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In the planar approximation, we consider the large-energy-s, fixed-transfer-t limit of the four-point vertex
function. In gati' theory (6 space-time dimensions) and in di' theory (4 space-time dimensions), for any
essentially and crossed planar graph, we analytically calculate the coefficients of all powers of logarithms of
s for the leading power" of s. After summing the series in logarithms obtained when the four-point function
is considered, we discuss the existence of Regge trajectories from a Riccati-type differential equation. In
g(iIi )s theory we find a discrete family of Regge-poie trajectories with g-dependent intercepts accumulating
at n = —1. In g(gati )~ theory the solution of the Riccati equation may be easily found if there exists a fixed
point g = g~; the result then is a fixed g-independent cut and an infinite number of pole trajectories (the
square-root branch point is above' the intercepts at g = g ~).

I. INTRODUCTION

In looking at the Regge behavior of field theo-
ries, one goal would be to elucidate the situation
in quantum chromodynamics and to find out wheth-
er hadrons can be considered as bound states of
quarks. A first step in this direction was presen-
ted in a preceding paper, ~ where the existence of
Regge trajectories is proved in the case of a
superrenormalizable field theory.

Such a perturbative approach raises many un-
solved questions; the most important of them is
the following: Does the perturbative series of
Feynman graphs define an acceptable field theory,
eventually with a nontrivial S matrix'7 Until this
question could be answered, we tend towards a
more physical theory by presenting here the sec-
ond step, the case of renormalizable, but non-
superrenormalizable field theories. This case
has already been studied in many papers. Before
we recall the current situation in the literature,
let us summarize the set of new results we ob-
tain:

For any planar (and crossed-planar) graph con-
tributing to the four-point function, we give the
complete asymptotic behavior at large s, fixed t,
with the coefficients of all powers of Ins [Eq.
(3.17)].

The geometric organization of these coefficients
and the use of renormalization-group techniques
allow us to perform the summation over the whole
set of these contributions and to get a general
formula generating the possible Regge trajectories
[Eels. (5.1) and (5.2)].

The actual existence of Regge poles and cuts is
discussed from a nonlinear Riccati-type equation
[Eq. (5.3)], which for this asymptotic limit plays
the same role that the Callan-Symanzik equation
plays in the scaling limit.

The technique used in this work is based on a
desingularization operator, called the 8 operator,
and which has already been used in the literature
to take care of ultraviolet divergences, to define
the analytic continuation in dimension of Feynman
amplitudes, 3 to describe scaling behavior of Feyn-
man amplitudes, to determine the Bjorken limit
of Feynman amplitudes, ' etc. Such an operator
acts directly on the integrand of the Feynman
amplitude or on the integrand of its Mellin trans-
form adapted to a given asymptotic limit, written
in the n-parametric language. This operator,
which is an extension of the renormalization tech-
nique of Appelquist, and is in a-space what
Zimmermann's R operation is in momentum
space, achieves in compact form the recurrent
procedure of subtraction initiated by Bogoliubov
and Parasiuk, reexamined later by Hepp. It
turns out that the same operator which is able to
take care of ultraviolet divergences also allows
in its original form the investigation of many as-
ymptotic behaviors and presumably all of them in
a generalized form. One generalization to be
found should take care of nonplanar amplitudes
and lead to the study of Regge cuts.

Let us now try to summarize and classify the
very large literature which deals with Regge be-
havior in quantum field theory. We observe mainly
two different kinds of approaches to this problem.

First, the structure of the Bethe-Salpeter inte-
gral equation is used and applied in the early
papers to evaluate the asymptotic behavior of the
ladder graphs ing(Qs)& theory, ' and later in
g(~ti )4 theory. Although the existence of Regge
trajectories was proved in the case of (g )4 theory,
the presence of square-root branch points was dis-
covered' in (g )& theory. Then many papers using
Fredholm-type techniques dealt with the descrip-
tion of the trajectory obtained from ladder graphs
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in (Q )4 theory. ' More recently, people realized
that ultraviolet divergences have to play an impor-
tant role in strictly renormalizable field theories.
Lovelace' and Cardy' introduced an asymptotic
kernel in the Bethe-Salpeter equation, and after
partial-wave expansion found that in g($3)8 theory
the integral equation was of the Fredholm type
(existence of Regge trajectories), while it was not
the case in g(g~)4 theory because of the presence
of a square-root branch point. Lovelace was more
explicit and proved that (-1) was an accumulation
point of g-independent intercepts in g($3)6 theory,
and the square-root branch point was g-indepen-
dent in g(P }4 theory. Although this approximation
is better than the "leading-logarithm approxima-
tion, " it is incorrect to believe that the asymptotic
behavior of the complete four-point function is the
solution of the Bethe-Salpeter equation with the
asymptotic kernel. For g($3)6 theory Lovelace
found' g-independent intercepts (owing to an
asymptotic kernel which reduces to the Born term
of the perturbative expansion with an effective
coupling constant and a zero effective mass), while
our solution gives g-dependent intercepts.

In fact, the Callan-Symanzik equation'~ may be
used to find the large-s behavior of the four-point
vertex function at t =P; =0, since s and m are the
only dimensioned variables; of course, we are in
the case of exceptional momenta" and the right-
hand side of the equation is not negligible. One
purpose of this paper is to evaluate this right-
hand side. It is found that in the Mellin transform
space (where products correspond to convolutions
in logs), the Callan-Symanzik equation has to be
replaced by a Riccati differential equation. The
solutions to this equation may have g-dependent
poles which define the intercepts of the trajector-
ies, or in the case of a nontrivial ultraviolet at-
tractive fixed point g =g*, g-independent square-
root branch points. Now at t and p different from
zero, trajectories are generated essentially from
the nonleading powers of logarithms. In the pres-
ence of a fixed point g =g*, an anomalous behavior
persists and w'e obtain

s""[P,(t}log ' s +P&(t) log ' 's + ~ ~ ],
where the constant is g and t independent. This
fixed cut is accompanied by Regge trajectories,
and although the branch point dominates over the
intercepts of the trajectories at g =g*, it is not
known, for t away from zero and g different from
g*, whether these relative locations persist.

The second technique which is largely seen in
the current literature is to look for the asymptotic
behavior of independent Feynman graphs. Some
authors tried to obtain precise rules to determine
the leading power of s. First, in p3 theory it was

found" that this power has to do with the length of
the shortest path from one side to the opposite side
of the diagram (if planar), but very soon these
rules had to be modified because of divergent sub-
graphs. To our knowledge, it was Zavyalov' and
Zavyalov-Stepanov" who first gave the exact rules
to obtain the leading power of s for any (conver-
gent or divergent) graph, and who generalized this
rule to give the largest power of logarithm of s.
They introduced the notion of what we call essen-
tial subgraphs 6' (such that the reduced graph [G/
6'] looses its s dependence) and of what we call
leading subgraphs (those essential subgraphs with
largest superficial degree 0 of divergence). The
leading power is then 0, and the largest power of
logarithm of s is related to the largest number of
nonoverlapping leading subgraphs.

These rules known, the next problem is to sum
the logarithms. The first attempt has been to sum
the leading powers of logarithms for special
classes of graphs. Again, the ladder graphs are
privileged; for the ladders of ($3)4 theory leading
logs and subleading logs are summed, '~ and finally
all powers of logs are summed'~ to obtain the
Regge trajectory. In (Q4)4 theory and in ($3)& the-
ory leading logs of ladder graphs are summed to
obtain a g-dependent square-root branch point
which is even confirmed if the same technique is
applied to the so-called truss-bridge graphs.
More general results are also obtained in Ref. 22.
Another class of graphs are also privileged in this
analysis of leading logarithms which is the class
of graphs generated at low orders of perturbation.
In particular, in the study of non-Abelian gauge
fields, the perturbation has been explored up to
the 12th ord"r, and except for Ref. 24 the results
do not seem to indicate the presence of Regge tra-
jectories in quantum chromodynamics.

Our result differs from the current results pre-
sented in the literature because we solve complete-
ly and analytically the problem of finding the coef-
ficients of all powers of logarithms. The structure
of these coefficients is quasigeometric; the coef-
ficients are built from the knowledge of the so-
called leading subgraphs organized into forests
(set of nonoverlapping subgraphs) and they factor-
ize into absolutely convergent Feynman-type inte-
grals attached to reduced subgraphs defined from
the forests. This structure explains why the sum-
mation of all the logarithms is possible. It is easy
to understand why the "leading-logarithm approxi-
mation" cannot describe Regge trajectories; the
leading power of logarithms is given by the for-
ests which have the largest number of elements.
Since the complete graph G is itself a leading sub-
graph (among others), the forests with the largest
number of elements necessarily contain the com-
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piete graph G. The corresponding coefficient
which is attached to the reduced graph G into itself
tG/G] is really attached to the trivial Born-term
graph and thus has no t and P; dependence. The
leading-logarithm approximation can only provide
an asymptotic behavior of the type s "' up to a
possible negative power of logs and has very little
to do with the exact behavior.

