20.2383 ' ' ' = -2.751419 5

0

Graph 4: —7 295~2 37 ~4 + i (ln2)4+ 629 g(3) + 4A4+ i &2 ln2+ 4 &2(ln2)2 i153 g(5) 3077t2$(3)

i
+ db N4= -69.1612 ' ' ' + 67.9548 ' ' ' = -1.206 376 5

0

Qraph ]4 +439 + Sii
7t

2 + &4 4 (ln2)4 12i3 p (3) —-~A4 ii &2 ln2 32 &2 (ln2)2 347 p (5) + 539
tt 2g (3)

+ db N14=+108.5404' ' —103.0304' ' =+5.509 933 6
0

+460i 203~2+ ?3 ~4 1 (ln2)4+ 63 g(3) 4A 3 ~21n2 4 ~2(ln2)2 8ii g(5) +3i3~2)(3)

i
+ Ntot = 1 6.3 95 ' —14.8374 ' ' = +1.552 137 6,

0

where f(9)=g 1/(n )=1.202056' ' ', f( )5= Ql/(n )=1.026927' ' ', A4
——+1/(2"n4)=0.517479 '' '

N1 = Il + 19 x I2 + 23 x I3 5 x I4; N4= 23 x Il + 29 x I2 + 121 x I3 —523 x I4; N14= -23 x Il 65 x I2 157 x I3 + 487 x I4

Ntot= Il 17 x I2 —13 x I3 41 x I4

Il = SMB LBM2 IB + LGB (2 SBLB IBM + 3 SMB LB IBM + 2 LB LBM2 IB + 3 LB LBM LB1IB

—2 SBLBM IB—4 SBLBM IBM —3 SMB LBM IB—6 SM8 LBM IBM —3 LBM LB1IB)/3;

I2 = LGB (4 SBLB IB + 6 SMB LBIB—LBM3 IB-3 LB LB1IB)/12; I3= LGB LB IB/6; I4= LGB LB LBM IB/12

and where IB=1/b; IBM=1/(1 —b); LB=in(b); LBM=ln(1 —b); LBl=ln(1+ b); SB=S2(b); SMB=S2(-b); LGB=ln(1 —b+ b )

Cutkosky" there are first the phase-space inte-
grals to be evaluated in finding the discontinuity
functions and finally the dispersion integral. The
class of integrals encountered is the same as in
the hyperspherical technique. Again there is a
wide range of complexity among graphs. Because
one deals with subgraphs on the mass shell in ob-
taining the discontinuities, there are a host of
spurious infrared-divergence problems to be dealt
with in this approach. These techniques are fully
described in Ref. 2.

For the graphs of Fig. 1, the complexities of the
angular integrals in a purely hyperspherical ap-
proach exceed our current personal and computer
resources. If, however, we extract an off-mass-
shell second-order vertex function from each
graph and replace it by a dispersion integral
form, the remaining angular integrals are nearly
trivial. In the case of graph 1, it is even possible
to extract both second-order vertex functions. In
Appendix A we present the dispersive representa-
tion for the scalar second-order vertex function
and derive it by hyperspherical techniques. This

serves to demonstrate the basic analytical steps.
In Appendix B we describe the additional steps
necessary to derive the dispersive representation
for the full spinor case. Using those functions one
can write the amplitude for the full sixth-order
graphs of Fig. 1 and extract the g-factor anomaly
a~ '. Since these are notnew techniques, we omit
further discussion of them.

At this stage one has seven dispersion integrals
and some hyperspherical angular and one radial
integral to evaluate. A sample term is considered
in Appendix C where we describe the remaining
steps in the integration. We are able to reduce
the entire expression to a one-dimensional inte-
gral. Most of these integrals have been evaluated
for previous graphs. Some new integrals of
"transcendentality-4" (e.g., products of four logs and
a rational or one Spence function, two logs and a
rational) were encountered in these graphs. Ap-
pendix D is a table of some such integrals. Some
new integrations were encountered which we are
unable, as of yet, to do analytically. These have
been given names and done to high precision (1
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given in Table III and combined below (we treat the
errors as statistical though they may well not be):

b
I

PIG. 2. Graphs not yet known to high precision. We
show the basic self-energy graph from which the ver-
tex graphs are derived by insertion of an external
vertex.

part in 10') by numerical techniques.

