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The asymptotic behavior of the form factor in quantum electrodynamics is calculated in case the photon has
a mass. The technique used takes into account all logarithms in q' but neglects inverse powers of q'. The
result is essentially that found by Sudakov. In order to obtain this result the large-n behavior of y„ is
obtained.

I. INTRODUCTION

In this paper the asymptotic behavior of the
Sudakov' ~ form factor is derived in an Abelian
gauge theory having photon mass p, and fermion
mass m. The result holds for the on-mass-shell
form factor or for a particular component of the
off-shell vertex function. In case there is no cou-
pling-constant renormalization, that is vacuum
polarization graphs are omitted, we find

2
' 2

Inr(q') =—,ln' —,+ 0(1),
16m' M

where M' is a scale depending on g /m and the
coupling g. In the case where g & 0, an asymptot-
ically free theory but not a unitary theory,

g% (g'
y„(g)„~„, Inn+ 2c(g) .

The factorization of the vertex function is given in
Sec. III, although a more detailed discussion is
given in Ref. 5. This factorization is not a rigor-
ous result of quantum field theory although its
validity is on the same basis as the factorization
results in inclusive processes.

It is apparently important that p, g 0. Although
the derivations given in Sec. II explicity depend on

p, c 0, the large-n behavior of y„presumably is a
property of the zero-mass theory and so will be
unaltered if p, = 0. However, the factorization
discussed in Sec. III and in the Appendix depends
crucially on p, g 0. The reader may recall that
the leading-logarithm result for the off-shell form
factor when p. = 0 is

2

lnI'(q') = —,ln'(-q') .

In order to obtain these results two technical
results are. needed. The first of these is the be-
havior of y„ for large n where y„ is the anomalous
dimension of certain composite operators. The
second technical result is a factorized form for a
certain off-shell vertex function. The large-n be-
havior of y„ is derived in Sec. II, the result being

There is a factor of 2 difference between lnI for
p, = 0 and p, w 0.

In this paper all terms of the form (g') (lnq')"
with 2m ~ n are kept; however, inverse powers
of q' are not kept. Thus one should be wary of
taking the rapid decrease of the form factor too
seriously since we have no reason to believe that
the form factor is not simply of order (1/q ).

II. A CALCULATION OF 7,FOR LARGE o

In this section y - will be calculated for large values of the parameter 0.' We begin with a calculation of
the lowest-order graphs contributing to y in order to establish notation and to set the general idea for the
procedure of computation. The theory beging discussed is an Abelian gauge theory with photon mass |Li,

and fermion mass m. y, is not dependent on p/m. We shall use a form for y, that is motivated by
a previous discussion of cut vertices. However, when g =n the expression which will be used is equivalent
to the standard expression.

A. An order-g2 computation of y

In order g' the graphs which contribute to y, are shown in Figs. 1 and 2. The && on the photon and fer-
mion lines in these figures indicates a soft mass insertion which will always be normalized so that the
mass derivative in the Callan-Symanzik equation is af the form p's/s p'+m's/sm . In addition there are
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a) (b) (a) (b)

FIG. 1. Some order-g contributions to y . FIG. 2. Further-order g contributions to y~.

two graphs identical to those shown in Fig. 1 except that the photon connects to the outgoing fermion line
rather than to the incoming one. Let us begin with the graphs shown in Fig. 1(a). Here

ip'p -'" g' &'ktry, y [y (p-k)+mly (p-k) ''-p ''
4 (2v)4 (k'-p +is) [(p —k) -m +is] k

In the above p, =p = (p„pg = 0. This expression is most easily evaluated by performing the k, contour in-
tegration in such a way as to pick up the pole at k, = -[(k'+m')/2(p -k) ]+ie. Then

d k(P -k) (p k) ~-~
p

~-~

8.3 p- ' "'-
J [p Lk'+ q+k (m' ')]' k

The 42k integration can be done exactly. After a rescaling of the dk integral one finds

g']L(,
' ' dx 1-x ' 1 —1-x

Yfy Sw', x p, '+(m'-p')x

For large 0, y, = (g'/Sm') Ino.
Now examine the contribution of the graph shown in Fig. 1(b). In this case

tdkt». y [, (p-k)+m][, (p-k)+m], (p-k) -- -p.—

8 (2~)' J (k'- ~2+i~)[(p -k)'-m2+i~]'