The end of this section is devoted to the intro-
duction of technical definitions such as "renormal-
ized Feynman amplitude" in parametric represen-
tation, or to the classification of graphs with re-
gard to their topology. We also state a general
theorem on asymptotic behavior of Feynman am-
plitudes and discuss its relevance to our problem.
In Sec. II we introduce the Mellin transform of a
Feynman amplitude with respect to the large vari-
able s and determine the leading power of s, the
essential and leading subgraphs, and the source
of logarithms. In Sec. III we introduce the desin-
gularization operator R and compute the coeffici-
ents of all power of logarithms for any essentially
and crossed-planar graph. In Sec. IV we sum all
the logarithms over all essentially and crossed-
planar graphs. We first obtain the equation which
determines the possible trajectories, and second,
the Riccati-type differential equation which gives
the possible intercepts (or the square-root branch
points in the case of the existence of a fixed point
g=g"). In Sec. V we discuss the existence of tra-
jectories in (&P )6 theory and in (&P4)4 theory; all
results are gathered in the Conclusion. We now

quickly remind the reader of a certain number of
important properties related to Regge behavior in
field theory, and which have been already exposed
in detail in Ref. 1.

(a) Classifications of the graphs with respect to
theA' toPological PxoPerties. The connected four-

point function G&'4&(P;, m, g) is a function of the in-
variants P;2 and of the Mandelstam variables

"=(p&+p2),

t=(p&+ps)',

u = (p& +p4)',

where the external momenta are ingoing and such
that

4

s+ t+u=gp; (1.2)

Any two-tree of a graph G splits the external
momenta into two parts and therefore is specific
for one of the seven invariants:

the graphs contributing to G('4) and which contain
only P and t-two-trees contribute to G '&&(t, P;, m,
g),

the graphs contributing to G&'4) and which contain
at least one s-two-tree but no u-two-trees contrib-
ute to G&4&(s, t,p;, m, g),

the graphs contributing to G,'4, and which contain
at' least one g-two-tree but no s-two-trees contrib-
ute to G&34 &(t, u, p;, m, g),

the graphs contributing to 6('4, and which contain
at least one s and at least one u-two-trees contrib-
ute to G 4&&4(s, t, ,up, m, )g.

The graphs contributing to G'4'' and G4 ' are called
essentially planar graphs. The graphs contributing
to G&«are called crossed-planar graphs and t'hey

are obtained from the graphs of G(4& by exchanging
the external legs P, and p4. The graphs contribut-
ing to G,'4) have a third double spectral function and
are susceptible to generating moving Regge cuts. '~

(b} The renormalized Feynman amplitude. We
find it convenient to define a Feynman amplitude by
its Schwinger-integral representation

, „, . -;„-„&o)gp
" ~'d '

. &, p R exp]ie "[k;(e)d,, (n)k, (e}]].
a= G

where k(e) =(koe ', k).
The Euclidean-space amplitude is obtained at e

=«/2 (with the negative metric) and the Minkowski-
space amplitude is the limit e- 0 of I~ and is known
to be a distribut'ion. In this paper we purposely
failed to write the & dependence of I~ and we as-
sume, at least for essentially planar graphs, that
the limits s -~ and e-0 commute. The superfi-
cial.degree of divergence of G is

I

to be zero for all four external-leg graphs of (&p')4

theory and minus two for the corresponding graphs
of (&tI3)6 theory. The functions d;~(a) and Po(n) are
characteristic of the topology of the graph; the
dimension of space-time is called D [6 in (&P )& the-
ory and 4 in (Q')4 theory].

The operator R (Ref. 2) is a 'subtraction operator
which acts directly upon the variables a and en-
sures the ultraviolet convergence. We define

u(G) =4L(G) -2l(G), (1.4)

where L(G) and l(G) are, respectively, the number
of independent loops and lines of G. ~(G) is found where the operators 7 are generalized Taylor op-
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erators, l(8) is the number of lines of the sub-
graph 4, and the product runs over the (2"G' —1)
subgraphs of G. Another expression for R. is (Ref.
2)

(1.6)

where F is any Zimmermann's forest' of proper
(connected, one-particle irreducible) divergent
subgraphs. The generalized Taylor operators 7
are defined as follows: Given a function f(x) such
that x "f(x) is infinitely differentiable for v com-
plex, then

7'„"f(x)=x " 'T"'[x""f(x}].
This definition is X independent provided that
X~ E'(v) w-here E'(v} is the integer part of Bev
and E'(v) Rev, e = E'(v) —v. This definition is
generalizable to the case of several variables &:

&s "f(o.) =[&,"f(o.')
~ ~ -p' v.gs]p=t ~

(e) Description of the method used to find the

large sbeh-gvior of G&4&(
st, p, m, g). First, we

examine the large-s behavior for a given Feynman
amplitude. The following theorem has been
proved 5:

Ie(s, t,p;, m, g) has an asymptotic behavior at
large s of the type

(1.8)

qmax&& }

IG(s, t,p, m, g)= Q s~ Q (in's) g~,(t,p;, m, g),
~+max

(1.9)

where p runs over the rational values of a de-
creasing arithmetic progression and q, for a given

p, over a finite number of non-negative integers.
This theorem, which is a generalization of

Weinberg's theorem on scaling, has now been ex-
tended to a very wide class of asymptotic behaviors
{all asymptotic behaviors of renormalized Feyn-
man amplitudes in Euclidean space and those as-
ymptotic behaviors in Minkowski space, where
Landau singularities are only spectators of the be-
haviors without contributing specifically). The
above theorem can be applied to all graphs con-
tributing to G&4& withi =1, 2, and 3 by crossing,
but fails for the graphs contributing to G'4 ' because
Landau singularities are responsible for moving
Regge cuts. We define

I,"(s,t,p, ', m, g)

max &max

=s ~ Q (1 ' )gn~s, (t,P4', m, g) . (1.10)
q=o

The first problem to solve is to determine P,„,
q „(P ), and the coefficients g~, for all q. The
technique is to introduce the Mellin transform

II. ESTIMATION OF THE LEADING POWER IN s FOR A

GRAPH CONTRIBUTING TO G2(4)

To any graph contributing to G24& there corre-
sponds a graph contributing to G&4&, and the estima-
tion in s of the first amplitude is the same as the
estimation in u of the second one. We thus restrict
our discussion to a graph of 6&24,.

The quadratic form [h;d;~(n}k, ] in (1.3) can be
written

4

sA, (o, )+tA, (a)+gP A;(n). (2.1)

M~(x) of IG(s) with respect to s. The function Ms(x)
is initially defined in a certain analyticity domain
in x and the right-most singularity on the left
(leading singularity) is at x=p „.The expansion
(1.10) corresponds to a meromorphic function
M~(x) and the multiplicity of the leading singularity
is related to q (P,„). The residues of the poles
determine the coefficients g~, . We now explain how

we may obtain the residues for the leading singu-
larity (that is, the coefficients g~, for all q).

Two cases may appear. Either the integrand of
the Mellin transform expressed in the variables
n has a "simultaneous Taylor expansion" in every
Hepp's sector defined as an ordering of the vari-
ables o. ; then the operator R (Ref. 2) defines an
analytic continuation of the Mellin transform be-
yond the leading singularity and extracts the resi-
due at the pole. Let us mention that the property
of Taylor expansion in every Hepp's sector is
equivalent to the validity of the naive power count-
ing (as it is used for ultraviolet divergence s2 and for
scaling asymptotic behavior }. Or, the integrand
does not have a simultaneous Taylor expansion in
every Hepp's sector [which is the case for Regge
behavior, zero-mass limit of gluons (photons) in
quantum chromodynamics (QCD) (QED) when fer-
mions are on their mass-shell, etc.]. We then use
a multiple Melling transform which is the sum of
analytic functions in tubes, the real part of which
are convex polyhedrons. The asymptotic behavior
is then obtained from an extremal point of the poly-
hedrons. A simple example of this method is ex-
posed in the appendices of Ref. 1.

Once we have obtained the coefficients g~
that is, IG', we sum all the logarithms. over all
graphs G contributing to 6&'4'&' in order to obtain
the asymptotic behavior of G,'4, in the planar ap-
proximation. Let us point out that we assume in
this result that the infinite summation of logarithms
of subleading powers {p&p,„) does not destroy the
leadership of the expression (ZsIs'); this is an
assumption similar to neglecting the right-hand
side of the Callan-Symanzik equation in the case
of scaling at nonexceptional momenta.
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Kl

Consequently, A, (a} vanishes like p&(~) where

'JJ(Z) = Inf'JJ, (6') .
{c)

(2.6)

-
Kp

A subgraph Z is said to be essential if 'g(Z) ~ 1.
An essential subgraph is such that the reduced sub-
graph {G/4] obtained from G when 6' is shrunk into

yz points has an s-independent Feynman amplitude.
Let us note that all essential subgraphs in ($3)6
theory are convergent while there exist logarith-
mically divergent essential subgraphs in ((t)4)4 the-
ory.

The Mellin transform of I~(s) with respect to s
is defined as

FIG. 1. A graph which contributes to G(43

M, (x) fds =s 'i (s)*
0

in (Q~)6 field theory and

(2.7)

The function A, (n) is the ratio N, (a)/P~(n) of two
polynomials and is homogeneous in all a's of de-
gree 1. We now give an expression for N, (n).

