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Dynamics of a relativistic shell model for extended particles
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The relativistic harmonic-oscillator model for extended particles with SO(3,2) internal symmetry is used to
compute the elastic form factor of the ground state and the radiative decay rate of the s = l~s = 0
transition. The interactions considered do not test all possibilities of the model. The results are therefore

only illustrations of effects due to the extended structure of the particles. The relativistic effects suppress the

decay into final states with masses less than 17% of the initial mass, whereas the nonrelativistic decay rate
is constant in this region. A representation of the excited states of the model by Hermite polynomials is

given.

I. INTRODUCTION

In this paper we study elastic and inelastic inter-
actions in a. model of composite/extended particles
based on the dynamical symmetry group' SO(3, 2).
The kinematics of the model has been developed in

Refs. 2-4; still the question about the existence and

properties of interactions is left over.
The matter is not trivial as the model is related

to Dirac's positive-energy equation, ' ' which has
no minimal-coupling interaction; this deprived it
of any application.

However, recognizing the nonlocal nature of the
model, it becomes clear that an overall minimal
coupling, i.e., replacing all momentum operators
P„by P„-eA„, generates a complicated array of
interactions, compared to the local field theories. '
Instead of a global study we take only the simplest
terms of the interactions into account.

The "anti-de Sitter" SO(3, 2) model is a special
case (n = 2) of a class of models governed by the
real symplectie group Sp(2n, R). One has local iso-
morphisms' ' for the lowest-dimensional'sympleet-
ic groups Sp(2, R) -SU(1, 1), Sp(4, R) - SO(3, 2) and
none for Sp(B, R) and higher groups. Each of these
groups when represented in terms of n boson op-
erators and their conjugate operators" " allows
for a construction of a relativistic harmonic-os-
cillator (RHO) model for composite particles.

The calculations and procedures presented here
extend to the entire class of Sp(2n, R) models.

The essential idea in the construction of the RHO
models is that under Lorentz transformations the
boson operators themselves transform a(0) - 'a(p)
and at(0) - a ( p). The important distinction to the
nonrelativistic harmonic-oscillator (HQ) model of
nuclear physics is the velocity dependence of the
wave function.

In Refs. 12-16 wave functions are constructed
by another method, without using explicitly dy-
namical groups. The main procedure there is to
transform the arguments of the wave function,

i.e., to express the wave function in terms of the
center of mass and internal coordinates in config-
uration space and subject each coordinate to a
I.orentz transformation x'„=L(A)& x„.

The paper is organized as follows. In Sec. II,
the kinematics are summarized as far as devia-
tions from Hef. 4 make it necessary and new re-
sults are added. A representation of the internal
wave function in terms of Hermite polynomials is
given, and some symmetry properties of the the-
ory are discussed. In Sec. III the quantum-mech-
anical model is extended into a quantum field
theory, which is nonlocal. In Sec. IV different
types of interactions are defined, a form factor
and a decay rate are calculated and compared to
the nonrelativistic "static" decay rate. The sum-
ma, ry and discussion are contained in See. V.

II. KINEMATICS

-i/2 8
&n-

Sfk
(2.1)

(2.2)

with the commutation relations (CR's)

[+k rial 1 ~kl

[ak, a, ]=0, [ak, a~t]=0 (k, I =1, 2) .

(2.3)

(2.4)

A continuous representation of (2.1) and (2.2) in

In the Sp(2n, R) theories there are n internal de-
grees of freedom in addition to the center-of-mass
(orbital) coordinates. Thus in the case of n = 2 the
composite particle is described by the center-of-
mass coordinates in Minkowski space x„EB' and

p~E R i p~ =M [g~p=dlag(+, —,—, —), p. = v=0,
1, 2, 3], and the internal coordinates (kE=R' (k= 1,
2). M is the rest mass of the particle. .

To each direction (k we associate boson creation
a„and annihilation a„operators in the orthogonal
representation
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spherical coordinates leads to internal two-dimen-
sional Kepler orbits. However, the harmonic-
oscillator motion and the Kepler motion are iso-
morphic, and therefore can be translated into
each other. "

The Lie algebra of Sp(4, R) differs from Ref. 4
in thai the magnetic number is measured along the
03 axis" ":

of the particle. There is no translation operator
for the internal motion added to P„as the internal
motion. is translation invariant.