If one closes the k, contour around the pole at k, = [(k'+ g')/2k )] ie, t-hen

Z'k(p -k)
Sm p- dk-

[ (k2 8) k (
2 2)]2 (p k — p- ] '

(2)

Evaluating the d'k integral one finds

g', ' (I-x)[1-(I-~) -']
Sw', p, '+ (m

' —p')x

For large g this integral contributes a constant
term. Combining (2) and (4) one finds

[(1-&) —(1 -&)']g " dx
8m „0 x

—r'(1) -1
Sw2 I'(o + 1)

When o is an integer n

g 1
W ~=2 j

which is the usual result.
In view of the arguments to come later it is im-

portant to realize that for the one-loop graphs the
dominant term for large g is determined complete-
ly from the graph shown in Fig. 1(a). So long as

p. w 0 the graph shown in Fig. 1(b) only contributes
a constant term for large o while the graphs shown
in Fig. 2 go as 1/v for large o. There is an easy
way to see how these large o results emerge. A

possible lna can arise oily from small values of
k of size k /p =1/v. When k goes to zero in
the graph shown in Fig. 1(b) the singularities in the

k„plane are located at k, = [(k'+ p')/2k )] is from-
the photon propagator, and at k, = -[(k'+m )/2p )]
+i& from the fermion propagator. It is thus pos-
sible to distort the k, contour down into the com-
plex plane so as to remain a distance on the order
of g /2k away from the origin. During this dis-
tortion the photon propagator remains effectively
-1/(k'+ p. ') while the fermion propagator 1/
[(p —k)'-m + ie] becomes approximately 1/
(-2p k, +ie) Since th.e fermion propagator oc-
curs quadratically the small-k region is sup-
pressed by the fact that k, is becoming large. In
fact the k integral is linearly convergent for large
o and so the region k /p = O(1/v) only contributes
a term of order 1/o toy, .
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B. y, fox @ED with no vacuum polarization

Now y, will be computed for large values of o

in case no vacuum polarization graphs are al-
lowed. Vfe begin by considering the contribution
of the graphs illustrated in Fig. 3. This contri-
bution is FIG. 3. A photon-mass-inserted contribution to y .

iV'p "' g' d'ktry. y [ is(p-k)]-r (p, k) (p-k) '-p
4 (27f) (k —p. + ie) k

Now use the Ward identity to write

r (P, k)= . [-k r„(P,k)+k,.r,. (P, k)-is '(P-k)-+is-'(P)]. (7)

Let us designate the four terms in y, which appear when (7) is substituted into (6) as y,', y,', y,', y~.
Then

ig'p '" g'
I

d'k try.y [ is(p--k)lr. (p, k)
[4 (2m)' k, ie — (k'- p'+ ie)' (6)

Now (8) has no possible singularity in k when g becomes large, so y,' has no Inc term for large o. Also,

iii'p " g' t. d'k try, y [-iS(p-k)]k r;(p, k) (p-k) ' '-p ' '
4 (2m) J k, —ie (k'- iJ,'+i e)' k

The possible singularity in (9) when 0 becomes large is in the region k /p =O(1/o). Now when k be-
comes small we may distort the k, contour into the lower half plane as discussed previously. This is ap-
parent since the singularity structure of S and r is determined from the invariants k +ie and (p —k) +ie.
All that is needed is to estimate the large-k, behavior of S and F, . This is given by

y s(p -k), =„o(1/k,),
k, l;(p, k) = O(1).

P+—+ oo

Thus the integrand in (S) behaves as (1/k, ) for large k, and the resulting k integral is linearly coni[ergent
for large 0.

Now

ip2p ~+i
, g~ d4k try, y [-iS(p -k)][-iS i(p —k)] (p —k)

4 (2v)' k, ie -(k'- p'+ie)' , k

The calculation here is almost the same as for the graphs shown in Fig 1(a) an.d one finds

y,'=, f [1-(1—x)" ']=~, ( +C)

where C~ is the Euler-Mascheroni constant, Cs =0.577 ~ ~ ~ . For large [i,y, =(g'/6ii')1no. Finally,

(10)

ii 'p — " g' d'k try, y [-is(p-k)][iS-'(p)] (p-k)
4 (2m)' k, -i e (k'- p, '+ie)' k (12)

Again, in (12) one may distort the k, contour for small k to obtain a linearly convergent k integral for
large &r Thus the tota.l contribution to y of the graphs shown in Fig. 2 is (g'/Bw') in[i as far as the lno
term is concerned. The constant term appears difficult to calculate.