III. RESULTS

In Table I we give the "semianalytic" results for
each graph and its numerical contribution to a, .
While we are unable to evaluate all the integrals
analytically, those integrals which remain are one
dimensional and can be evaluated numerically to
essentially arbitrary precision with reasonable
ease. We present the remaining integrals in the
form in which they arise in our calculation. But
it is likely that only certain linear combinations
of these simple forms arise and are reducible to
our usual final class of transcendentals.

Our results are compared with results of pre-
vious numerical evaluations in Table II. The
agreement with Ref. 4 is striking; the agreement
with Refs. 5-7 is tolerable. The results of Car-
roll have usually been about one standard devia-
tion more negative than the precise analytic re-
sults.

To obtain the best estimate of the total a,"', we
combine those parts known analytically' and semi-
analytically with a weighted average of those with
appreciable numerical errors. There are current-
ly three sets of graphs in this latter category. The
three sets are shown in Figs. 2(a)-2(c). The re-
sults for these sets from various sources are

u Nemo 137,035 963(15)

and the recent value for a, from single trapped
electrons by Van Dyck et al. ,'

a', ~ = 1 159 652 2 00 (40) x 10 ".

~e can combine (1) and (2) to yield

a "=1 159,652 541(179)x 10

(2)

(4)

This error comes from uncertainties in n, 127
x 10 ", and in a,', 125 x 10 ". Alternatively we
can combine (1) and (3} to yield

u '= 137.036 003 (16) .
This error comes from uncertainties in a,'~, 5
x 10 ', and in a,'", 15 x 10 '. Comparing (4) with
(3) and (5}with (2) both give reasonable agreement.

a '6' = 1.181 (10) .
Using this, a,"' (Ref. 11) and a,'4' (Ref. 12) we ob-
tain the current theoretical expression for the
QED contribution:

ann (u/v) 0 328 478 445(u /v)2

+ 1.181(10)(u!v)'.
The dominant unknown contribution to a,'" is the

eighth-order QED value which must be of order
(u/m)'= 0.002(u/w)'. Other known effects include
fourth-order QED with muon loops (known exact-
ly" -0.0002 (u/w), ' fourth-order QED with hadronic
loops" estimated to be 0.00013(2)(u/w)', and weak
effects" which are estimated to be of order
0.000003(u/w)'. These are presented here in
units of (u/m)' simply to demonstrate that they
are still small compared to the uncertainties in
g (6)

8
The relevant experimental numbers are the non-

QED value" for the fine-structure constant

TABLZ II. Comparison between the results of this paper and previous results for these
graphs. Values for nonsymmetric graphs have been doubled.

Graph
Results from

this paper Previous results

1
4

14

Total

-2.751 9195
-1.206 376 5
+5.509 933 6

+1.552 137 6

2.746 (7) '
-1.211 (13)

5.515 (25) '
1.559 (29)

-2.733 (6)"
1.200 (7)'
5.488 (14)"

1.551 (10)"

-2.728 (16) d

1.532 (15)'

'Reference 4.
"References 5 and 20.' Reference 6.

Reference 7.
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TABLE QI. Numerical values for the graphs of Fig. 2. These are not yet known to high
precision.

Graphs of Fig. 2(a) 2(c)

Values from other sources

Value used in this paper

0.0893 (60)
0.0970 (280)"
0.0470 (300)

o.os9v (5s)

o.36oo (4oo) '
o.366o (100)'
0.3700 (130)
o.4ooo (4o) '
o.36so (so)

0.7807 (13)"
0.7980 (240)"
0.7730 (140)

o.vsov (13)

~Reference 20.
"Reference 4.
'Reference 6.
d Reference 21.

' Reference 22.
Reference 23.

g Reference 24.
"Reference 17.

Work continues both on a,'~ and on the remaining
numerical parts of a,' '. Our techniques arebeing
applied to produce high-precision results for the
graphs of Figs. 2(a), and (b}. As yet, we do not
understand how to approach the nonplanar graphs
of Fig. 2(c). . The recent numerical reevaluation of
this set by Kinoshita and I,indquist" has reduced
the error due to this set to the same order of
magnitude as our uncertainty in the eighth-order
@ED effects. Because of continuing experimental
work, it will probably become necessary finally to
come to grips with a,"'.