In general, [L, S]= 0, and the I satisfy the O(3, 1)
CR

[I (&v, I po 1 = I ( g'ppi v o + tvo I
&&p

—A'vo Ivp
—8 vp Ivo )

(2.20)

1J, = S„=—z (a, a, + a,a,),
J,= S» = ,'i (a—,a, —a, a,),

(2.5)

(2.6)

In an arbitrary reference frame the boson oper-
ators are defined by the following mapping. Con-
sider the basis' '

(I& = column [a„a, , a„—a, ] . Then

K =S = —'(a '+a' at' —a ')

K, =s„=--,i(a, ' -a', +a~o' -a,'),
K, = S„=~(a,a, + a,a,),1

(2.7)

(2.8)

(2.9)

(2.10)

q(A) e+(A»8»(o& @(0)e-(A vvs»(o&

—e+(A(&v8 (&v
(0& q(0)

where S„, is a matrix defined by

[S„., Q (o)]=(S„.) 8Q(l(0)

(2.21)

(2.22)

V, = S„=-,'(ata, +a,a, +1),

V S
'

(
t ( + .

)

(2.11)

(2.12)

For a boost with magnitude A and direction e in
3-dimensional space

A =A(e„e„e,)

V =S =-,'(at'+a '+at'+a ') (2. 13) =A(cosp sin8, sin(t& sin8, cos6), (2.23)

V, = S„=o i (a,a, —a,a,) . (2.14) where (&, (I& are polar angles. The boosted boson
operators are

The S„operators satisfy the CR's of SO(3, 2)

[S,v, S,„]= —i (q SM + qM S —q~ S~ —qo, S~ )

(2.15)

a, (A) = cosh(-,'A)at(0)

+ i sinh(-,'A) [(e,+ ie,}a,(0) + e,a,(0)],

ao~(A) = cosh(-,'A)a~(0)

(2.24)

with the metric &}„=diag(+ ———+), a, t&, c, d = 0,
1, 2, 3, 4. Physically J and K are the generators of
rotations and boosts, p„ is a four-vector.

The subalgebra of ( S„„](((., v = 0, 1, 2, 3) is the
Lie algebra of the Lorentz group O(3, 1). For a,
= O~ZSp(4, R) reduces to ZSp(2, R), and by doubling

S„„by another pair of boson operators a„a, we

obtain the O(3, 1) part of Sp(8, R),

ZSp(2, R}(:ZSp(4, R)(- ZSp(8, R) . (2.16)

S„„(0)with a~, a~ from E(ls. (2.1) are the Lorentz-
group generators of the internal motion in the rest
frame. The generators of the Poincare group II
are

+i sinh(-, A)[(—e, +ie,)a,(0)+ e,a,(0)], (2.25)

a, (A) = cosh(-,'A)a, (0)

—i sinh(-,'A)[(e, —ie,)at(0)+ e,ato(0)], (2.26)

a, (A) = cosh(-,'A)a, (0)

i sinh(-,—'A)[ —(e, +ie,)a, (0)+ e,a,(0)] . (2.27)

In a frame rotated by an angle ((& = ((&(e„e„e,) rel-
ative to the rest frame we have

at((e) = [ cos(-,'((&) + ie, sin(-,'(o)]at(0)

I v=L, »+S»(0), (2.17)

L(Pv +]IPV ~ vPP (2.19)

are the O(3, 1) generators for the orbital motion

and the generators of the translation group are

(2.18)

where

—i(e, + ie,) sin(-,'a&)an't(0),

aors((o}

= [ c

os�(-,

'
o&) —ie, sin(-,'(o)]a ~(0)

—i(e, —ie,)sin(-,'(d)a,' (0),

a, ((o) = [ cos(-,'oo) —ie, sin( —,'a&)]a,(0)

+ i(e., —ie,) sin(-,'((&)a,(0),

(2.28)

(2.29)

(2.30)



DYNAMICS OF A RELATIVISTIC SHELL MODEL FOR. . .

a,((u) = [ cos(-,'~) + ie, sin(-,'&u)] a,(0)

+ i(e, +ie,)sin(-,'&u)a, (0) . (2.31)
I

In general, the boson operators in different
frames of reference have the following commuta-
tion relations:

[a„(A ), a, (A ') ] = 5» cosh —,'(A —A ' ),

[ a~ (A), a, (A ')] = i [ 5»5„(e, —ie,) —5»5»(e, + ie, ) + (5~,5»+ 5»5„)e,] sinh-,' (A —A'),

[a~(A), a, (A')] =i [ 5„,5„(e,+ie,) —5„,5»(e, —ie,)+ (5~,5„+5»5„)e,] sinh —,'(A -A') .