The graphs shown in Figs 4(a) and 4.(b) have no Ing term for the same reason that the graph in Fig. 1(b)
had no such term. It is important to realize, however, that one must include along with the graphs of Fig.
4(b) all the counterterms (subtractions), including many photon composite vertices, necessary to make
these graphs converge. If we now add the graph which is identical to that of Fig. 3 except that the photon
interaction occurs with the outgoing fermion line we obtain the result
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a) (b)

FIG. 4. SuMominant contributions to y . FIG. 5. A higher-vertex contribution to y .

y, ~
4

lno+2C(g}
Q ~oo F

for all graphs having one photon at the bare composite vertex.
Consider now graphs having bvo photons at the bare composite vertex. Begin with the graph shown in

Fig. 5. The expression for y, is

i p, p '+' g d k, d k, try, y [ iS(p-—k, —k2)]I' (p,k„k2}
4 (2m)4 (k,'- p'+is)'(k, '- p'+is)

x[(p —k -k,)' ' —(p-k,); '-(p-kg' '+p ' ']
1- 2-

The resulting integral is ultraviolet divergent and so subtraction terms, shown in Fig. 6 and Fig. V, must
be included. The term shown in Fig. 6(b) is assumed to be fully renormalized. The precise rule for the
counterterm in Fig. 6 is

.p'p '" g'
) d k,d k, try, y [-iS(p-k, kg]I' (p--k„kj [ iS(p--k, )]I' (p, k,)

x [(p k, kg. —
(p k,).—

(p ky. +p ]— —
(14)

where the many-photon subtractions in (14) are suppressed. In (14) k, = k = 0 while k = k . The rules for
subtractions are the Bogolubov-parasiuk-Hepp-Zimmermann (BpHZ) rules given in Ref. 7. There are now

three regions which must be considered as possible sources of lno and In'&r terms. These regions are (i)
k, -O, k, finite as o-~, (ii)k, -O, k, finite as o-~, and(iii) k, -O, k, -0 as o-~. (It isusefulto notethat
k, and k2 may be restricted to the region k, &0, k, &0, k, +k, & p in (13) and (14).)

Begin with region (i). Write

I (P, k„kg= . [-k, I, (P, k„kg+k„.i,. (P, k„kg-is '(P k, kgS(-P --k-gr (P, kg
k~, -4

+ir (p -k„kgs(p -k,)S-'(p)].

Substituting (15) into (13) we again get four contributions to y, . Arguing exactly as before, the only pos-
sible lno term comes from the third term on the right-hand side of (15). From this term we obtain a con-
tribution y, to y where

k,

(o) (b) (a) (b)

FIG. 6. A renormalization contribution to y . FIG. 7. A renormalization contribution to y .
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ip2p ~~ g~ 2 r d4k, d4k~try y S(p-kgF (p, k2)

4 (2w)' „(k„-ie)(k,' -g'+is)'(k, '- p'+i~)

x[(p -k -kg~-'-(p-k)'-'-(p-k) -'+p -']
1

(16)

The d k~ integral in (16) is divergent. In order to obtain a finite result we must keep the contribution in

y, which could cancel this divergence. (Other divergences in the k~ variable are canceled by the counter-
terms shown in Fig. 7.) In y, write I' (p, k,) as

F (P, k,)=„.[-k, r, (P, k,)+k„F,(P, k,). iS-'(P-- k)+ Si-'(p)].1
—ZQ

1 + ~ 1 (17)

The only term on the right-hand side of (17) which can give a inc for k, -0 is the S (p —k, ) term. This
contribution is y is

ig p '" g d4k, d k, try, y S(p-k, -k,)F (p-k„kg
4 (2m)' (k„-ie) (k,' g'+-ie) '( k,

' . i'l+ i-e)

&&[(p -k -k )~ '-(p -k ) ' '-(p -kg ' '+p ' ']- 1
(18)

However, the small-k, regions of (16) and (18)
cancel. The net contribution of the small-k, re-
gion is linearly convergent in k for large p and
so no in@ can emerge.