APPENDIX A

We show here how to obtain the dispersive rep-
resentation of the second-order scalar vertex
graph by means of hyperspherical integration.
'This method can be useful because it gives direct-
ly any necessary subtraction terms in the disper-
sive representation. Additionally, it provides a
simple, explicit example of the hyperspherical
technique.

The scalar vertex amplitude, corresponding to
the graph in Fig. 3, is

V(Q' P' L') = d'kD '
(2~)2

D = (k'+ 1)(P-k}'[(L-k)'+1],
(A1)

where k is the Minkowski loop momentum. We
have set, me=. 1. We use the metric P2= P2-P02
The Q' dispersion relation at fixed P', L' for this
amplitude is

V(Q', P'I L') =—,v(a, P', L') . (A2)-1 " da
m, (a+@')
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For L'& 0 (spacelike) and P'- -1 (mass-shell
condition) the discontinuity is

v(a, 1,L') = ———ln[(a+ 1+L'+R, )/(a+ 1+L'-R, )],1 1

(A3)
where the characteristic root is

= [(a 1 y L2) +4L ]'I'

This expression for the discontinuity can be readi-
ly obtained by the Cutkosky rules. "

Alternatively, we can evaluate most of the inte-
grals in (A1}by hyperspherical techniques to re-
derive the dispersive representation. For L'& 0,
P' real and & -1 we can Wick rotate k into the
Euclidean momentum K. Then

d'k = d'k dk -i d'KdKo= i d'K = i K'dKd 'Q(K) .

1/(g —2goz + 1)= Q g"C (egg),
n=o

orthogonality condition
/

(A4)

d'A(K)C„(P K)C (K'Q)=2m' "" C„(P Q)

(A5)

(where P K is the cosine of the angle between the
four-dimensional vectors P and K), addition
theorem

Mfn(g& m)

c„(~)c.(~)= g c..„.,(~),
Jt=O

jI
™

I 'll,I~ \

0 P-L
yL

FlG. 3. The second-order scalar vertex graph.

K is the "radial" variable (0 & K( ~) and d'Q(K) re-
fers to the three hyperspherical angles. The
Gegenbauer polynomials C„(w) enter naturally. We
need their generating function
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and special cases C,(x)=1, C,(x)=2x. The gener-
ating function is essentially the Euclidean scalar
propagator so that

where

z„=z(P,L, 1),

1/[(K-L)'+m']= Qz "C„(K L),
n=0

where

z = z( K, L, ms)

= 1(K'+ L'+ m ')

—[(K'+ L'+ m')s-4K'L']'"]/(2KL)

(A7)
(I.'+ 1)z -PL

z(zL P)-

(L'+ 1) PL—z
(L Pz-)

The K' integration is now trivial. If we now re-
place zo by the variable a defined implicitly by

w=z(P, L, a)

Since we sometimes encounter squared propaga-
tors, we might also require that

we recover the dispersive representation. The li-
mit P'- -1 is readily taken to reproduce (A3).

1/[(K L)'+ m-']'

8'
[(KI.)'(1 — ')] (A8)

xy CP 'E C K'L
ffs ftt =0

x is the z(K, L, 1) of (A7), y is z(P, K, 0) and de-
pends upon the magnitude of P/K:

y =P/K if P(K
=K/P if P&K.

Application of (A5) yields

Integrating (A4) with respect to z allows us to,
write

2 p2 Pxg PI=,
) J! dw/(w'-2P Lw+ 1).

0

Using (A9) in (Al) yields

Iv {@2 P2 L 2)

1 "" KdK '~ dzv

(2PL) .0 {K'+1), (w'-2P Lw+1) '

obtained by differentiating (A7) with respect to m'.
Considering those parts of (Al) depending upon

the direction of K, we define

d'Q(K)
(P-K)'[(L-K)'+1] '

Using (A7) we have

APPENDIX 8

The introduction of spin and the taking of the P
leg of Fig. 3 slightly off-mass-shell broadens the
required class of second-order vertex integrals
beyond that given in (A2), (A4). Here we describe
the derivation of this set of functions. The method
is of utility in other graphs contributing to a,' '.
The second-order spinor vertex requires that we
consider not simply

v=(,.). Ja'vD '