(2.32)

(2.33)

(2.34)

Similarly for rotations:

[a, ((o), an't((u' )]= 5„cos-,'((u —(u') —ie,(5„,5„—5„5„)sin-,'((a& —(a')

+i[5,5„(e,—ie, ) —5„5„(e,+ie,)] sin2((u —(u'),

[a&(~),a&(~')] =- 0,
(2.35)

(2.36)

[a,'(&o), a,'(~')] -=0. (2.37)

These commutation relations reduce to (2.3) and
(2.4), in identical reference frames (A =A'), and

are, consequently, preserved by a Lorentz trans-
formation.

The internal wave function
~ 0, O, A) of the

ground state (spin s= 0 and magnetic number
m =0) in a boosted reference frame is defined by
the system of linear partial differential equa-
tions:

smhA =p=v(1-v') '~' (2.46)

(p +p )
1/2 (2.47)

X~= -X,p, , (2.48)

the ground-state wave function has the same vel-
ocity dependence as in Refs. 3-5. With P, =Pe,
(I = 1, 2, 3) we have

a„(A)~ O, O, A) =0 (k=1, 2). (2.38) X3= -X,p~ . (2.48)

we obtain for X

X,= (coshA + e, sinhA ) ', (2.40)

X,= -X,e, sinhA, (2.41)

X3 X
y 83 sinhA (2.42)

Looking for a complex Gaussian solubon of (2.38)
of the form

~
0, O, A) = Norm exp{ —2[X,(6,'+ g, ')

+iX,(g,'- g, ')+»X,(,5,11,
(2.39)

In Eqs. (2.45) and (2.46) v is the velocity of the
center of mass of the particle and p, =p, /M,

P =
~ p[ /M, P,' —P'= 1. This choice for A must not

be unique. Any other velocity dependence of A
could be interpreted as a Lorentz boost for. the
internal motion of the composite system (e.g. ,
cosh~ = po)." In Sec. IV we find that (2,45)-(2.46)
alone leads to a relativistic invariant form factor.

Higher states with spin s and magnetic number
m are obtained by the standard construction for
integer and half-integer spins

(smA&= ' )] " ~OOA&[(s —m)! (s+m)!] '~'

The normalization

Norm= g-»2X»2
1

is chosen such that

(2.43)

(2.50)

(2.51)

such that
~ s, m, A) are eigenfunctions of J', J„

Vo,

J '(A)~ s, m, A) = s(s+ 1)[ s, m, A),
d'$(O, O, Al O, O, A) =1 .

In the case

(2.44) J,(A)) s, m, A), =m( s, m, A),

V, (A) ~ s, m, A) = (s+ —')[ s, m, A& .
(2.52)

(2.53)

coshA =Pa=(1 —v') ' ', (2.45) The wave function is even under reflection of
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$- —g for integer spin and odd for half-integer
spins:

~
s, m, A, —P) =(-1)"(s, m, A, () . (2.54)

are Hermite polynomials of order n, and h„k„
h, are complex numbers defined by

In the theory of the nonrelativistic harmonic os-
cillator calculations are particularly simple be-
cause the wave functions are Hermite polynomials.
We show that the RHQ model, is a true generaliza-
tion of the HO model, as the wave functions can
be written in terms of Hermite polynomials of
complicated arguments.

Theorem 1. Given the creation operators
a~ (A) [(2.24)-(2.25)] (i& = 1, 2) and the ground-state
wave function

~ 0, O, A) [Eq. (2.39)], in a boosted
Lorentz frame A, then for each &

[at(A)]" ) 0, 0,A) = i&,"H„(i&,),+ i&,$,)( 0, 0, A),
(2.55)

where

( 1)~e&g l2I e &8 I2)-
dz

'

+[c,—c,(X, —ix, ) —ic,x,] ~g~ O, O, A)

= /x, (h, $, + i&,(,) [ 0, 0,A) (2.60)

produces Eqs. (2.56) and (2.5'i). The second power
(a )' yields, by using only (2.56) and (2.57)

[a'(A)]'~O, O, A) =[i;(i,~, +i,g,)'

+ c,i&,h, + c,h, i&,.] i 0, 0, A), (2.61)

which compared to

[a (A)]'i O, O, A) =i&,'[(h, (,+i&,),)' —1] i O, O, A)

For the sake of clarity, the index k is sup-
pressed in theorem 1 and the proof.