We define an s-cut as a set of lines such that if
these lines are cut, the graph G becomes two-
connected with one connected part containing the
external legs P& and P2, the other connected part
containing the external legs P3 and P4, and such
that no subset of lines has the same property. An
s-cut defines two connected subgraphs GL and G~
and we have

M (x)=f des *'[i (s) —i (0)]
0

(2.8)

in (Q )4 field theory. The reason for this subtrac-
tion is that the Mellin transform (2.7) does not
exist in (Q4)4 field theory because of ultraviolet
renormalization. The subtractions over logarith-
mically divergent essential subgraphs make the
integrand of I~(s) the sum of a function exponen-
tially decreasing at large s and of an s-independent
constant which is not allowed in (2.7) and which is
conveniently subtracted in (2.8).

N~(o. ) = Q c(,P~ (n)P~ (n).
{s-cuts ] {aE-:s-cuts I

(2.2) In the primitive region of x where M(;(x) is de-
fined (see below) we may interchange the s integra-

If the graph t" is drawn as in Fig. 1, where each
black dot represents a graph which contributes to
the complete propagator and where each kernels';
represents a graph two-line irreducible in the t
channel, then

P

N, (o. ) = N„(n) P...(n) .
dot s

(2.8)

A, (n) = n,PG~(c()PG~(n)/PG(n)
{ar-c}

vanishes like p~~' ' where

~ (ey) =Xs +Xs -Xs ~

(2.4)

(2.8)
I

Given a subgraph 6' with X~ connected parts and
an s-cut c, this s-cut splits 6' into two subgraphs
6'I and 8'~ with, respectively, y3 and y connec-
ted parts (some of them being eventually reduced
to single vertices). From topological considera-
tions it is easy to show that when all a variables
corresponding to lines of 6' vanish like p, the ex-
pression

tion with the n integrations. %e may also inter-
change the s integration with the subtraction R op-
erator. The reason for this is that in ($3}6theory
and in ($4)4 theory once the subtraction (2.8) is
performed, the Taylor operators ~ included in R
subtract only nonessential divergent subgraphs.
We are left with the integral

dss"'e"" ' ' —g =I'-xe ""ig, n ", 2.9
0

where 5 =0 in ((]))~)6 theory and 5 =+ 1 in ((t)4)4 theo
ry. The above integral exists for Rex& 0 in (Q )6

theory and for 0& Rex& 1 in (Q )4 theory, provided
that we use the +~s rule defined in (1.3) for lc. In
(2.9), i" is exp(im x/2) The com.bination {+iA,(cr)]
is chosen in such a way that the n integrals are
real in the Euclidean region and the factor e ""is
reminiscent of the fact that the amplitude has a cut
in the complex s plane for s larger than the first
threshold. The Mellin transform M(;(x) is thus
found to be

(2.10)
'r r .x, [id ()]'e eli(rd, ( a)eE;x,d .d, ( a))]Is=

D/2
0 P(: (()')
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p,„=0 in (p4)4 theory. (2.12)

(b) In contrast to what happens in ($3)4 theory,
all graphs in (Q~)6 theory and in (Q4)4 theory con-
tributing to G(4, generate a singularity at x =p~, .
In fact, the connected leading subgraphs are the
four-external-leg essential subgraphs shown in
Fig. 2 up to G itself.

(c) In addition to the singularities at x =P,„
which are generated by leading subgraphs, the sub-
traction R operator is responsible for other pole
singularities at x =P „associated with proper di-
vergent nonessential subgraphs.

(d) If v is the number of subgraphs in the largest
forest (set of nonoverlapping subgraphs) of connec-
ted leading and of proper divergent nonessential
subgraphs such that the maximal elements of the
forest are leading, then q (p ) is v —1+5,
where 5 is zero in ($3)6 theory and +1 in ($ )4 the-
ory.

(e) Although the integrand of Mv(x) does not
have a simultaneous Taylor series in every Hepp's
sector, it may be shown from the structure of the
convex polyhedrons ' that the R operator defines
an analytic continuation of Mv(x) for Rex &p „and
extracts the residue of the pole at x =P

The results (a), (b), (c), (d) were known from

in the region

p, & Rex&0 for (g~), theory,

sup(0, p,Q & Rex & 1 for (Q )4 theory. (2.11)

In this band of definition the subtraction operator
in (2.10) subtracts only nonessential divergent sub-
graphs.

In the remaining part of this section we wish to
find p, q,„(p ), and the leading subgraphs de-
fined as those essential subgraphs which are re-
sponsible for a pole at x=p,„. As already men-
tioned in part (c) of the Introduction, the deriva-
tion of these results needs the introduction of mul-
tiple Mellin transform, Hepp's sectors, equivalent
classes of nested subgraphs, convex polyhedrons,
etc. , as can be read, for instance, in the appen-
dices of Ref. 1 for the Regge-pole behavior of
($3)4 theory. We prefer to postpone the writing of
such a lengthy proof to some later time and simply
give the results which are used in Sec. III:

(a} P =-1 in ($3), theory,

the work of Zavyalov and Stepanov, ' but their
derivation relies on naive power counting. Let us
finally mention that the above results describe how

A, (n) vanishes when a subset of variables a van-
ish. A, (a) is strictly positive when the a. s are all
strictly positive (this should not be the case for a
graph contributing to G&44„where A, (a) have to be
replaced by IA, (n) -A„(n)] which vanishes inside
the o. domain of integration).

III. ASYMPTOTIC EXPANSION OF FEYNMAN AMPLITUDES
ASSOCIATED WITH ESSENTIALLY AND CROSSED-PLANAR

GRAPHS

In this section we calculate the coefficients
g~,(t,P;,m, g) for any q and for all the graphs
contributing to G(4, and G(4, . We apply the property
(e) of Sec. II to define a function M v(x) which in the
band

a & Rex&Pm~ (3 1)

takes on the form (2.10). This function is different
from the analytic continuation of Mv(x) in this band
because the subtraction operator R in Mv(x) sub-
tracts not only the nonessential divergent subgraphs
as in M v(x) but also the leading subgraphs. What
property (e) of Sec. II means is that MG(x) is ana-
lytic in x for

a &Rex&b, P „&b. (3.2)

We do not intend to be precise for g and b; it is
important to note that MG(x) has no singularity at
x=p,„and that the pole structure at x=p. ap-
pears in the difference Mv(x} -M v(x}, which may
be computed, for instance, in the common band of
analyticityP &Rex&lnft&, 5] with 5=0 in ($3)6
theory and +1 in (Q }4 theory. The R operator in
Mv(x) may be written as a sum over all forests
of connected leading and of proper divergent, non-
essential subgraphs. We must compute

P

-21( g) V -2l(3 )+6( 3 )

3c5 gr-$

(3 3)

where 6(8}is +2 for connected leading subgraphs
and zero otherwise.

The curly brackets f ) in (3.3) is the same as in
(2.10). The calculation (3.3) is now familiar to us
and is a generalization of the technique we use to
prove Zimmermann's identity. We give the main
steps of this calculation in Appendix A. We obtain

M, (x) =M, (x) —r(- x}e "*
~ f~l ~

4 .+8.( )+xfc/vs. 3( t xipff) ~

(s, ) i
(3.4)

FIG. 2. The 1eading subgx aphs. In (3.4) we sum over all sets of disjoint connected
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leading subgraphs 6';. The functions E2 (x) attached to the subgraphs 6'; are defined as

E, .(x)=(-g)"""(i) ""~' j [da axp —~ram' R ' '

I
[iA3;(&2)

"
$~ D /2( (3.5)

where A2. ((x) is the function A, (&x) for the graph 8;, and where the R operator subtracts only the

divergent nonessential subgraphs. The function F(D/~2 ) attached to the reduced graph [G/U6';] is
defined as

( I p 2) ( g)n( ) Ei "(2;)(i) (~(D)- Eic" ( (i))i/2

[(I)' "'*A(D/Ds, t(o)]"
, „,d(2 exp —i~&2m R —

& D/2' — exp i iA, (n)+~p; A;((2)
0 I'(D /Ds;) I =1 I 0/US; 4

(3.6)

where the bar above I' means that the subtraction operator R subtracts not only the divergent nonessential
subgraphs but also the leading subgraphs which remain in [G/U6', ]. The factors i are written in such a way
that the amplitudes are real in the Euclidean region. In (3.5), because of the absence of external momen-

tum, we may omit all factors i by Wick rotation. There are no singularities in x in the band (3.2) for the

function F. On the other hand, the functions E2,.(x) contain all the singularities at x=P = —,&D(6';). It is
easy to show by homogeneity that

1F, .(x) = F, , (x),
Pmax

where

(3.7)

(3.8)

The function F2(x) is now a,ttached to the subgraph 6'; with all possible "hard-mass" insertions and still
contains singularities at x =P,„because of leading subgraphs of 6'; andbecause of nonessential divergent

subgraphs of 6';. To desingularize F2.(x) completely around x=p,„we 'first intend to find a reeursive
i

formula between F2.(x) and similar functions attached to its leading subgraphs. First, we use Zimmer-
mann's identity, as given in Appendix A, to transform "hard-mass" insertions into "soft-mass" insertions:

E2.(x) =F2 (x)+ Pxr) &»F(2, /rt (x),
1 r X~(2 &

where we sum over all proper, divergent, nonessential subgraphs T of 8;. The function F,(x) is now

given as

(Z&xm')[»&(o')]*
E2.(x) =(-g)"' " ....d&x exp -~&xm2&IR

0
I',, n

(3.9)

(3.10)

The coefficients t', ~r" are the coefficients obtained when we calculate the sealing (all momentum scaledX~(y)

to infinity) asymptotic behavior, and they are momentum, mass, and x independent. They are defined as

px () 4(p) ) (3.11)
&()(T)t &tp. (tp.