& = (k'+ 1)(P- k)'[(L —k)'+ 1],
as in (Al) but rather the set

1 ]"" da
[V;U„;Tms]= I ~ @2)

[U'v& it s]» (a+@ (B2)

where v, u, t depend upon the vectors P and L
and the invariants (a,P', L'). Lorentz covariance
limits the form of u and t ~ to

ug —u ~P~ + u 2L~,
(B3)

t„s= tg~s+ tsP Ps+ tsL Ls+ t~(P~Ls+ L Ps),

[V;U„;T„s]= ),
' d kD '[I;.k;k ks]. (Bl)

The full second-order vertex involves combinations
of these functions with L„and various Dirac ma-
trices. Since it is usual and straightforward, we
do not present it here.

In analogy with (A2) the results can be written as
(in particular, see p. 912 of Ref. 25)

Interchanging orders of integration and limits, we

have

1 daoy(a 2 P2 L2)-
(4vI. ) I('-vv r. ,

dK'

J» s K'+1 '

where u» and t, 2 3 4 are scalar discontinuity
functions. 'The absence of kinematical singulari-
ties in the Q'-dispersion relation for the u's and
t's means that in deriving the discontinuity func-
tions one can replace Q'= {P-I.)' by -a every-
where in v, u, t, thereby leaving the explicit
(a+@') ' as the only dependence upon the angle be-
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tween L and P. Explicit expressions can be ob-
tained'for these discontinuities u, , (f, ,) by the use
of a complete, orthonormal set of vectors (ten-
sors) spanning the appropriate space.

We introduce two orthonormal vectors r, s
One possible choice is

i O~P-L II 1 ~
P

L

FIG. 4. The scalar self-energy graph corresponding
to the vertex graphs of Fig. 1.

r =bP„, s =c(I —bL 'Pr„), (B4)

with b, c such thats'~=s's=l, x's=0: 5 '
=P P, c '=I, ' (L'+-P'+a)'/(4P'). We have re-
placed (L-P)' by a. U-sing the completenessof r
and s in the space spanned by L and P, we can then
rewrite the k of (Bl) as

k, =(r rz+ s sz)kz=r (r k)+s (s 'k) (B5)

so that the free index no longer appears on the
variable of integration k. In deriving the discon-
tinuity functions u, and u, we must now extract the
coefficients of P and I-, from (85), replace all
dependence upon P L or Q' with appropriate func-
tions of a, and, in general, follow the procedures
of Appendix A or the Cutkosky rules in producing
the discontinuities u, ,

Similarly, we can obtain t, , using the complete,
orthonormal tensors

7 ~Of g g~gg

T2eg —Sesg,

r„,= (r,s, +S r,)/v2,
r, ,= (6, r, , r,-,)/v -2

and the replacement

k kq= Q (r, qr, „„)k k„.

While the algebraic work involved is not prohibi-
tive by hand, we did it by machine usingASHMEDAI. "

To extract the contribution of the sixth-order
graphs toaw'weneed more than the [V;U;T 8] of
(B2) for P on the mass shell. In addition, we need
the first-order terms of t/', U, T as functions of
(P+ q/2) in the limit that q, the external photon
momentum, goes to zero. 'The terms arise in two
ways. First, we must replace the explicit P„of
(B3) with (P + q„/2). Second, we consider the q
dependence of Q' in (B2). Thus for V we need

but

~ sV(P', L', L P) q, sV sV
2 sP„2 BP' " s(L P)

av= -(q'L), ,
a=0

=+ (q 'I') Jt » v(P', L', a)

since q P=O.
Thus for each of the discontinuities of (B3) we

get an additional one obtained by multiplying by

(q ' L)/(a+ 0').
Some of the expressions (e.g. , f,) are divergent:

the result of ultraviolet divergences in the second-
order vertex. As long as we carry the proper re-
normalization counterterm through the same for-
mal manipulation as the main second-order graph,
the difference is both finite and correct.