Proof. The proof follows by induction. The first
two terms (n = 1, 2) are used to define the con-
stants h„h„h,. The comparison of the coefficients
of

a (A) ~ 0, 0,A) =
& [c, —c,(X,+ iX,) —ic,X,] g,

h, i&, = c, —c,(X,+ iX,) —ic,X, ,

i&,i&, =c, —c,(X, —iX,) —ic,X, ,

(2.56)

(2.57)
gives

c3h,h3+ c~h2hs ——h3

(2.62)

(2.63)

h, = —h, c, —h, c4 . (2.58)
X are the wave-function coefficients Eqs. (2.40)—
(2.42) and c are the coefficients used to write the
creation operators in the form

or equivalently the last Eq. (2.58). We conclude
the proof by showing that if the representation is
valid for n it also holds for n+ 1. If

[a'(A)]"
~ O, O, A) =i,"H„(i,g, +i,~,)) O, O, A),

a = c,], +c,g, + c, ,„+c,, „ (2.59)
then (z =i&,),+h, g, )

(2.64)

I

[at(A)]""~ O, O, A) =i&," (c,$, +c,i,",)H„(z)+c, H„(z)+c, H„(z)

8 8
+c,H„(z) „+c,H„(z) „ io, o;A)

=i&,""zH„(z) —, H„(z) i O, O, A).

(2.65)

(2.66)

From (a/Sz)H„(z) =n K„,(z) and the recursion re-
lation H„„(z) zH„(z) +nH—„,(z) = 0 follows

[a (A)]""~O, O, A)= ,"i&"H„( )~zO, O, A). Q.E.D.
(2.67)

In the nonrelativistic case, which is identical to
the rest frame, h, -1 for both creation operators
a„a, while i& -2' ', i&,-0 for a, and i&,- 0,
h, —2'i' for a,. Therefore,

[ a&, (0)]") 0, 0, 0) = H„(2'i 'g„)) 0, 0, 0) . (2.68) .

Equations (2.28)-(2.31) may be used to show ro-
tational symmetries of the wave function.

Theorem Z. The probability distribution in the

I

i.est frame defined by (s, m, 0~ s, m, 0) is axial
symmetric for s& 0 and spherically symmetric for
s=o.

Proof The rotated .boson operators in the rest
frame, around the 03 axis e = v(0,

'

0, 1) are a&(&e)
=e' ' a, (0) and a, (&u) =e ' 'a, (0). Then [ s, m, &e)

= e'"
[ s, m, 0), which is axially symmetric. The

ground state defined by a~ (0)~ 0, 0,0) = 0 is also a
solution of a~ (&u)) 0, 0, 0) = 0 for arbitrary rotation,
and is thus rotationally symmetric.

The independence of the harmonic oscillator of
any ma.ss scale can be used to relate the total
mass of the composite system to its spin. The
on-mass-shell condition I'„' = M' can be made an
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operator equation by using the eigenvalue equation
(2.53),

V,(A)i s, m, A. ) =(s+-,')i s, m, W),

and a postulated functional relation between the
rest mass and spin (e.g. , a polynomial relation):

M'{Vo) =P(vo) =a+ Pvo+yvo'+ ' . (2.69)

HI. NONLOCAL QUANTUM FIELD THEORY

We introduce a, Fock space for the total sys-
tem, %=36(R')XX(R '), with the canonical creation
and annihilation operators B~, B, such that

[B(s, m, p), Bt(s', m', p')],
=5„,5 „.5(P -P'), (3.1)

The resulting wave equation

[Pq' -M'(V, )]g" (x, $) =0,
1 q 3
gy +p Qy ~ 0 ~ p Pl sy s + 1) ~ ~ ~

(2.70)
[B, B]= 0, [B~, B~]= 0 . (3.2)

The set of multiparticle states

iN;, . ~ . ,N& ) = . . . iN; ) (N; =0, 1, 2, . .. )

relates the properties of the center-of-mass mo-
tion to the internal motion.