'~&r&, . 0i

where &D(T) is the superficial degree of divergence of T and y„&» is a sequence of &D(T) external legs to T.
Ir is the Feynman amplitude attached to T with all possible soft-mass insertions. Finally [6';/T]x„&» is the

reduced graph obtained from 4; by shrinking the subgraphs T into a, point and by inserting ~u(T) derivative

couplings on the legs defined in the contracted point by X„&z). In (3.9) we sum implicitly over all possible

sequences t(„«). By definition the function F(2, /» contains a factor (-g)"' )' "' '=(-g)"' '

Second, we calculate Fa (x) -E2.(x) in exactly the same way as in the calculation of MD(x) -MG(x), the

superscript plus meaning simultaneously that the corresponding integral has a soft mass insertion and has

been subtracted to be regular at x =p,„. %e obtain the recursive formula

Es.(x) = F2 (x) +Z)..(E2.(x)F('2, /Ds, )(x)+Qpr"'"F(2, /r tx (,)(x) . .
P IIIaX

(3.12)
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The sum ]6',] is over all sets of disjoint, connected, leading subgraphs inside 6';. This recursive rela-
tion which associates the same type of functions (F~, ,Eq, E, &~, &» ) can be solved step by step, in terms

cu (r)
of functions P and F' regular at x=p,„. We obtain

P & T3g ' p ' F&&)p(x) E &8& 3p(x)E, &,x—
xe Y x Pmax s 65' x Pmax x Pmax

(3.13)

In (3.13) we sum over all forests 5' of connected leading subgraphs and of proper divergent nonessential
subgraphs inside 4;. Each of these subgraphs contributes for one power of (x —P,„) '. The numerical co-
efficient X~ is found to be

@s&&;&[P&'iPst ~ ~ ~ ~P&J.' "
[v(T ) + 1] (3.14a)

(3.14b)

where the subgraphs T are the proper divergent nonessential elements of 5, v(T) is the number of proper
divergent nonessential elements inside T, 6'(6') is the forest of connected leading subgraphs Z, B&, . . . ,6'„
induced by 6' and such that 6' is the unique maximal element [8; in Eq. (3.13)], and P~, P~, , . . . ,P~ are re-
spectively the numbers of proper, divergent nonessential subgraphs in (6']~& ~ „[6',]~~&, .. . , [O'„J~&~~. Here,
as in (3.13), the subgraphs [T]~, [6']~, or [6';]~ are the reduced subgraphs obtained from T, 6', or 6'; by
shrinking into points all the graphs of F which are, respectively, inside T, 6', or 4;. Finally, the numer-
ator @, is given recurrently in a forest-wise expression

~3n tl

&,ls&&'s Ps, ~ ~ PsJ&='2 ''' Z Ps+2&s, )'y =0 y =0 l=1
1 n

P

X
i =1 Sf Smax

where the set j6',g is the set of subgraphs of F(6'} maximal in 6', and where for each'', „, the subgraphs
8, , . . . ,6, are the subgraphs of F(6',„) inside 8 „. We may now substitute (3.13) into (3.4) and we real-
ize that all the singularities of M~(x) at x=p,„are now extracted. To obtain the quantity I~ defined in
(1.10) we use the inverse Mellin transform

Q +f00

IG(s }—5IG(0) = —. dx s'M G(x),
27ri .-- (3.15)

with —1+ 6 &v & 5 and 5 =0 for (&P3}6 theory and +1 for (P4)4 theory. Now the presence of the function
I'(-x)e "*in Mc(x) makes Mc(x) exponentially small at e &0 when Imx-+~. This allows us to push the
contour of integration in (3.15) to the left beyond the point (-1+6):

(3.16)

where the contour c goes around the point x=-1+6. The integral for o &-1+5 gives a contribution in s
smaller than or equal to s' which is nonleading by a power of s. The Cauchy integral around x =-1+6

gives
e&+&-1

I';(s, f,p, ', m, g) =(-1)' 'g, — I'(-x+5)e ""s*, P„"&",' F,'„(x)F„„,(x, t,P )q~+6 —I!dx T~F

JEST

x=- $+6

(3.17}

where again 6 =0 in (&t& ), theory and +1 in (&P ),
theory. In (3.1V) we sum over all nonempty forests
5 of connected leading subgraphs and of proper di-
vergent nonessential subgraphs with the condition
that the maximal elements of the forest 5 are lead-
ing. The symbol [G/6:] means [G]~ if 6: does not
contain G itself and means a single vertex if 5 con-
tains 6 itself. F««, equals 1 by convention. The
total number of elements in P is q~ and the numer-

ical coefficient X~ is given by
P

~ M
Ix.=...[x.. .

i=i
(3.18)

where 5 has P maximal leading subgraphs 4; and

5; is the forest induced by 5 in 8';. Let us give
some properties of (3.17).

Differentiating s" with respect to x n times gen-
erates 1n"s, so, by performing the derivatives d/
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P3

(a) (b)
P] P1

(c)

5

(e) (f)

FIG. 3. Leading-logarithm contribution for the graphs
(a), (b), (c) of (P )6 theory and (d), (e), (f) of ((It) )4 theory.

dx in (3.17) and by summing over all forests, we
obtain the coefficients of all powers of logarithms
for the given graph G.

The largest power of logarithm is obtained from
the forests with the largest number q~ of elements
and when all derivatives d/dx are applied on s".
Such forests necessarily contain the graph G itself
and the reduced subgraph [G/6:] is a single vertex.
By convention I «»& equal 1 for such forests.
Consequently, the leading-logarithm approxima-
tion gives a t- and P; -independent coefficient.

From the definition (3.6} it may be seen that

E&(:~~)(x,f= 0,P; =0) is zero by subtraction for
any forest 5 which does not contain G. At t=P; =0
all the forests contributing to (3.17) contain the
graph G itself.

The function I'«&» factorizes into several func-
tions because the reduced graph [G/6:] is an n-
vertex reducible graph if n is the number of max-
imal leading elements of P (see Sec. IV).

By definition, the function E, ()) (x) is zero if the
subgraph [B]~ is one-vertex reducible.

For crossed-planar graphs the exchange of the
external momentum p2 —p4 results in the re-
placement of e ""

by 1 in (3.17).

FIG. 4. Subgraphs and reduced graphs for the example
. Of Fig. 3.

We now end this section by giving the coefficient
for the leading power of logarithm of the graphs of
Fig. 3:

.(a} —,'[E,'(-1)]'E2(-1)s ' ln's +O(s ' lns),

(b) PSE&(-1)s ' lns+O(s '),
(e) P4E5(- 1)s ~ 1ns + O(s '),
(d) $[E;(0)]'E;(0)s 'in's+O(s 'in's),

(e) —,'[p2]'E, (0)s ' ln s+0(s ' ln's),

(f) —', P~P(E6(0)s 1n s +O(s ln s),
where the indices 1 to 6 corresponds to the graphs

. of Fig. 4 and where I'7 ——1. In the literature, most
calculations are performed at the leading-logarithm
approximation which means that for a given order
of perturbation, only the contributions coming
from the largest power of logarithm are kept.
From (a), (b), (c), and this is true at all orders,
this approximation selects ladder graphs in ((t) )6
theory. From (d), (e), and (f) it is clear that this
is not at all the ease in (Q4)4 theory. , Let us anti-
cipate on Sec. V and already state here that the
asymptotic behavior of ladder graphs'0 in ($3), the-
ory has nothing to do with the asymptotic behavior
of the complete vertex function.

i

IV. SUMMATION OF THE INFINITE SERIES IN LOGARITHMS OF s

Once we have obtained the coefficient of all logarithms of s for all graphs contributing to G4', we intend
to sum the series in logarithms of s defined by the sum of (3.17) over all graphs of G4 . The calculation is
more easily performed in Mellin space. The first sum we are interested in comes from (3.4). For a given
graph G we obtain contributions from one connected leading 6'; and two disjoint connected leading 8'; and

;, etc. We wish to sum these successive contributions separately over all graphs G.
The first partial sum is obtained by combining all possible graphs 6'; of G4" with all possible graphs

[G/6';] which are one-vertex reducible (each irred. icible part may happen to be a single vertex). We define

EV(x& f &Pi &P3 &~ &8)
2 2

X

=(-4)"'"'( '"' da exp —i am' R(~,. I, exp(i(&R, (a)ep&R)(a)ep&R&(a)))), (4.1)
0

where the integral is attached to the vertex graph V given in Fig. 5.
The functions A&(n), A&(n), and A&(n) are characteristic of the graph V. The subgraph R is one-line ir-

reducible in the f channel and the function Nv(n) is obtained from (2.2), where each s cut passes through
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P3