APPENDIX C

To give an idea of the analytic underlying structure of the calculation, we sketch here our approach to a
typical term, corresponding to the scalar self-mass amplitude of Fig. 4. Using (A2) and (A3) for the in-
serted vertex parts, disregarding numerical factors, and using hyperspherical L-loop variables for
P'= -1, we define

2 "L3dL " dG(L) " db 1 " da 1
n' J L' . (P-L)'+1 b+(P I.)'R, -, a+(P-L)'R. (C1)

where

R =R(b)= [(b-1+L')'+ 41 ']' ', R =R(a), LR(a)= in[(a+ 1+ L'+R(a))/(a+ 1+I '-R(a))].
We use partial fractions for all denominators in (P L)' and use-

= 2&'(K'+ L'+ C- [(K'+L'+ C)-4K'L'] ']/(2K L')dQ(L )
(K- L)2+ C (C2)
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TABLE IV. Integrals of transcendentality-4. The first column is the integrand. This is to
be integrated in t from 0 to 1. The next eight columns give the rational coefficients for the
eight transcendental constants: &1=0(5), &2=5(2)K(3}, &3=&5, C4=44ln2, C5=5 (2)ln2, C6
= f (2)in~2, C&

——f(2)ln32, C8=ln 2, where A&=)~1/(2"n5). The Nielsen functions are defined in Ref. 9.

lnt ln3 (1 —t)/t
ln4(l + t)/t

lntln3(1 + t}/t

ln2tln2(1 + t)/t

ln tin(1 + t)/t

ln4{1 t/2)/t

lntln'(1 —t/2)/t

ln't ln'(1 —t/2)/t

ln't ln2 (1 —t)/t

ln3tln(1- t)/(1+ t)

ln tin(1 —t)ln(1+ t)/t

ln3t ln(1 + t)/(1 —t)

ln3tln(1+ t)/(1+ t)

lntln(1 —t)ln (1+ t)/t

lnt ln2 (1 —t)].n(1+ t)/t

ln3(1 —t)lnt/(1+ t)

ln4t/(1 + t)
ln4(1 —t)/(1 + t)
ln't ln'(1- t)/(1+ t)

ln(1 + t)S3(t)/t

lnt in{1+t)S2(t)/t

lnt S3 (t)/(1 + t)

l 'ts, (t)/(1+ t)

s, (t}s,(-t)/t

lnt ln(1 —t)S2 (-t)/t
ln2t s2(-t}/(1 —t)

].n t ln3 [{].—t}/(1+t)I/t

12
24

99+
64
29
8

45
8

189
16

8

273
16

-27
16

12
87
16
25
16
7

2
-3

16
45
2

15
2

59
32

107
32
83
16
67
8

59
32
3

2
21
16
93
8

-3
8

21

13

15
8

21
8
9
2

5
4

5

8

2

21

-24

24
8

-12

12

5

1

5

21
2

-21
4

21
2

21
8 2

2 2

3

7 -2
4 3

2

3

1
10

10

2

15

-3
20

lnt ln3 (1 —t2)/t

S4(-t)/(1+ t) dt

in{1+t)S, ( t)/t

s,'(-t)/t
lntln(1+ t)S2(-t)/t

ln2t S2(-t}/(1 + t)

lnt S,(-t)/(1+ t)

in{1—t)$3 (t)/(1 + t)

ln(1 —t)S3 (t)/t

lntln(1- t)S2(t)/t

lnt S,(t)/{t -1)
ln't S,(t)/(t —1)

17
16

-17
16
17
16

-17
32
41
16
51
32
85
16

-3
2

9
2

—3
2

-3
8

3

3
8

5

—3
4

7
25

1 -3
10 8

—1
60
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TABLE &. (Continued)

Integrand C, C5 C8 C7

1n2(l —t)82 (t)/t

In{l- t)Si 2(t)/t

[~22(t) -~22(l)J/(t- l)
In2{l —t)1n2(l+ t)/t

In(1 —t)1n3(l + t)/t

In3{l —t)In{l + t)/t

In'{l + t)S2{t)/(l+ t)

Int In2 (1 —t)ln(l + t)/(t —l)
In (l -t)/t
In(1 —t)In3t/t

i
2

25
8
3
4
8i
ie
i
4
7
4

21
8

-2i
8

7
8

2i
8

3
i0

7
7
2i
8

2i
8

-7
8

-7
8

—2

3
2

i5

1 1
5

5

2

fs
i -i

We get

dL' 1
[L'(L'+ 4)]'" I.'