The total wave function factorizes into a center-
of-mass and an internal wave function" as a con-
sequence of (2.17):

y' ~ "(x, g) = e""is, , p) 5(p'-M')e(p, )d'p, and

BtiN;) = (N;+1)' 'iN& +1) (3.4)

(3.3)
forms an orthonormal basis in+. N, are the
occupation numbers for a state with quantum num-
bers s„m& hand momentum P, Then

1 if po&0,
8(P.) =

0 if P, &0
(2.71)

B,. iN, ) =MN, iN, -1). (3.5)

The free field operators in second quantization
are defined by

The internal wave function is the same as in
Eq. (2.38),

a~ (I) i 0, 0, A ) = 0 . (2.72)

For a linear relation M'= n+ p V,(p) the mass-
squared operator in configuration space is

M'=o. + j3(P ') ' 'P„V„(0), (2.73)

where V„(0) is the rest-frame value, Eq. (2.11).
Equation (2.73) for the free particle is then

[P„'-p(P„')-"P„V„(0)-~l q""(x, g) =0 .
(2.74)

This is a Majorana-type equation. "'"Similar
equations have been studied in the SO(4, 2) model
in Ref. 18.

The set of two equations (2.38) and (2.73) deter-
mines the asymptotic states of the theory, "which
can be used in an S-matrix formalism.

Viewed in totality, Eq. (2.70) is a complicated
differential equation, mixing derivatives of x and

$, especially when higher-order polynomials are
used in (2.69).

Q„„(x,$) = (2v) '/' j' (dp)[B{s, m, p)e'~"
i s, m, p)

+ H.c.], (3.6)

where

(dp) = 5(p'-M'(s)) 8(p,)d'p . (3.7)

Qnly the center-of-mass motion decomposes into
positive and negative frequencies, whereas the
internal wave function depends on the absolute
value i p,i.

A linear superposition such as

g(x, g)= g n, „g, (x, g)
s, m

(3.8)

has neither definite statistics nor definite mass.
In Refs. 15 and 2V, integer and half-integer com-
ponents are subjected to Bose CR's. The unified
treatment of.integer and half-integer spin found its
successful solution in the supersymmetry approach.

If we keep track" of the spin values and the sta-
tistics associated with them, the CR's are

[Q, „(x, (), Q,
' (y, g)], =(2v) ' ( d)p(

'e~'" "we '~'" "')5„.5„„(s,m, pi s', m', p), (3.S)

where —/+ is used for (s, s') even/odd. Because of the extended structure the commutator (3.S) is non-

local. The locality is regained when (3.9) is integrated over the internal coordinates:

d'5[&. , (x, h), p,', „(X,5)],= ~,.~ ~„„(»)'
Jt

(dp)(e""" "+ e '"* "') . (3.10)
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In particular for bosons we obtain

=i 5„,5„,D(x —y), (3.11)

where D(x) is the Pauli-Jordan function.
The field theory for extended particles is ex-

pected to be nonlocal. " Also it has been shown
that a field theory with infinite components and
non-degenerate mass spectrum cannot be local."'"
Interesting consequences are implied by the form
of the mass spectrum. For the Majorana theory"
the mass spectrum is M= M, (s+-,') '~'. This im-
plies that the theory is TCP noninvariant" because
it violates the compactness condition, "and conse-
quently does not describe particles. Qn the other
hand, in models with increasing mass as a function
of spin, e.g. , M ' = a + Ps, n & 0, the compactness
condition is satisfied.

IV. INTERACTIONS

. It is useful to distinguish between elastic and
inelastic interactions.

Elastic interactions do not modify masses and
spins of the particles involved, only the direction
of motion of the center of mass is changed. The
interaction does not couple directly to the internal
motion.

In inelastic interactions masses and spins are
changed and the interaction affects directly the in-
ternal motion.

Among the inelastic interactions, those contain-
ing an even number of boson operators preserve
the boson and fermion characteristics of the par-
ticles, whereas those made of an odd number of
boson operators change bosons into fermions and
vice versa.

A. Elastic electromagnetic form factor

From Eq. (2.70) it follows that there exists an
electric current density operator"

j„(x,()=e Q Q ([& y" (x ])]q" (x, &)
s =0 m=-s

—g'™(x,g)P„y'™(x,g)1

s „&sl j „(x, ()I s) = 0 . (4.2)

We use the interaction Lagrangian

&, (x, 5) =',[j„g t)+J (x)&(5)]A„(»),

where J„(x) is the current of a pointlike particle.
The S matrix is given by

(4.3)

S=T exp -QV d4x d2 Zi x,
~l )

(4.4)

The action implies a six-dimensional integral.
The scattering cross section of the extended par-

ticle with a pointlike particle, computed in first-
order Born approximation, defines the elastic
form factor E,

(4.5)

(do/dQ) point is the Rutherford cross section and
(p', p) are the outgoing and incoming momenta.