Now consider region (ii). In this case k, —0
which allows one to distort the k~ contour far
into the lower half plane. When k„-~ the pos-
sible large momentum flows in F (p, k„kg are
exactly those which are subtracted out by the
graphs shown in Figs. 6 and 7. Thus there is a
I/k~' decrease, so long as k,„k, is not large,
when the k~ contour is distorted into the lower
half plane. After multiplying by the range of k~
integration one finds a linearly convergent k2
integral for large g. Thus again there is no lng.

Now that regions (i) and (ii) have been dealt with,
it is clear that region (iii), where k, and k, both

go to zero for large g, also cannot give an lng be-
havior. If, for example, k, &k, , one easily sees
that the small values of k, do not enhance the
large k~ regions. If k, &k, one observes that
the small values of k, do not stop the cancellation
of Eqs. (16) and (18) as discussed above.

Graphs having two photons at the bare composite
vertex and having mass insertions other' than as
shown in Fig. 5 do not give in+ terms for exactly
the same reasons that we have just given. %hen
one of the momenta, say k, , becomes small as
g becomes large the contour distortion in k„gives
a rapidly convergent resultant k, integral. As
in the case of region (ii) above, the role of the re-
normalization terms is crucial.

Graphs with higher numbers of photons at the
composite vertex work in a similar way. Consider,
for example, the graphs shown in Fig. 8. Suppose

k, - 0 as g- ~. From our previous discussion it
is clear that the k,' branch points of

(p, k„k„.. . , k„) give singularities in k„
in the lower half plane -i~, at real values such
that k„a p, '/2k while all the other k„singular-
ities of I' occur in the upper half .plane +ie. [We
may view I' . . . (p, k„k„.. . , k„) as depending
on the 4n -3 invariarits k, +is, k3 +is, . . . , k„
+ic& (p —k,)'+is& (p kg'+ie-». . . (p -k„')'+ie&
(p k, kg'+i~-, (p--k, -k,)'+i~, . . . , (p-k, -k„)'
+if& (p —k~-ka-ka) +is& (p-k, -k2 —k~) +ie&. . .

&

(P —k, —kz-k„) +i&.. k; & 0 and+, ". ,k,.

Thus the k„contour can be distorted into the low-
er half plane a distance greater than or equal to

FIG. 8. A many-photon contribution to y .
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u, '/2k from the origin. NoW the large k„mom-
entum flows through the graph in exactly those
ways which determine the subtractions necessary
to give a convergent d k, integral. Aga, in the
renormalizations cancel the dominant k„behavior
Leaving a linearly convergent k, integration for
la.rge ~. In case the mass insertion is on the k,
line one uses the Ward identity as was used for
the small k, region of the graphs shown in Fig.
5.

where m(u ) =0, then

iD+ (k)i = — u,', +m, + p
&+=a =0 ~ 9 ~~ ~C

(k'+ p. ')[1+m(—k')] ' (22)

Thus our final result, when vacuum polarization
is neglected is

y, ~, ino+2c(g).P
Q ~ co

C. y in massive QKD including vacuum polarization

Vritually all of the arguments which have been
given in Sec. IIB extend trivially to the ease where
vacuum polarization graphs are included. Con-
sider the graph shown in Pig. 9. The contribution
to y„of this graph is

d4ktry. y y (p k)y-
4 (2m)4 ( p —k)' —m'+ ie

(k)
(P — ) -P

y. —,.k(~)i.„8m

for the contribution of the graphs shown in Fig. 9.
Here k(g) =1++„,(g')"k„. The discussion of ra-
diative corrections and higher-order vertices
proceeds just as before. We thus find in general
that

y, ~ 4, k (g) ino + 2c (g)0-- (23)

k(g)= — dk' u,
'

2 +m' 2+p
Bp, 8~ 9g

In general it does not seem possible to completely
evaluate Eq. (21): however we may say that

(20) (k'+ p ') [1+n (-k') ]
' (24)

+ constant terms.

If we write

(21)

where D„„(k) is the mass-inserted photon propaga-
tor. It is easy to see that for large g

2

y, ~ 2 inc d kiD„(k)
fy ~00 =0

III. A FACTORIZATION OF THE VERTEX FUNCTION

In this section a factorized form for the vertex
function for two off-mass-shell fermions in a mas-
sive Abelian gauge theory will be given. Consider
the vertex function shown in Fig. 10. We suppose
that the py line is a fermion and the p2 line is an
antifermion. Define u(p, ) such that [y p,
+ (p, ')'~']u(p ) = 0 and define v( pg such that

[y p, —(p,')' 'jv(p)=0. We suppose that p, and

p2 are timelike although our factorized expres-
sion will not depend on that assumption. If
I'„(p„pg is the vertex function shown in Fig. 10
then, for large values of q'= (p, +p2)' and fixed
values of p, ', p, ', define 1(p„p,) by

u(p~) 1"q(p~ p2) v(p2) = u(p, ,)yqv(pal (p~, p2) ~ (25)

FIG. 9. The dominant contribution to y for large 0.
~ FIG. 10. The form factor.
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pendix the one-loop vertex graph is discussed as
an example of (26).