FIG. 5. The graph V. FIG. 6. The graph T.

the reduced vertex. Similarly, F»(x, t, P2', p4', m, g) is obtained as a function of the momenta P2 and P4. By
convention I"

&
——1, where the index 7 corresponds to the trivial Born graph of Fig. 4. Setting

)

v„(x, t,P(,Ps, m, g)=$ 6 k' (xt,P(,P, , m, g),

where 6» is a numerical factor [and a similar definition for Vd, „(x,t,P,',P4, m, g)], and

(4 2)

(4.3)S(x,m, g}= Q GcF~(x),
Ggd2

4

then the first partial sum we calculate is nothing but V„,Vd, ,S.
In a similar fashion, we may introduce the second partial sum where we have the contribution of two

disjoint connected leading subgraphs. Now, the graph [G/6'&U6'2] is a two-vertex reducible graph. We de-
fine

0 LI rk&)3
(4.4)

where the functions A,(n), Nr(u), and Pr(c() have definitions similar to those functions present in (4.1) but
are now attached to the graph T given in Fig. 6. The subgraph L is a one-line irreducible subgraph in the
t channel. Setting

T(x, t, m, g) =Z&rFr(x, t, m, g), (4 6)

the second partial sum is then given by V„,TVd, ,S~. More generally, the partial sum corresponding to the
contribution of n disjoint connected leading subgraphs is given by V„,[T]" iVd, ,S". Consequently, the sum
over all graphs of the relation (3.4) gives a geometrical series and we obtain

2 2

~ ( ) g —
( ) p( ),,„V„,(x, t,P„, ,m, g)vp, „„(x,t,Pp. . .m, g)S(x, m, g) (4 6)

1 —T(x, t, m, g)S(x, m, g)
4

The functions with an overbar are regular around x =p and only the function S is singular in perturba-
tion theory at x =p,„[ofcourse, the infinite sum (4.3) is going to transform this singularity]. I et us give
some properties of the form (4.6).

The form (4.6} is characteristic of Regge-pole behavior in field theory and was already obtained in ((j) )4

theory (see Ref. 1). In this reference the function S(x,m, g) was attached to the single rung and was essen-
tially equal to m p "~ I'(x+1). Thus, the singularity obtained there in perturbation theory at x=-1 was
shifted to x =xp(t, m, g), where xp is the solution of the equation 1 —TS =0. In strictly renormalizable field
theory, the function S(x,m, g) is more complicated since the leading subgraphs themselves contain sub-
leading subgraphs and divergent nonessential subgraphs. This function will be studied in the following:

If the theory contains Regge-Pole trajectories, they are given by x=xp(t m g) where xp is the solution
of the equation 1 —TS=Q.

The "leading-logarithm approximation" is t and p, 2 independent and gives V =1, T =0, and S=S (leading
log). This approximation cannot generate Regge trajectories but only t-independent singularities.

By construction, V(x, t =0,P; =O, m, g}=1 and T(x, t =0,m, g) =0. Consequently, at t=. O, the intercepts
are given by the singularities of S(x,m, g}.

In (@4)4 theory the pole at x=O, present in MG(x) and in I"(-x) [see (4.6)], is not a fixed (t-independent)
pole which might give trouble with unitarity. In Sec. V it is shown that S(0,m,g) =-g, so that the residue
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of the pole at x=0 simply cancels the subtraction G&'4~(s = O, t,p;,m, g} made at s =0 over the complete ver-
tex function in order to define its Mellin transform with respect to s (a complete explanation requires some
anticipation over the treatment of nonplanar graphs).

The remaining part of this section is devoted to the function S(x,m, g}. All functions with an overbar are
trivial at t=p, =0 by renormalization [Me(x) is zero in that case]. [-I'(-x)e "*S(x,m, g)] is. the Mellin
transform of G&'4&(s, t =p& ——O, m, g) and [-1'(-x)S(x,m, g}] is the Mellin transform of G&4~(u=-s, t =p; =0,
m, g). Since we have only two-dimensioned variables (s and m2) in G&4&(s, t =0,u=-s, p; =O, m, g) we have

by homogeneity

(
m 2+s—-P „)G&'4&(s,t =O, u= s, P-& ——O, m, g) =0.

8e
(4.7)

Then m &[G&4&/Bm inay be replaced in the Callan-Symanzik equation[~ by the expression obtained from (4.7},
which leads to

~

—s
&

+p{g)——2y(g) +p,
~

G&'4~(s, m, g) =- o(g)G&4 ~(s,m, g) .9 9

Bs Bg )
(4.8)

Unfortunately, even in the planar approximation, the right-hand side of (4.8) is not negligible at large s
and nothing may be concluded as long as we do not know the large-s behavior of G«4&. The answer to this
question is obtained in the planar approximation from Eq. (2.12}, which we write in the form

[x-P~,/E«. (x) -ZPr E[g /r) (x)=El (x)+ . . .Ev, (x)E[g /[[g ](x).
f

(4.9)

The sum of (4.9) over all graphs 6'& contributing to G42 is performed in Appendix 8 (in this appendix we
have anticipated on the complete treatment of nonplanar graphs and in the sum over T and 8';, we have in-
cluded the contributions of nonplanar graphs 6'& and T such that [4&/T] is planar). The technique used in
this sum may also be found in Ref. 2V.

The sum over the coefficients pr on the left-hand side generates the functions p(g) and y(g} defined as
follows:

p...{g)=- Z v,', p,. (g) = Z p„
TGG4 TO'62

where G4 and G2 are, respectively the four-point and the two-point vertex functions:

p[og(g) + z(8+5}gp,„ad{g) 0 in (&p )8 theory
1+P,„,d(g)

' 1 in (Q }4 theory

Paul(g)
y(g) =1+p ~),

(g}=[1+P,.:(g)] '=1 -y(g).

(4.10)

(4.1la)

(4.11b)

(4.11c)

The right-hand side of (4.9) is summed in a way similar to the sum ot the right-hand side of (2.4). We de-
fine

S'(x,m, g) = Z eeEe(x),
GeG «2&

4

(4.12a)

v„,(x,m, g) =ZevEv(x),

and similarly V~,„,. We note that I', =0.

(4.12b)

T'(x, m, g) =+8rEr(x), (4.12c)

where V and T are, respectively, given in Fig. 5 and Fig. 6.
Then Eq. (4.9) can be summed over all graphs 6'& under the form
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-x+P(g)
&

-2y(g)+p *~S(x m g')
a

i
=- a(g){S'(x,m, g) + [V„',(x,m, g) + V;,„,(x,m, g)]S(x,m, g) + T'(x, m, g)S'(x, m, g)). (4.13)

Equation (4.13) is the Mellin transform of Eq. (4.8) in the planar approximation (sd/ds. ~x), where the
right-hand side is expanded in terms of S(x,m, g} itself with coefficients regular in perturbation theory at
»=P (notation+). The reason for the term S (x,m, g) and for the absence of S~, etc. on the right-hand
side of (4.13) is due to the fact that in the right-hand side of (4.9) we may have two disjoint leading sub-
graphs 6', and 6'», but we cannot have more than two of them since by construction EM ~os'&{x) is zero if
[4;/LU'&] is one-vertex reducible. We note finally that V„~(x,m, g) and V~, ,(x, m, g) are equal.

Equations (4.6) and (4.13) resume the situation for strictly renormalizable scalar field theory with re-
spect to Regge-pole behavior. We believe that similar types of equations will be valid in gauge field theo-
ries; the complication there is mainly due to kinematics, spin, gauge invariance, and internal symmetries.

V. EXISTENCE OF REGGE TRAJECTORIES

The existence of Regge-pole trajectories is now related to the solutions of the equation

1 —T». . . m = 1,g IS(x, m = 1,g) = 0 . (5.1)

We may obtain for each solution x = a(t l m', g) a trajectory. For each solution we may use the inverse
Mellin transform of Eq. (4.6) (as well as for crossed planar graphs e "" 1), and we obtain by Cauchy's
theorem around x = a(t lm', g) the asymptotic behavior

-F(-a)VII, —~~, » m=1, g 'F~~~a», » m=1, g S(a, m=1, gx1 e+"")~

d — t1-T x. . . m=1, g~S(a, m=1, g)

(5.2)

By continuity in the transfer t and because T(», 0, m, g) =0, the intercepts x=a(0, g) are such that
S(x, m, g) is infinite. The function S(x, m, g) satisfies the Riccati equation

P(g) —=-a(g)T'(x, m, g)S'+[x-p +2y(g)-2a(g)V'(x, m, g)]S-a(g)S+(x, m, g) . (5.3)

Let us discuss the possible singularities of
S(x, m, g). We expand it around an algebraic
singularity at x = Q{g):

S(», m, g) =[x -y(g)]" S„(g)

[x-e(g)1"'"S, (g). ~ ~ ~, (5.4)

l

noninteger positive power, then Q(g) is necessar-
ily g independent. At the branch point, . S(p, m, g)
is finite and, consequently, such branch points are
not the intercept of any trajectory defined in (5.1).
Such singularities, if any, are t and g independent.