In terms of internal wave functions

&.. '(P' P)=
oo

d'((s, m, p'l s, m, p)

' 2

(4.6)

In the special case of the ground state s= 0, the
form factor can be computed analytically. With
Eq. (2.39) for l0, 0,p) and the coefficients X given
in (2.40)-(2.42) we have

(4.1)

whose matrix elements between equal-spin states
are conserved

F.'(p', P) = d« '[&,(p'N, (P)1" 'exp( —l[&, (P )+&,(p')1(&,'+ 4.') --'i[&.(p) -&,(p')](Z ' —( ')
2

—i [x,(p) -x,(p')] g, Q
Using the integration formula (A7)

&.(P', P) = 2[&,(P')x,(P)]"'f[&,(P')+&,(P)]'+ [~,(P) -&,(P')]'+ [X.(P) -&,(P')1'1 "
(4.7)

(4.8)

Let P, the incoming momentum, be oriented
along the 03 axis P=(P„O, 0, P) and P', the
outgoing momentum, be arbitrary p' = ( p„p'„p'„
P,'). Then the form factor for the ground state is
given by

E,(P', P) = [1+sinh'A sin'( —,'8)] (4.9)

In order to be relativistic invariant, the form
factor must depend on the momentum transfer
q=p' -p alone. This can be realized only with
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sinbA=p, Eq. (2.46), when E,(p', p) becomes

E,(p', p) = E,( q) = [ 1+p' sin'(-,'8)]

(4.10)

with cosh —,'A =P„sinh-,'A = P, e.g., E,(P', P) = (1
+P,' q'/4M') ' ', which is not Lorentz invariant.

The charge distribution is"
4m

p(r)= E(q)e'~" d'q =—4M'K, (2Mr), (4.11)

where K, is the Bessel function of pure imaginary
argument of order one." The mean square rad-
ius is (r') =1/4M'. This charge distribution can
be compared to the Yukawa distribution

variant.
The S„,operators do not commute with V„

therefore, spins and masses are changed.
As an illustration consider the decay of a spin-1

state in the rest frame into a spin-0 particle and
a photon.

The free parameters are the coupling constant
Q and the ratio between the masses of the initial
and final state,

e =M*(1)/M(0), (4.15)

which determines completely the velocity of the
decay product v = (e' —1)/(e'+ 1) and the moment-
um of the photon k„.

The decay amplitude in momentum space factor-
izes into

P(r) 4M 2e 2Nr2' 2

r (4.12)
T =Gc„*(~)T~,

with

(4.16)

((r') =1/2M'), which is the Fourier transform
of (1+q'/4M') ', the square of the integrand in

(4.11). Using the integral representation

K,(x) =,
p

e " '"'eosht dt . (4.13)

One finds K,(x)&e " for x& 2.1, with K,(x)-~ for
x-0, and K,(x) & e " for x & 2.12. Physically this
means that a particle described by (4.11) has a
much denser core and a thinner tail than the Yuk-

awa dj.stribution.

B. Decay

Perhaps the simplest inelastic interaction re-
sults from the Lagrangian

S, (x, g) =6 Q Q g, „(x,&)S„„(0)
s, s =0 m&m

x Eq„(x)4.. . (x, 5) .
(4.14)

6 is the coupling constant, E&„=8
&

A „-~ „A& the
electromagnetic field tensor. S„,(0) are the in-
ternal generators of O(3, 1). The interaction is
automatically gauge invariant.

The S matrix is the same as in Eq. (4.4) ~ The
matrix element between two different states with

spin s and s', such that
~
s —s'

[
= 1, describe the

radiative decay or photoyroduction of the excited
state. Equation (4.14) is formally relativistic co-

T„"=k„(o,0~pl Spu(0)l 1~ m~ 0) i (4.17)

m is the magnetic number of the decaying state,
e„(&) is the helicity wave function of the photon.

After summing over helicities

e ~e A, —5 (4.18)

The decay rate40 is
1

r =r+-', g, dfir~z'~5
m=-g "

with
r*=p'/(32'' pp, M*) .