IV. THE SUDAKOV FORM FACTOR

FIG. 11. A cut vertex giving v(P~ ).

In this section we shall put together the results
of Secs. II and III and derive an expression for the
Sudakov form factor. This expression will in-
clude all factors of Ln"q' but will neglect inverse
powers of q .

Begin by considering the graphs shown in Fig.
12. These graphs are to be considered as a con-
tribution to pW~. Only the vertex function F& (p,
p+ q) is included with no self-energy corrections
on the p or p+q lines. Now, choosing p, =p=0
we have

Then F(p„pg=F(p, ', q', p, '). The factorization is
given by

d~&u 'v&, =E, (q'). (29)

I (P,', q', P,') = ~(P,') I (0, q', 0)v(P,'),
F(p,', q', p~') = ~(p, ') ~(q')~(~&')

and holds so long as

(26)

-q, +P-- +5 -y,' E, (q)=0.8 8 8

Bg Bg BQ
(30)

For large q' this E, obeys the Callan-Symanzik
equation

2 2PI P~ (27)

[If p, or p, go to zero the criterion (27) changes.
In case p, '- 0 (27) is replaced by m'p, '/p, 'q'«I
md p~ /q'«1. ] e(p'), not to be confused with the
Dirac spinor e(p), is given by

e(p')=
4 try, g 1,„(p),

n=0
(26)

in case p„=(E,O, O, -p). In (28) I",„(p) is the par-
ticular cut vertex shown in Fig. 11 and I',(p)
= y p . The detailed definitions and renormaliza-
tion of the I' are discussed in Ref. V. The o
label is redundant in this example and appears only
in order to make connection with renormalization
programs necessary to given meaning to n(p2) If.
the p, line were an incoming line a similar expres-
sion for e(p, ') would exist in terms of the incom-
ing cut vertices such as appear in deeply inelastic
electron scattering. Two points are crucial: (i)
The vertices appearing in (26) are renormalized.
(ii) 1'(q ) does not obey a Callan-Symanzik equation
because the mass inserted vertex functions do riot
renormalize according to dimensional counting.
This last point is discussed in Ref. 5 in some de-
tail.

The arguments for the validity of (26) have been
previously discussed. There is no rigorous proof
of this result; however the heuristic arguments
given in Ref. 5 make it a rather plausible result.
The factorization includes all logarithms and is
not simply a leading Logarithm result. In the Ap-

y' is that contribution to y coming from graphs
where photons appear in an arbitrary way at the
composite vertex but end on only one of thd ex-
ternal fermions in the mass inserted vertex func-
tion. e is the covariant gauge parameter.

Let us first suppose that vacuum-polarization
graphs are neglected. Then P= 0 and

E.(q') = e. exl'[-r'. (g) &(-q'/V')]. (31)

For large v, (p+ q)'/q «1 in the integral (29) so
one may use (26) to write

I'(q )
' v(-q (~ - I+is))

FIG. 12. A particular contribution to vs.

(32)

where e-0, e'-0, e/c'-0. We have written (32)
for spacelike q'. q2 timelike can be obtained by
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continuation. By a change of variables we can write
(32) as

&,(q') = e, IS(q', g),g] exp[ —[Inc'y, (q') + y (q')]]

(,) I'(q')
a &

Write (33) as

v((-q'/o)x +is)
dxe 'Im'

X+se

(33)
I (40)

g. (4*) = r(4*)f(—,) .

Thus

e. enp[-r.'(g)(n(-4'/n')]=r(4 )f( ').