J (r+)~4„, .

,I-„,(L;+4) "*uz
(C3)

After some algebra and integration by parts in
a, along the lines of Sec. 5.1 of Ref. 19, the a in-
tegrand involves rational functions only, which are
integrated to give combinations of logarithms. 'The
expressions for BH/8L' and SH/Bb are cumbersome
but manageable.

As a next step, we consider the transcendentali-
ty-3 functions, as for instance

where the second expression for X in (C3) is ob-
tained by integrating by parts, and

E(L') = [L'(L+ 4)]'i' LR(b—)H(b, I.'), (C4)
db

, b-1R,

oo Q 1
H(b, I, ') = da 1-—

Z, a-S

LR( )a —1

(C5)

Explicit integration of (C5) is possible by using,
for instance, the integration variable

A, —a-L2+ 1

The explicit result, however, is an unmanageable
sum of dilogarithms and products of two logarithms
(transcendentality-2 functions) of complicated ar-
guments which is of little use for subsequent b, L'
integrations.

It is more convenient to use the integral repre-
sentation (C5) for evaluating b and L' derivatives
of H(b, I '), as well as its end-point values at
6=1,, and L'=0, ~. These derivatives of H will
be used to find the corresponding derivatives of
E which will be used in the second expression for
X of (C3).

G(i )= J( db(, ', --')H(b, I, ),
1

whose integral representations involve transcen-
dentality-2 functions. Its L' derivative involves
SH/BL' only, previously evaluated, and the b-in-
tegration can be done explicitly. Because G(L')
and so dG(L')/dL' depend only on L', from the
explicit knowledge of dG/dL' it is not too difficult
to also obtain G(L'). When use is made of the var-
iable

I-'+ 2- [L'(L'+ 4)]'~'
2

the result is found to consist of combinations of
Nielsen functions and logarithms of relatively
simple arguments. %e then deal similarly with
I"(L') of Eq. (C4) which is of transcendentality-4.
Owing to the factor [L'(L'+ 4)]'~' in the definition,
its I. derivative is a combination of transcenden-
tality-3 functions, such as G(I,'). dl'/dL' and the
value of I"(L') for L'-0 are sufficient for obtain-
ing X, Eq. (C1), after an integration by parts, as
a definite single integral of an explicitly known
function.

In the actual calculation of the whole g-2 contri-
bution, after using the dispersive representations
for the two inserted one-loop vertices, one has,
instead of (C 1), an integral over the same varia-
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bles involving, however, some thousand terms,
roughly consisting of the same factors occurring
in (C1) to a variety of different powers. The alge-
braic work was done by computer. " At any step
we try to perform as many as possible integrations
by parts, to reduce the size of the expression, and
then proceed as above. A total of about two dozen
functions of various transcendentalities suffices.
There is the usual blowing up of the number of
terms in intermediate steps, but the last t inte-
grand is relatively simple, a few hundred terms.

All final definite single integrals involving
transcendentality-3 functions were known and done
analytically, so giving at most transcendentality-4
constants. In addition, in the class of graphs we
considered, for the first time in analytic (g- 2)
calculations there are terms involving transcen-
dentality-4 functions which presumably give
transcendentality-5 constants, such as C(5), &(2)

&(3), etc. So far, we have succeeded in analytical-
ly evaluating only a subset of them. The numeri-
cal integration of the remaining terms is simple

enough (definite integral between 0 and 1 of an
explicitly known function, with end-point logarith-
mic singularities only) to be carried out without
any trouble to almost arbitrary precision.

APPENDIX D

We present here a collection of one-dimensional
integrals of fourth-order integrands. This is an
extension of the third-order table in Ref. 25. The
order is based on the Nielsen function: ln,
8». . . contribute 1,2, . . . to the order. Thus these
integrands contain four logarithms or two logarith-
ms + one Spence function, etc. The table is not ex-
haustive. We have not used all of the integrals in
this calculation. However, since this family of in-
tegrals is likely to arise in any approach to these
graphs and since different approaches may require
different members of the set, we present what we
have. Table IV contains the integrals. The method
of derivation is the same as for the third-order
table. We thank Michele Caffo for some entries.
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