(4.19)

(4.20)

The mean value of S„, can be written as a com-
plex Gaussian integral over the polynomials P„„:

I' may be split into contributions from different
states of polarization:

1
1"„. (4.21)

m=~ 1

The decay rate is obtained by first computing
T, which involves an analytic integration over
the internal coordinates, and then numerically
integrating T" T"*5„„over the sphere.

Let P&„($) be the eigenvalues of S„„(0)applied
to the spin-1 wave function in the rest frame:

(4.22)

( 0, 0;p ~ S„„(0)~ 1, m; 0& = s '[M/( p, +p, )] ' '[(1+m )!(1 -m)! ]

d'gP„"„g ) exp( --,'[1+M/(p, +p,)](g,'+ (,')+ip, (p, +p, ) 'g, g,

~p&(po+P2) (52 —5g )) ~ (4.28)



2034 HERBERT M. RUCK 20

The eigenvalues are easily found by Theorem 1
after normal ordering of S~„(a,)""(a,)' ". The
arguments of the Hermite polynomials 2'~'$» are
denoted by the index 0 = 1, 2:

2

P' =P ' = —2 "H,(1)H,(2),

P'„= -2 '[H, (1)+H,(2)],

P z — 2 s i 2ia (1)

P„=2 'i[H, (1) —H, (2)],

P' =2-"H (1)

P' =012

p', ,= 2-"[H,(1) -a, (1)a,(2)+ 2],

P„=2 '[H, (1)H, (2) -H, (1)H,(2)],

P-„'= —2-"[H,(2) -H, (1)H,(2)+ 2],

P,', = —2 '~'i [H,(1)t H, (1)H,(2) —2],

P',0= —2 'i[H, (1)H,(2)+H, (1)H,(2)],

P,,'= —2 '~'i [H, (2)+ H,(1)H,(2) —2],

P 2-si»H (1)a (2)

p'„= 2 '[a,(1)a,(2)+ 1],

p '= 2»»a (1)a (2) .

(4 24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

CU

LLI

CY

LLj
C5

IOO

and

E,(S„)=2 ' . (4.43)

The amplitude squared is a simple expression:

= 2 '(k '+ k ') + 2 'k ' (4.44)

Vg~, 2 1y 2+2
PV Q Q 3 Q (4.45)

The angular integral in (4.19) is straightforward.
The result is

p stat I' stat Z' stat
total (4.46)

I IQ

MASS RAT I 0
FIG. 1. Comparison of the relativistic decay rate I'

+ I' + I p with its static limit for the decay M*(1)
-M(0)+p. The initial mass M*= 770 MeV is chosen to
simulate the decay of the p meson into mesons with
different masses. The velocity of the decay product is
v = (e —1)/(e +1). In the ultrarelativistic region (e
&200) the decay is suppressed. The static limit reflects
also the shape of the phase-space volume,

(0, 0, 0I S„,(0)I 1, m, 0) =EQS „) . — (4.40)

The wave function for the emitted particle is as-
sumed to be the same as in the rest frame. The
only nonvanishing mean values are

E,(S„)=2 ' ', E,(S„)=—2' '

E,(S„)= 2 ' 'i, E,(S„)= 2 ' 'i,
(4.41)

(4.42)

With the integration formulas from Appendix A,
the mean values (0, 0, pI S„,(0)I 1, m, 0) can be ex-
pressed as functions of p= (cosQ sin8, sing sin8,
cos8). The integrand in Eq. (4.19) is a smooth
function in tI and Q such that the angular integral
converges fast as a function of the mesh size.

The resulting decay rate 71 Q+ y
is shown in

Fig. 1.
For comparison we study the "static limit" of

the decay rate, which is obtained by replacing
the relativistic Eq. (4.23) by the velocity-inde-
pendent matrix element:

stat 5 stat (4.47)

with 13, „(e'—].)'
total (4.48)

For e-1 (M*=M), I'~ot.|-0. For q-~ (M 0)
(13~1152&)GM*, thus the decay into a zero-

mass state is not suppressed. The static decay
rate is shown in Fig. 1.

For the decay p- m+y the mass ratio is & =5.5.
The total relativistic decay rate (4.19) is 1"= 2.18G'
MeV, whereas ~'''" = 2.236' Me&. For the choice
t"' = e' = —', the values are ~ = 15.93 keV and I'"""
= 16.32 keV. The difference is 2.38/o The known
experimental value" is I"„,=35 ~ 10 keg.