To study the Riccati equation, it is convenient to
transform Eq. (5.3) into a second-order linear
differential equation. We write

-P(g)i(g}
a(g)T'(P, m, g)

(5.5)

Equation (5.5) indicates that the intercepts at
x = Q(g) are necessarily g dependent and that if-
the theory possesses a fixed point g~ where
P(+) =0, the residues of the poles S„(g*}vanish
a prior . Now if the expansion (5.4) contains a

and insert this expansion in (5.3). Then the only
negative value for v' is v=-1, showing the possi-
bility of having simple poles in S. The residue
S„(g) of these poles is related to P(g) by

S=Z+cr(x, g),

x -p~+ 2y(g) -2a(g)V'(x, m, g}
2a(g)T'{», m, g)

( )
~ a(g')T+{x,m, g') d,

P(g')

, dU

and we obtain for U(z) the "Schr5dinger-type"

(5.6)

(5.7)

(5.8)

(5.8)
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-0.1—

-03—

intercepts in $,
'

P{X)= C{X)= tO{X) = )

-0.()—
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-0.6—

FIG. 7. The lines of turning points at small g.
-07—

-0.6—

equation

2
—V(x, z)U=O,

d'U
(5.10)

-0.6—

10

accumulation to -1
I I I I

6 0

9
10

where the "potential" V(x, z) is found to be

V(x, z ) = o'(x, g(z)) ——(x, g(z))—de S'(x, m, g(z))
T x, m, gz

(5.11)

We now look for the zeros or singularities of U.
We shall consider this the potential at small
coupling constant. From the definition of the
various functions (4.11) and (4.12),n(g) =1+0(g'),
y(g) =O(g'), V' =O(g'), T' = t, (x) +0 (g') with

t,(x)& 0 and S (x, m, g) =p(x)g'+U(g') mth p(x)
&0 we get

FIG. 8. The intercepts of the ($3)6 Begge trajectories
at SQ1811 g.

~ 2f,(x) &

' 2t, (x)

P(~) c(~),
)
*"' "

t, (x)

where p, (x) has not been calculated.
The so-called turning points which separate the

monotonic regime from the possibly oscillatory
regime are given by V(x, z) =0 or

c(x) i j(2- () )
x -p = + 2[p(x)t, (x)]'~'

x -~+O(g')
2t, (x)[1+O ( g') ]

(5.12) = w 2[p(x)t, (x)]'~'g (5.15)

Using (5.8), we have

z(x) = c(x)
g

(5.18)

where 5=0 in ((P'), theory and+1 in (Q'), theory,
and where c(x) is positive in ((1)'), theory and
negative in (Q'), theory. The potential V(x, z) when

(zi is large may be approximated by

and are plotted in Fig, 7. The functions p(x),
p, (x), t,(x), c(x), and z(x) are smooth in x
around x=p and a priori different from
zero; we may consider them as a constant
in x in first approximation. The condition that
S(x, m, g) vanishes like g' when g 0 makes
U(x, z (-1) ~) of the form exp(-z[(x-p )/
2t, (x)]j up to powers of z.

(5.16)

(2) The case of the ((p'), coupling. The potential V(x, z) is of the Coulomb type, and the solution for U
is given in terms of confluent hypergeometric functions (I)." In Appendix C we show that

))(*,*)=exyl:-((*+))/2(.(~))*) ~(l '(" '" — "'* s "')*)
The number of zeros of U(x, z) depends on the integer part of

p(x)c(x) c(x)p, (x)
/+1 2

Taking to(x), c(x), p(x), and p, (x) constant in x in first approximation, we may apply Appendix C and find
the lines of zeros which describe the intercepts in (Q ), theory. This is given in Fig. 8. We see that for
any value of the coupling constant g we 'obtain an accumulation of intercepts around x = —1 and there ex-
ists a dominant intercept. When g becomes large, the small-g approximations of the intercepts tend to
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(5.1V)

constants larger than -1 [conversely to the intercepts of the ladder graphs in (P')» theory]. Of course, a
better knowledge of the potential V at large coupling constant g is needed to conclude this study, but this
is not the purpose of this paper. Let us remark finally that for ladder graphs in (p'), theory, Eq. (5.3)
holds true with a(g) = 1, p(g) = y(g) = 0 and we naturally obtain a square-root branch point in S."

(2) The case of (@»)» coupling. A: small coupling constant (z - -~) we obtain for U the solution

«4(~)ii "~Le,(~)) '

where K„ is a modified Bessel function and

/1 p(x)c'(x) xp, (x)c'(x)& '/'
i4 t, (x) 2t, (x)

(5.18)

We wish to argue that this solution is meaningless because g=0 is an infrared-stable fixed point. If, in
the same approximation, we wish to solve the Callan-Symanzik equation (in the Mellin version)

(
—x+ cg' ——2y~'( S(x, g) = —cg' (c & 0)

Bg

we obtain (up to terms with an identically zero Taylor expansion at g= 0)

S(x,g)= —exp(- —+ '
(

et»exp( ——c / x 2y, g l ~ /x 2y,
(cu c j

(5.19}

(5.20)

This function has a cut for Rex& 0 and describes asymptotic freedom in the infrared limit. We remind the
reader that the singularities of the Mellin transform for x- -~ (+~) describe the asymptotic behavior of
the amplitude for large (small) momentum. The situation is similar in (5.1V), z is negative and U has a
cut for Rex & 0 and has no zero for x& 0. This simply means that the small-g approximation of the poten-
tial V cannot describe the large-s behavior of the amplitude. What happens here tells us that we were not
allowed to consider the infinite sum of logarithms of s, which is an infinite sum of inverse Mellin trans-
form, as the inverse Mellin transform of an infinite sum. This is only true when the contour of integra-
tion can be distorted in such a way that the infinite sum is convergent everywhere on the contour.

(3) The case of (Q ), around a fixed point g=g*. It is known from the solutions of the Callan-Symanzik
equation that large-energy-momentum behavior is given (even at small g) by the first nontrivial positive
zero of the function P(g) (fixed point g=g*) if any, or by g-~. In the same way Regge limit should be
described by the behavior of the potential V at g=g* or at g . Unfortunately, since V is known only in
formal power series in g, nothing can be said at g- and very little at g=g*. In this latter case, the
Riccati equation becomes an algebraic equation (if BS/Bg (, ,*& ~) and we have

1
lal

(5.21)

which exhibits two square-root branch points at

2[~»V»+ y» p ~»(Tg+S»+)1/2] (5.22)

and a cut in between.
It is easy to see that two formal power series in

g satisfy Eq. (5.3), one which is nonzero when
S'(x, m, g) —0 and another one which is zero in
this limit. The first one is such that S(x, m, g
= 0) = a,t,lx, while the second one is of order g'
when g-0. It is clear from the definition of
S(x, m, g} in terms of graphs in perturbation theo.-
ry that we must consider only the second case.
This explains the reason for the way (5.21) is
written.

In order to discuss the position of the branch
points, it is again necessary to anticipate on the
treatment of nonplanar graphs and to consider
the complete functions S', T+, and V' (including

+ o.(g)S'(x, g)), „
S(0, m, g ) = -g is a solution of (5.3).

If there exists a fixed point g=g* & 0, then

(5.23)

(++V»+ y») + [(y4 awV»+)2 ++2S++T»+] 1/2
(5.24)

is positive, which implies either 8*' is negative,
or if it is positive, (o,*V*' -y*) & a* (S*'T*')'/'
[a(g) and T'(x=0,g) are positive by spectral
decomposition of the two-point function]. If we as-
sume that tne functions 8', T+, and V' are
smooth enough in x around x= 0, we see that
the cut (5.21) of S(x, m, g»') is either in the com-

nonplanar contributions). Then we may note that
since

P(g)= {a(g)T''(x,g)g'+ 2[y(g) —a(g)V'(x, g )]g
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functions which enter the Hiccati equation have a
Taylor expansion around g=g*. We have from
(5.8)

g g—= q exp(p'*z/u*r"), (5.25)

Fya. 9. Singularities in x of S(x,g) in (P )4 theory for
g and around g . (a) ~*'«. (b) ~*'& o.

where t! is a positive constant. Since P'*& 0,
when g-g*, z-t~. The potential V(x, z) be-
comes

plex and self-conjugate or we have x, & 0 (see
Fig 9).. .

We finally discuss what happens when g is close
to g* but different from it. We suppose that the

V(x, z) =V*+q(x) exp(p'*z/o. *rt"),
where

(5.26a)

&/2— x+ 2y* —2~+V+' 4a+'r+'S*'
+ 1 — +22~ 2'. T (x+ 2y* —2n*V*')' (5.26b)

and q(x) is an unknown quadratic form in x. V is positive for real x outside the cut. We may now solve
Eq. (5.10) and we obtain

U(x, z) =Ji
—c/+r +'[ I!(x)]'—/' p'*z

exp ! =[-2~*r*'(v*)"/p" ], (5.27)

where J is a Bessel function. The above function U(x, z) has plenty of simple zeros and especially for
z -+ we may use the convergent expansion"

J (x)="x)"~ '-"""'"m~r m+. ,1 (5.28)

which gives for v close to a negative integer a zero at small x (approximatively v= n+ [(--1)" '/
(n -1)!)(2'x)~ for n =1, 2, 3, . . . ).