For large values of v, y, --,y, soy, (g)-(g /
8p2) ln(T+c(g). Defining

2

e =exp —,lng e,a

2 2(exp, ln'—
q~ i16m p, o

f(q'/g'o)

one finds

(34)

(36)

lnln —' ]

and we have specialized to the Landau gauge. If
Inv»1 but [lno/ln(-q')] ln ln(-q') «1 we may write

e, --,'inc lnln —,—-2(C2 —1) Inln—

=r( ')f('*). (4l)

If we further choose ln o/(In- q ) «I, e, only de-
pends ong and o and we may write

4'(4') =exp --*, (n(-, ) lnln(- —,)
——',(C —1)lnln (-, ) e, l( ), (42)

where

(3/2) blae, —e

(36)

Equation (36) means that

e,' =g', l(x) =x',

with ]g depending ong' and g'/m'. Thus, it is al-
ways possible to write

I"(q') = I', exp —,ln'— (37)

where M'=M'((p'/m'), g). This is the famous
double-logarithm form of the Sudakov form factor.

Now include vacuum-polarization graphs. Then

Il dQ2g.(4) =e. enp(- f, r'. [g(p, *,g)I}, (gg)

where e, depends on 0 and g'(q2, g). In case there
is a fixed point at g =g„one easily finds

exp —,ln —, ln 1n-

ne (4*)
Now if we were free. to vary o widely it could be
concluded that el = (-q /p. ')&; however, we are re-
stricted to the region ln'o/ln(-q') «1 and this re-
striction allows l to have dependences other than
a pure power. For example, l can have a term
such as [In(-q'/p'o)]~ and to the order we are
working such a term has no g dependence. Our
conclusion is that the strongest behavior of t al-
lowed is (-q'/p2)& but that many weaker q' depen-
dences are allowed. We can state this precisely
by writing

2 2

I'(q') I', exp —6,a(g„) ln' -M, , (39)
,2 „g ]6m~

where M depends on (u /m', g, andg„.
We can get an expression closer to that which

might emerge in a non-Abelian gauge theory if we
choose g'& 0 in the Abelian theory. In this case
the theory is asymptotically free though it is not
a unitary theory. In this ease one finds

(43)

We suspect that the correction to the dominant
term in (43) is in fact of order ln In(-q2/p, ), but
this has not been established. If one now supposes
that non-Abelian theories work much the same as
Abelian theories, one would arrive at the result
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lnI"
8

„11C (G) -4T(R)

x lnjn (44)

where the notation is standard.
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APPENDIX

In this appendix it will be shown how the fac-
torized expression (26) reproduces the one-loop
form factor in massive QED. We begin with a cal-
culation of the order g expression for v(p'). The

FIG. 13. The lowest-order contribution to v(p2).

relevant graph is shown in Fig. 13 and we choose
g= (P„P,) = 0 for simplicity. Then

Thus

ip ' g t
d k try, y y (p —k)y p d k try, y (p —k)y p

4 (2x)' J' (k'- p, '+is)[(p -k)'-m'+i@] k (k'- g'+i@)[(p -k)'-m'+i@] k

2ig' d~k (p —k) 1 1
(2x)' k (k'- p'+ie) (p -k)'-m'+i~ (P k)'-m'-+i&

(A1)

where p, = 0, p = p . If the k, contour is distorted so as to enclose the pole at k, = [(k2+ p, ')/2k )]-ie, one
finds

Then

Sv' k — p (k'+p')+k (m'-p, ')-2(p-k) k p, p (0'+p')+k (m'-p'). '

(,)
g' ' dx

( )
g'+x(m' —p') -x(1 -x)p'

Sw 0 x p, +x(m -g )
(A2)

For large p2

v(p)=, In
g' ~ p'

16m p~ J'

Using the result that I"(q') = -g'/16m' ln'( —q'/p') in lowest order leads to the result

I'(p„pg=-, ln —,
~

-1 ln — ', -1 ln ~-p, ~
t' p. &

16m p 2]

(A3)

(A4)

which is the result for the off-shell vertex func-
tion so long as p, 2p2'/p, 'Q2«1.

The reader may note that it is not permissible
.to set iJ.

'= 0 in the above expression for v(p ). The
reason for this is that in the zero-mass-photon
limit one must exhibit the wee parton cancellation
before renormalized cut vertices exist. In in-

elusive processes the p'- 0 singularity in v(p')
is canceled by a p'- 0 singularity in a different
cut vertex. However, in the form factor there is
no wee-parton cancellation. In our context this
simply means that we are not able to discuss the

p, 'p, '/p'Q' ~ O(1) region of the Sudakov form fac-
tor.
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