This calculation did not take into account quark
selection rules. It depends on the masses of the
asymptotic states alone.

The decrease of the decay rate at high speed
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(large e) can be understood from the overlap of the
initial and final wave function, due to deformation.
The measure for the overlap of the moving spin-0
wave function and the spin-1 wave function in the
rest frame is the scalar product:

) ( 0, 0,p ) 1, m, 0) l
' = 4e (e —1)'(e + 1) '

&&(5! !,sin'0+ 5„,cos'8) .
(4.49)

At rest (c = 1) the wave functions are orthogonal.
At high speed (~ » 1) the overlap decreases like

The average over the sphere shows that the
total overlap for m = x1 is twice the overlap for
m =0.

(1/4v) dill(O, O, p)1, m 0&l'

= —', ~(e —1)'(~+1) '(25! !,+5,), (4.50)

and reaches a maximum of about 15% at c =—5.6.
To compare the model with experimental values

of the radiative decay rate of vector mesons, the
SU(6) selection rules have to be included.

3«&15, and strongly suppresses decays into
very light particles e & 200.

The significance of the internal coordinates $

was not mentioned. As in any computation of phy-
sical effects, one has to integrate over (, it does
not matter what they are. Often they are consid-
ered to be light-front variables, and the model is
classified as a null-plane theory. " An interesting
alternative is to consider $ as stochastic parame-
ters which describe the extended particles. "
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APPENDIX A: COMPLEX GAUSSIAN INTEGRATION
IN TWO DIMENSIONS

Let

V. SUMMARY AND DISCUSSION
(x"y")= c/Ã6fpx y e (Al)

The aim of the paper is to explore the existence
and properties of interactions in the SQ(3, 2) model,
in continuation of Refs. 3, 4 where the kinematics
had been developed. The model is a relativistic
harmonic-oscillator model, therefore, basically a
shell model. Correspondingly the free wave func-
tions are represented by Hermite polynomials of
complex arguments in Theorem 1.

In a perturbative S-matrix calculation, with the
asymptotic states defined by Egs. (2.38), (2.50),
and (2.70), we find the elastic form factor of the
ground state and the decay rate for the M*(s = 1)
-M(s = 0) + y transition.

It is remarkable that the relativistic invariance
of the form factor 'of the ground state, which can
be computed analytically, imposes a unique condi-
tion [Eqs. (2.45)-(2.46)] upon the transformation
of the wave function under the Lorentz group.

The example of the radiative decay of a spin-1
particle into the ground state shows that the rela-
tivistic decay rate behaves qualitatively different
from the static limit for large mass ratios e.

The relativistic decay rate decreases monotoni-
cally for & &8, whereas the static 1irnit becomes
asymptotically constant for & & 20. The static
limit of the decay rate behaves essentially like
the phase-space volume over the whole range of

In conclusion, this model favors radiative
decays, or photoproduction, of particles having a
ratio of initial to final masses (e) in the range

be a two-dimensional integral with the exponent

8=-a(x'+y')+ib(x'-y')+icxy, a& 0. (A2)

Using the notation

f(n„n„n„n,) = (a'+ b')" '[4(a'+ b')+ c']"' c"'

bx exp —in arctan—4 0 (A8)

the following integration formulas are true:

(x'")(a, b, c) =(y'")(a, —b, c), (A4)

(x'"' y")(a, b, c) =(x"y'"'")(a, —'b, c), (A5)

(y'") = v(2n —1)!!2"+'f(,'n, - ,'-n, o,-n) . -
In particular,

(1)=2xf(0, --', 0, 0) .

(A6)

(y')=4wf( ,', ——', 0, 1),-

(y4) = 24m f(1, —~, 0, 2),

(x') =4mf(-,', ——,', 0, —1),

(x') = 24mf (1, —2, 0, —2),

(xy) =2wif(0, ——,', 1, 0),

(A9)

(A10)

(A11)

(A12)

A special case of (A7) for c = 0 is given in Ref. 44.
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(xy') = 12'f (-,', —-'„1,+ 1),
(x'y) =12sif(-,', —-'„1, -1),
(x'y') = 2m[f(0, ——', 0, 0) —3f(0, ——', 2, 0)].

In the limit a-l, b-0, c-O we obtain

(A13)

(A14)

(A15)

(1)=s,

&x'& =&y') =-'~,

(xy&=(xy') =&x'y&=o.

(A18)

(A17)

(A18)

(A19)
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