We get, consequently, zeros of U for

2~pry+ (Vg)l/2 ( 1)tt l. (et2trg+ 2tt I!(x) tt

xp( pt*z/o. *r*'). (5.29)

x„(g)=x„(g*)+C„(x„)(g-g*)" (5.31)

with C„(x„)positive for n even. By (5.5) the res-
idue of the pole at x =x„ is of order O((g-g*)").

We do not try to interpret the result for S*' & 0.
To resume the situation in the case S*' & 0 [at
small g, S'(g) &0], for g=g2, the leading singu-
larityis a square-rootbranch point atx =x,withx,
independent of the coupling constant. This leads
to a leading behavior in s"+ [ln ' 's+O(log ' 2s)],
which is also the leading behavior of a function of
s obtained by taking a Cauchy contour around the

Ate-+ these poles of S have a limit; we find for
5 1) 2j3)Q ~ ~

x„(g=g*)= 2o.*V*'-2y*

(n2ptg 2+ 4~t 2rg+Sg+)1/2 (5 3())

These poles are at the left of the cut if S*' & 0,
and Rex„& 2o.*V*+ -2y* if S*' & 0 (see Fig. 9). As
we know from (5.5), their residues vanish at
g= g*. The behavior for g4 g* is difficult to eval-
uate because of the unknown function q(x). We may
write

complete cut. Then comes an infinite number of
g-dependent poles which generate by continuity in
the transfer t an infinite number of trajectories.
Although these poles are a Panion, not leading, it
is not known (especially for n even) whether, at
g far enough from g* and at t far enough from 0,
they could or not dominate over the g- and t - in-
dependent branch point.

VI. CONCLUSION

We wanted to know the large-s fixed-t asymp-
totic behavior of the four-point vertex function in
Q2 field theory (6 dimensions) and tjt' field theory
(4 dimensions) in the planar approximation. In
this paper we solved completely and analytically
the problem of finding, for the renormalized
Feynman amplitude of any essentially and crossed
'planar graph, the leading power of s and the
coefficients of all the powers of logarithms of s.
The structure of these coefficients were found to
be such that the infinite sum of logarithms, ob-
tained when we sum the amplitudes over all
graphs, can be performed.
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In (&t&'), theory we did find an accumulation of
Regge trajectories at n = —1, with a well-defined
leading trajectory. The intercepts were described
at small coupling constant g and found to be g depend-
ent (going to —1 when g- 0). Although we could not
discuss the solution at large g, the extrapolation of ~

our results at small g may indicate that the intercepts
remainboundedwheng-. We explained why, in
(&t&'), theory, the leading-logarithm approximation
could not give a pole trajectory; in fact, this approx-
imation leads to the same approximation for the
ladder graphs which generates a g-dependent
fixed cut." A better approximation was given by
Lovelace. " He took the asymptotically free ap-
proximation of the Bethe-Salpeter kernel and con-
sequently generated ladder graphs with effective
coupling constant g(s) and effective mass m(s)
= 0, and found an accumulation point of intercepts
above —1, but the consequence of having a zero
mass was to obtain g-independent intercepts.

In (&t&'), theory, little can be said because the
small-g approximation of the solution is inconsist-
ent (like the small-g approximation of the solution
of the Callan-Symanzik equation), andthe large g-
approximation is not available. In case of the ex-
istence of a fixed point g*, we found for g around
g* a fixed g-independent cut, and below, an in-
finite number of g-dependent intercepts (with zero
residue at g=g*) of Regge-pole trajectories. It
is not known for gag* and t far from zero whether
the square-root branch point is leading over the

Regge poles, or not.
Let us conclude with three remarks:
Although moving Regge cuts may be numerically

as or more important than moving Regge poles,
qualitatively, we understand that in this asymp-
totic behavior there exist two kinds of objects
(poles and cuts?). A complete study of nonplanar
amplitudes should be performed in the future.
Let us mention that in the small-g approximation
of (&I&'), theory, nonplanar amplitudes do not con-
tribute, being of higher order in g.

Regge trajectories are not a peculiarity of the
ladders of &t&' theory in four dimensions but really
seem to be an intrinsic feature of quantum field
theory, and the presence of fixed cuts might sim-
ply be an anomalous behavior due to the eventual
presence of fixed points [P(g*)=0].

Finally, non-Abelian gauge fields, which are
our next objective, should also, in this asymptotic
limit, obey a (matrix) Riccati differential equa-
tion; because of the property of asymptotic free-
dom, the solutions should also generate Regge
trajectories.
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APPENDIX A

(a) Exam/le of calculations Performed u/itk the ol&erator R. Suppose that we have to calculate the differ-
ence

-2l(8) 7 -2l(3)+5(8 )

-$65 8mF
(A1)

where {] is a given expression of the variables o. which has a simultaneous Taylor expansion in regard to
any forest of subgraphs [at least up to the order needed in (Al)]; we sum over all forests p. The quanti-
ties 5(S) are non-negative integers.

We write the Taylor operators (which commute when the subgraphs form a forest) in a given order cho-
sen in such a way that if 8'c- 3, 7~, is written at the left of r~. For this order we have

I

/

/ -2&(8 &i / 21(8 &+5(S'&-i / 2&(8'&% & --2&(8 &+ 7- 2&(8 &+6& 8& & / 2&(8 "&+&&( g-' ~

&)Jigsaw g~ l [ ~g g 7@i e

gE- P RES pep g'&g 8'') g

(A2)

where 8'& ())8 means Tl, was at the left (right) of T3 in the chosen order. On the right-hand side of (A2),
we have on the left of the square brackets not only subgraphs fS($ which are inside 8, but eventually sub-
graphs (Sg which are disjoint from S. For the set of subgraphs [SQ which are disjoint from 8 we may
write again

„I(-;.""')=.T(-T '"'2'""2')+ Z lZ(-r '"")[- ""2'+r ""2'""']ll (-~,"""'"' '),
{s]2 2 2 2

gtl )gt
2

(A3)
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where in (A3), S' and S "&={S2). We have obtained for (A2) the expression

&
-2l(8')

&
-2l(8) +.& "2l(8)+6(8)

8CS' 8'C8 88 8+8
pr 8"A8=g

"2E( 8")+6(8")

t&I»( ~ pe ~

( 7 "2E(8')4 I 7 2l 8 i + 7 -2E(8 i +6(8 ) lf T "2E(8 2) + 7 -2E(8~)+6(8))] -2l ( 8' ')+6( 8") t
i ii ~ L 88'

1 2

81082 &t) or 8't„-82 8"0'82 (A4)

Again, we may find in (A4) subgraphs S' which are disjoint from S, and S,. We may apply (A3) again and

again, up to the case where the sum of terms obtained will be such that on the left of the square brackets
[ ]8, ~ ~ ~ [ ]8 we will have only some subgraphs {S„'j,each of them being inside one of the subgraphs

Sf) ~ ~ ~ )8 v

Then we have obtained the relation

( T 2t&S-)) ( r, -tt(S)+5(8))
8 78

8EF 8ev

I

(-T -2l(8'))( 2- 2t&S(-) + ~ -2)(S()+6(8 ))
f8 f, ..., 8„f l=i 8'C8&

(A5)x & -»&"& «"&)I788 5.

8"gUi8j

where we sum over all sets of disjoint subgraphs {S„.. . ,S„).
Now we may finally sum (A5) over all forests 6' to calculate (A1). For a given set of disjoint subgraphs

{S„.. . ,S„),we sum over all forests inside each S, and over all forests of [G/U&S;]. We obtain
~«

( 2- -2t(8)) ( 7 -2l(8)+5(8))
8 ~ ... 78

s 8~a See

~ ~

( r 2l(8')) ( T 2t(8() -+ T 2l(8()+6(8())
8 ,8. 8s

)8f, ..., g) &=f V(8, ) 8 e:S (8, )

&& "&))
I

7 888 (A6)
F (G/U8s) (. 8"/U8. )&F ( G/U8s)

This proof remains valid if we consider only the sum over all forests of connected subgraphs.
(b) APPlication I: Proof of (3.4). We apply (A6) to the integrand {) written in (2.10). In this calculation,

6(S() =+2 for connected leading subgraphs [we use (A6) with the sum over forests of connected subgraphs]
and 0 otherwise. Then we calculate

[ r -2&(8() + T -2)(8&)+5(8()]{}8) 78)

It is important to know that when'all n variables of S, are dilated by p,-2, we have
vv

Pl t' ~ PI P

&g(n&P( n) =i.i.P& ', ...+st(n)+(D/vst)(n) + O(p')

(A7)

(A8)

where L(St) is the number of independent loops of S, . Also, if S, is a connected leading subgraph, then
v&v

A, (n, P('n) = P, ' &8 (n)AD/t/8 (n) + O(P') (A9a)

&t(n P n) = [&t(n)](D/t/(St))+ O(P')

/1/(n, pt'n) = [~/(n)]&a/(8 ).+ O(P ) for j= 1, . . . , 4.
If we apply the operators rs, over the curly bracket {) in (2.10), according
&Rex&p ~+2) (where )7 is small enough and positive), we obtain

-2E(8)) 7 -2l (8g)+6(8))
'

.g [1,A[G/USl. (s&) l[i«48 (n)]" t' 1-v8( ~ t ilv

8g 8f D/2( ) g D/2( )
P

i 8 CV [G /U8) )

(A9b)

(A9c)

to the definition (1.8), for P

tAt(n) +Q p/'A/(n)
i [G/U8])

(A10)

The factorization which occurs in (A10) is of great importance for the structure of the coefficients of the
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logarithms and explains the possible exponentiation of these logarithms.
Now each expression

-2l (8')
S.(8;) 8'CS($,-)

operates in the right-hand side of (A10) on the corresponding curly brackets f }related to S,. and recon-
structs the subtracted integrand for 76 (x). Then the expression

1+ T$
l 2( (8-' ')+6(8 "))

s (G'/vg;) p ~"/U8;&co. (c/Uh, . )

operates on the complete right-hand side of (A10). The product

-. [t~..( )]*
.- p "2(~)

is completely homogeneous for the operators Ts
2"„6 '6(6 ' of degree Z&(6,.c6"» [x —L(S,)D/2], and may be

taken from right to left of the operator Tz„which becomes T&~„»~.&
'" ' ~~'" '. Consequently, we re-"S

construct the subtracted integrand for F(o&~s, »(x, t,p 2). This proves Eq. (3.4).
(c) Application &: proof of (3.9) (Zimmermann's identity for grapI)s). The relation between F6(x) defined

in (3.8) and F6(x) defined in (3.10) comes from the caiculation of

n, m, R —R n, m, 2

For each forest 5 we have to calculate

( T -2l(T)+6(T)) ~™[
( T -2l(T))

I
Tee TGS'

where 5(T) =+2 if T contains the line a and 0 otherwise. The relation (A6) may be applied in this simpler
case; here the graphs T such that 5(T) =+2 are necessarily nested. When all (2, 's for a belonging to a
nonessential subgraph T are dilated by p', we have (AB) and (ABb)-(A9c), but (A9a) is replaced by

&s((2,P'(2} = [&,((2)l«~ »+ O(P') .
It has been shown in Ref. 4 that

[ T -2l(T)+2 y T -2l(T)» +6[+s(+)]6 l X~(T)l ( I+6((2)]

(A12)

(A13)

where

s(p, "'( ) p[-[),d, , ( )I,],}) '

'~(r) a-=0
S

(A14)

In (A14) the four-vectors k are the external momentum of T and )f„(» is a choice of e(T) (the superficial
degree of divergence of T) external momentum (»'2;, , . . . , I2;, ,}. In (A13) we sum over all possible choice

XQ)(T) '

The application of (A6) and (A13) explains (3.9). Let us note that the factorization (A13) is important for
the structure of the renormalization group.

APPENDIX 8

In this appendix we wish to sum Eq. (4.9) over
all graphs contributing to the essentially planar
vertex function G4". The expression on the right-
hand side is summed in exactly the same way as
(3.4), except that here, F(6 &U6 )(x) is equal . to
zero if [S,/US&] is one-vertex reducible and, con-
sequently, the sump»6» runs only over single
elements Sl and over couples of elements [Sl, Sl }.

1 2
The expression in (4.9) which is left to sum over

where T is a nonessential, proper divergent sub-
g1 aph.

First, we suppose that T is logarithmically di-
vergent. For a given graph [S/T], we may sum
over all T the coefficients P~ to obtain the function
[-P) (g)] defined in (4.10). Now the amplitude for
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Ion planar

yah T
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FIG. 10. Examples of nonplanar graphs g and T such
that tS/T] is planar.

[S/T) has the coupling constant (-g) at each vertex
except at the reduced vertex obtained from T. If
n(S/T) is the number of vertices of (S/T), we have
a factor (-g)"'~ r' '. Finally, the graph [S/T] may
be obtained from a larger graph by reducing T at
any of the vertices of [S/T]; when we sum over all
graphs [S/T], that is, all graphs of G,'", we have
a factor n(S/T )(-g)"'~ ' ' and this explains that

PPF, ~ t r,„(x)= P~(g) —S(», m, g) . (B 1)
$ T log div

This expression is effectively obtained in (Q ),
theory because all possible divergent subgraphs
are effectively present in the set of essentially
planar graphs. 'This is not strictly the case in
(P4), theory where nonplanar logarithmically
divergent subgraphs may be excluded. At this
step, we anticipate the treatment of nonplanar
graphs: The amplitudes for nonplanar graphs
have two kinds of singularities, first the singu-
larities inside the n-integration domain which are
supposed to generate moving Regge cuts, then the
singularities when a subset of variables a -0. In
this last case, what is done in this paper for es-
sentially planar graphs may be extended, and, for
instance, a nonplanar logarithmically divergent
sQbgraph T inside a nonplanar graph 3 contributes
a power of logarithm of s with a residue generated

I

FIG. 11. Zeros of the hypergeometric conAuent func-
tion q( —a, 2, x).

4+2l = (3+5)n, (B2)

where l and n are, respectively, the number of
lines and vertices of the graph and where 5=0 in

(Q'), theory and + 1 in (Q'), theory. We thus obtain
by summing over all [S/T ] in G~"

from tjrFI 1&r&. When [S/T] is planar, as shown
in Fig. 10, the coefficients Pr complete the func-
tion [-P,~(g)] by nonplanar contributions.

Next we sum over the quadratic divergent sub-
graphs T. 'The same technique is applied, but here
at each reduced T vertex we insert a quadratic
coupling derivative k', where k is the momentum
which flows through the self-energy. 'This k' fac-
tor is written as (jP —m')+m'. For a given
[S/T]z we sum over all T the coefficients pxr2 to
obtain the function P „,~(g) defined in (4. 10). Then
we group together all the graphs [S/T]x, which
differ only by the line upon which the insertion g,
is performed. We also use the topological rela-
tion for any graph contributing to G4,

+~ 2 8P"'F,~t,„(x)= P,„„(g)
~

-2+ g—+m', ~S(», m, g) .

It is also useful to realize from (3.5) and (4.3) that by homogeneity

S (x, m, g) = (m')'~~ *S(x, 1,g) .

(B3)

(B4)

Then from (4.9), (Bl), (B3), and (B4) we obtain Eq. (4.13) via the definitions (4.11). We want to point out

that a generalization of the technique used in this appendix has been used in Ref. 2'l to define a representa-
tion of the renormalization group.

APPENDIX C

Most of what is said in this appendix may be found in Ref. 28.
The solution of the equation.

U- A+—U=O for A~ 0, B&0.
z j

'Taking into account the exponential form e "' for U at large positive z, we find for solution

U = e ~' 2MAzg(1+ B/2M, 2, 2v Az),

where g is the confluent hypergeometric function

(C1)

(C2)
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1
q(a c x) s xt-f a-x(I + t)c-a-zdf

p( )

For 1+B/2~A= n-,

U„= e ~*2M&z(-)"n!J.„'(2M&z),

(C3)

(c4)

where L„' is a generalized Laguerre polynomial. .
If we wish to obtain the zeros of U (different from z = 0), we must first realize that t)I(a, 2, x) has -E(a)

single positive zeros in x, for a~ 0 and 0 otherwise [E(a) means integer part smaller or equal to a]. We
may first find the zeros of the Laguerre polynomials; especially for large n [and using 2v A = -B/(n+ 1)]
we have

gris
lim L„'(2~A z) = —,&, (n+ I)'~'J, (2(-Bz)' ),2Az'' (C5)

so that the zeros of I„' tend to the zeros of the Bessel function J,. Now the way the zeros evolve, when
n is noninteger negative, may be obtained on the computer from subtracted integral representations of the
type (C3). The result is shown in Fig. 11. It is important to note that the lines of zeros go from z =0 to
z =~, since the zeros of J, are periodic in Mzat large z. At large v z and large n all the lines of zeros
have the same slope.

'The last point we wish to determine is the limit of the lines of zeros when x-0. This may be done from

g(a, c, x)= P(a, c, x)+ x' '$(a-c+1, 2 —c, x)
r(1 —c) r(c 1), ,

I' a-c+1 I a

with

P(a, c, x) = 1+ (a/c)x+ O(x').

%e obtain

1 lnx I"(1} (a —l)I"(1) 1 I'(a —1) 1
I (a)x I'(a - 1) I'(a —1) I'(a) I'(a —1) I'(a —1) I'(a)

At small x the zeros are given by

—+ (a —1) lnx+, —2I"'(1)(a—1)+2 —a = 0.1 I"(a)I"(a —1)
x I'(a —1)

(C6)

(C7)

(C8)

(C9)

It is clear that x-0 makes a -n for n=0, 1, 2, . . . . Using I"(a —1)/I'(a —1)- (-1)"(n+1)! when a- n, -
we set at small x

o. =n+ (n+1)x,

where o'. = —a in Fig. 11.

(C10)
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